: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

± 15 kV ESD protection on receiver input pins 400 Mbps (200 MHz) switching rates
Flow-through pin configuration simplifies PCB layout
150 ps channel-to-channel skew (typical)
100 ps differential skew (typical)
2.7 ns maximum propagation delay

3.3 V power supply

High impedance outputs on power-down
Low power design ($\mathbf{3} \mathrm{mW}$ quiescent typical)
Interoperable with existing 5 V LVDS drivers
Accepts small swing ($\mathbf{3 1 0} \mathbf{~ m V}$ typical) differential input signal levels
Supports open, short, and terminated input fail-safe
$\mathbf{0 V}$ to $\mathbf{- 1 0 0} \mathbf{~ m V}$ threshold region
Conforms to TIA/EIA-644 LVDS standard
Industrial operating temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Available in 16-lead surface-mount SOIC and 16-lead low profile TSSOP package

APPLICATIONS

Point-to-point data transmission
Multidrop buses
Clock distribution networks
Backplane receivers

GENERAL DESCRIPTION

The ADN4668 is a quad-channel CMOS, low voltage differential signaling (LVDS) line receiver offering data rates of over 400 Mbps (200 MHz) and ultralow power consumption. It features a flowthrough pin configuration for easy PCB layout and separation of input and output signals.
The device accepts low voltage (310 mV typical) differential input signals and converts them to a single-ended, 3 V TTL/CMOS logic level.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADN4668 also offers active-high and active-low enable/disable inputs (EN and $\overline{\mathrm{EN}}$) that control all four receivers. They disable the receivers and switch the outputs to a high impedance state.

This high impedance state allows the outputs of one or more ADN4668s to be multiplexed together and reduces the quiescent power consumption to 3 mW typical.
The ADN4668 and its companion driver, the ADN4667, offer a new solution to high speed, point-to-point data transmission and a low power alternative to emitter-coupled logic (ECL) or positive emitter-coupled logic (PECL).

Rev. A

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADN4668* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

\section*{COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION

Application Notes

- AN-1176: Component Footprints and Symbols in the Binary .BxI File Format
- AN-1177: LVDS and M-LVDS Circuit Implementation Guide
- AN-1179: Junction Temperature Calculation for Analog Devices RS-485/RS-422, CAN, and LVDS/M-LVDS
Transceivers

Data Sheet

- ADN4668: 3 V LVDS Quad CMOS Differential Line Receiver Data Sheet

TOOLS AND SIMULATIONS

- ADN4668 IBIS Model

DESIGN RESOURCES

- ADN4668 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS
View all ADN4668 EngineerZone Discussions.
SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

ADN4668

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
AC Characteristics 4
Test Circuits and Waveforms 4
Absolute Maximum Ratings 6
REVISION HISTORY
7/08—Rev. 0 to Rev. A
Added 16-Lead SOIC N Universal
Changes to Table 1 3
Updated Outline Dimensions 12
Changes to Ordering Guide 12
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Theory of Operation 11
Enable Inputs 11
Applications Information 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to GND , all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. ${ }^{1,2}$
Table 1.

Parameter	Min	Typ	Max	Unit	Conditions/Comments	
LVDS INPUTS ($\mathrm{R}_{1 \times x+}, \mathrm{R}_{1 N x}$) Differential Input High Threshold, $\mathrm{V}_{\text {TH }}$ at $\mathrm{R}_{1 \times x+}, \mathrm{Rinx}^{-}{ }^{3}$ Differential Input Low Threshold, $\mathrm{V}_{T L}$ at $\mathrm{R}_{\\|_{x \times}+}, \mathrm{R}_{\mathrm{INx}_{-}{ }^{3}}$ Common-Mode Voltage Range, $\mathrm{V}_{\text {смR }}$ at $\mathrm{R}_{\mathrm{N}_{\mathrm{x}}+}, \mathrm{R}_{1 N x}{ }^{4}$ Input Current, I_{N} at $\mathrm{R}_{\mathrm{INx}+}, \mathrm{R}_{\mathrm{INx}}$	$\begin{aligned} & -100 \\ & 0.1 \\ & -10 \\ & -10 \\ & -20 \end{aligned}$	$\begin{aligned} & -35 \\ & -35 \\ & \pm 5 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \\ & 2.3 \\ & +10 \\ & +10 \\ & +20 \\ & \hline \end{aligned}$	mV mV V $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, 0.05 \mathrm{~V}, 2.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, 0.05 \mathrm{~V}, 2.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ID}}=200 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\text {IN }}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	
LOGIC INPUTS Input High Voltage, $\mathrm{V}_{\mathbf{H}}$ Input Low Voltage, $\mathrm{V}_{\text {IL }}$ Input Current, In Input Clamp Voltage, V_{CL}	$\begin{aligned} & 2.0 \\ & \text { GND } \\ & -10 \\ & -1.5 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & -0.8 \end{aligned}$	$\begin{aligned} & V_{c c} \\ & 0.8 \\ & +10 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\subset C} \text { other input }=\mathrm{V}_{\subset C} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{CL}}=-18 \mathrm{~mA} \end{aligned}$	
OUTPUTS (Routx) Output High Voltage, V он Output Low Voltage, Vol Output Short-Circuit Current, los ${ }^{5}$ Output Off State Current, loz	2.7 2.7 2.7 $\begin{array}{r} -15 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & 3.3 \\ & 0.05 \\ & -47 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & -100 \\ & +10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV} \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \text { input terminated } \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \text { input shorted } \\ & \mathrm{I}_{\mathrm{LL}}=2 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV} \\ & \text { Enabled, } \mathrm{V}_{\text {out }}=0 \mathrm{~V} \\ & \text { Disabled, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	
POWER SUPPLY No Load Supply, Current Receivers Enabled, Icc No Load Supply, Current Receivers Disabled, Iccz		$\begin{aligned} & 12 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\mathrm{EN}=\mathrm{V}_{\mathrm{cc}}$, inputs open EN = GND, inputs open	
ESD PROTECTION $\mathrm{R}_{\mathrm{INx}_{\mathrm{x}},}$ R $\mathrm{R}_{\mathrm{N} \times-}$ Pins All Pins Except Rinx+, $\mathrm{R}_{\text {INx }}$		$\begin{aligned} & \pm 15 \\ & \pm 3.5 \end{aligned}$		$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	Human body model Human body model	

${ }^{1}$ Current-into-device pins are defined as positive. Current-out-of-device pins are defined as negative. All voltages are referenced to ground, unless otherwise specified.
${ }^{2}$ All typicals are given for $\mathrm{V}_{c \mathrm{C}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 common voltage range is 0.1 V to 2.3 V .
${ }^{4} \mathrm{~V}_{\text {CMR }}$ is reduced for larger $\mathrm{V}_{I D}$. For example, if $\mathrm{V}_{\text {ID }}=400 \mathrm{mV}, \mathrm{V}_{\text {CMR }}$ is 0.2 V to 2.2 V . The fail-safe condition with inputs shorted is not supported over the common-mode
 inputs with the common-mode voltage set to $\mathrm{V}_{\text {cc }} / 2$. Propagation delay and differential pulse skew decrease when V_{10} is increased from 200 mV to 400 mV . Skew specifications apply for $200 \mathrm{mV} \leq \mathrm{V}_{\mathrm{ID}} \leq 800 \mathrm{mV}$ over the common-mode range.
${ }^{5}$ Output short-circuit current (los) is specified as magnitude only; a minus sign indicates direction only. Only one output should be shorted at a time; do not exceed the maximum junction temperature specification.

ADN4668

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to GND, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. ${ }^{1,2,3,4}$
Table 2.

Parameter ${ }^{5}$	Min	Typ	Max	Unit	Conditions/Comments ${ }^{6}$
Differential Propagation Delay, High-to-Low, tPFLD	1.2	2.0	2.7	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 7 \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$, see Figure 2 and Figure 3
Differential Propagation Delay, Low-to-High, tPLHD	1.2	1.9	2.7	ns	$\mathrm{C}_{L}=15 \mathrm{pF},{ }^{7} \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$, see Figure 2 and Figure 3
Differential Pulse Skew \|tphlo - tplud, ${ }_{\text {tsKD1 }}{ }^{8}$	0	0.1	0.4	ns	$\mathrm{C}_{L}=15 \mathrm{pF},{ }^{7} \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$, see Figure 2 and Figure 3
Differential Channel-to-Channel Skew, Same Device, tskd2 3	0	0.15	0.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 7 \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$, see Figure 2 and Figure 3
Differential Part-to-Part Skew, tskd 4			1.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 7{ }^{7} \mathrm{~V}$ ID $=200 \mathrm{mV}$, see Figure 2 and Figure 3
Differential Part-to-Part Skew, $\mathrm{tskD4}^{9}$			1.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 7{ }^{7} \mathrm{~V}$ ID $=200 \mathrm{mV}$, see Figure 2 and Figure 3
Rise Time, $\mathrm{t}_{\text {tiH }}$		0.5	1.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 7{ }^{7} \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$, see Figure 2 and Figure 3
Fall Time, $\mathrm{t}_{\text {THL }}$		0.35	1.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 7 \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$, see Figure 2 and Figure 3
Disable Time, High-to-Z, tphz		8	14	ns	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{L}=15 \mathrm{pF}, 7$ see Figure 4 and Figure 5
Disable Time, Low-to-Z, tplz		8	14	ns	$\mathrm{RL}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{L}=15 \mathrm{pF}, 7$ see Figure 4 and Figure 5
Enable Time, Z-to-High, tpzh		9	14	ns	$R_{L}=2 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, 7$ see Figure 4 and Figure 5
Enable Time, Z-to-Low, tpzl		9	14	ns	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, ${ }^{7}$ see Figure 4 and Figure 5
Maximum Operating Frequency, fmax^{10}	200	250		MHz	All channels switching

${ }^{1}$ All typicals are given for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{2}$ Generator waveform for all tests, unless otherwise specified: $f=1 \mathrm{MHz}, Z_{o}=50 \Omega$, and t_{R} and $t_{F}(0 \%$ to $100 \%) \leq 3 \mathrm{~ns}$ for Rinx $/ R_{i n x}$-.
${ }^{3}$ Channel-to-channel skew, $\mathrm{t}_{\text {SKD2 }}$, is defined as the difference between the propagation delay of one channel and that of the others on the same chip with any event on the inputs.
${ }^{4}$ Part-to-part skew, $\mathrm{t}_{\text {skD3 }}$, is the differential channel-to-channel skew of any event between devices. This specification applies to devices at the same V_{cc} and within $5^{\circ} \mathrm{C}$ of each other within the operating temperature range.
${ }^{5} \mathrm{AC}$ parameters are guaranteed by design and characterization.
${ }^{6}$ Current-into-device pins are defined as positive. Current-out-of-device pins are defined as negative. All voltages are referenced to ground, unless otherwise specified.
${ }^{7} C_{L}$ includes probe and jig capacitance.
${ }^{8} \mathrm{t}_{\text {skD1 }}$ is the magnitude difference in the differential propagation delay time between the positive-going edge and the negative-going edge of the same channel
${ }^{9}$ Part-to-part skew, $\mathrm{t}_{\text {SKD4 }}$, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over the recommended operating temperature and voltage ranges and across process distribution. $t_{\text {SKD4 }}$ is defined as \mid maximum - minimum| differential propagation delay.
${ }^{10} f_{\text {max }}$ generator input conditions: $\mathrm{f}=200 \mathrm{MHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}<1 \mathrm{~ns}(0 \%$ to $100 \%), 50 \%$ duty cycle, differential ($1.05 \mathrm{~V} \mathrm{p}-\mathrm{p}$ to $1.35 \mathrm{~V} \mathrm{p}-\mathrm{p}$). Output criteria: $60 \% / 40 \%$ duty cycle, V_{OL} (maximum $=0.4 \mathrm{~V}$), V_{OH} (minimum $=2.7 \mathrm{~V}$), $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (stray plus probes).

TEST CIRCUITS AND WAVEFORMS

Figure 2. Test Circuit for Receiver Propagation Delay and Transition Time

Figure 3. Receiver Propagation Delay and Transition Time Waveforms

NOTES

1. C_{L} INCLUDES LOAD AND TEST JIG CAPACITANCE.
2. $\mathbf{S 1}$ CONNECTED TO V_{CC} FOR $\mathrm{t}_{\text {PZL }}$ AND $\mathrm{t}_{\text {PLZ }}$ MEASUREMENTS
3. $\mathbf{S 1}$ CONNECTED TO GND FOR $\mathrm{t}_{\text {PZH }}$ AND $\mathrm{t}_{\text {PHZ }}$ MEASUREMENTS.

Figure 4. Test Circuit for Receiver Enable/Disable Delay

ADN4668

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {cc }}$ to GND	-0.3 V to +4V
Input Voltage (Risx+, Risx) to GND	-0.3 V to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Enable Input Voltage (EN, $\overline{\text { EN }}$) to GND	-0.3 V to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Output Voltage (Routx) to GND	-0.3 V to V cc +0.3 V
Operating Temperature Range Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($\mathrm{T}_{\text {max }}$)	$150^{\circ} \mathrm{C}$
Power Dissipation	$\left(\mathrm{T}_{\text {J MAX }}-\mathrm{T}_{\mathrm{A}}\right.$) $/ \theta_{\text {JA }}$
Thermal Impedance, θ_{JA}	
TSSOP Package	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	$125^{\circ} \mathrm{C} / \mathrm{W} \pm 5^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature Pb-Free	$260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 6. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RIN1-	Receiver Channel 1 Inverting Input. When this input is more negative than R ${ }_{\text {IN } 1+}, R_{\text {out } 1}$ is high. When this input is more positive than Rin1+, Routı is low.
2	RiN1+	Receiver Channel 1 Noninverting Input. When this input is more positive than Rin1-, Rout1 is high. When this input is more negative than $\mathrm{R}_{\mathrm{IN1} 1}, \mathrm{R}_{\text {out1 }}$ is low.
3	$\mathrm{R}_{\text {IN2+ }}$	Receiver Channel 2 Noninverting Input. When this input is more positive than Rin2-, Rout2 is high. When this input is more negative than Rin2-, Rout2 is low.
4	RiN2-	Receiver Channel 2 Inverting Input. When this input is more negative than $\mathrm{R}_{\mathrm{IN2} 2}, \mathrm{Rout}_{2}$ is high. When this input is more positive than $\mathrm{R}_{\mathrm{IN2} 2}$, Rout_{2} is low.
5	Rin3-	Receiver Channel 3 Inverting Input. When this input is more negative than Rin ${ }^{+}$, Routs is high. When this input is more positive than $\mathrm{R}_{\mathrm{IN} 3+}$, Routs is low.
6	$\mathrm{R}_{\text {IN3+ }}$	Receiver Channel 3 Noninverting Input. When this input is more positive than Rin3-, Rоитз is high. When this input is more negative than Rinз-, Rоитз is low.
7	Rin4+	Receiver Channel 4 Noninverting Input. When this input is more positive than RiN4-, Rout4 is high. When this input is more negative than $\mathrm{R}_{\mathrm{IN4} 4}$, Rout4 is low.
8	RiN4-	Receiver Channel 4 Inverting Input. When this input is more negative than Rin4t, Routa is high. When this input is more positive than Rin4+, Rout4 is low.
9	$\overline{\mathrm{EN}}$	Active-Low Enable and Power-Down Input with Pull-Down (3 V TTL/CMOS). When EN is held high, $\overline{\mathrm{EN}}$ enables the receiver outputs when $\overline{\mathrm{EN}}$ is low or open circuit and puts the receiver outputs into a high impedance state and powers down the device when $\overline{\mathrm{EN}}$ is high.
10	Rout4	Receiver Channel 4 Output (3 VTTL/CMOS). If the differential input voltage between RiN4+ and Rin4- is positive, this output is high. If the differential input voltage is negative, this output is low.
11	Rout3	Receiver Channel 3 Output (3 VTTL/CMOS). If the differential input voltage between $\mathrm{R}_{\mathrm{IN3}+}$ and $\mathrm{R}_{\mathrm{IN3}-}$ is positive, this output is high. If the differential input voltage is negative, this output is low.
12	GND	Ground Reference Point for All Circuitry on the Part.
13	$V_{\text {cc }}$	Power Supply Input. These parts can be operated from 3.0 V to 3.6 V.
14	Rout2	Receiver Channel 2 Output (3 V TTL/CMOS). If the differential input voltage between $\mathrm{R}_{\mathrm{IN} 2+}$ and $\mathrm{R}_{\mathrm{IN2} 2}$ is positive, this output is high. If the differential input voltage is negative, this output is low.
15	Rout1	Receiver Channel 1 Output ($3 \mathrm{VTTL} / C M O S$). If the differential input voltage between $\mathrm{R}_{\mathrm{IN} 1+}$ and $\mathrm{R}_{\mathrm{IN1}-}$ is positive, this output is high. If the differential input voltage is negative, this output is low.
16	EN	Active-High Enable and Power-Down Input (3 VTTL/CMOS). When $\overline{\mathrm{EN}}$ is held low or open circuit, EN enables the receiver outputs when EN is high and puts the receiver outputs into a high impedance state and powers down the device when EN is low.

ADN4668

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Output High Voltage, $V_{O H}$ vs. Power Supply Voltage, $V_{C C}$

Figure 8. Output Low Voltage, Vol vs. Power Supply Voltage, V $\subset \subset$

Figure 9. Output Short-Circuit Current, los vs. Power Supply Voltage, Vcc

Figure 10. Output Tristate Current, Ios vs. Power Supply Voltage, Vcc

Figure 11. Threshold Voltage, $V_{T H}$ vs. Power Supply Voltage, $V_{C C}$

Figure 12. Power Supply Current, Icc vs. Bit Rate

Figure 13. Power Supply Current, Icc vs. Ambient Temperature, T_{A}

Figure 14. Differential Propagation Delay, tpLHD, tPHLD vs. Ambient Temperature, T_{A}

Figure 15. Differential Propagation Delay, $t_{\text {PLHD }} t_{\text {PHLD }}$ Vs. Common-Mode Voltage, VCM

Figure 16. Differential Propagation Delay, $t_{\text {PLHD }}, t_{\text {PHLD }} v s$.
Power Supply Voltage, Vcc

Figure 17. Differential Propagation Delay, $t_{\text {PLHD, }} t_{\text {PHLD }}$ vs. Differential Input Voltage, $V_{I D}$

Figure 18. Differential Skew, $t_{\text {skD }}$ vs. Power Supply Voltage, V $\subset \subset$

ADN4668

Figure 19. Differential Skew, $t_{\text {SKD }}$ vs. Ambient Temperature, T_{A}

Figure 21. Transition Time, $t_{T L H}, t_{T H L}$ vs. Ambient Temperature, T_{A}

Figure 20. Transition Time, țLн, $^{\text {t }}$ THL vs. Power Supply Voltage, Vcc

THEORY OF OPERATION

The ADN4668 is a quad-channel line receiver for low voltage differential signaling. It takes a differential input signal of 310 mV typical and converts it into a single-ended 3 V TTL/ CMOS logic signal.
A differential current input signal, received via a transmission medium such as a twisted pair cable, develops a voltage across a terminating resistor, R_{T}. This resistor is chosen to match the characteristic impedance of the medium, typically around 100Ω. The differential voltage is detected by the receiver and converted back into a single-ended logic signal.

When the noninverting receiver input, $\mathrm{R}_{\mathrm{IN}_{\mathrm{x}}+}$, is positive with respect to the inverting input, $\mathrm{R}_{\mathrm{INx}-}$ (current flows through R_{T} from $\mathrm{R}_{\mathbb{N X}_{\mathrm{x}}}$ to $\mathrm{R}_{\mathrm{INx}-}$), Routx is high. When the noninverting receiver input, $\mathrm{R}_{\mathrm{IN}+}$, is negative with respect to the inverting input, $\mathrm{R}_{\mathrm{INx}-}$ (current flows through R_{T} from $\mathrm{R}_{\mathrm{INx}-}$ to $\mathrm{R}_{\mathrm{INX}+}$), $\mathrm{R}_{\text {outx }}$ is low.
Using the ADN4667 as a driver, the received differential current is between $\pm 2.5 \mathrm{~mA}$ and $\pm 4.5 \mathrm{~mA}$ ($\pm 3.1 \mathrm{~mA}$ typical), developing between $\pm 250 \mathrm{mV}$ and $\pm 450 \mathrm{mV}$ across a 100Ω termination resistor. The received voltage is centered on the receiver offset of 1.2 V . The noninverting receiver input is typically $(1.2 \mathrm{~V}+[310 \mathrm{mV} / 2])=1.355 \mathrm{~V}$, and the inverting receiver input is $(1.2 \mathrm{~V}-[310 \mathrm{mV} / 2])=1.045 \mathrm{~V}$ for Logic 1 . For Logic 0 , the inverting and noninverting input voltages are reversed. Note that because the differential voltage reverses polarity, the peak-topeak voltage swing across R_{T} is twice the differential voltage.

Current-mode signaling offers considerable advantages over voltage-mode signaling, such as the RS-422. The operating current remains fairly constant with increased switching frequency, whereas the operating current of voltage-mode drivers increases exponentially in most cases. This increase is caused by the overlap as internal gates switch between high and low, causing currents to flow from $V_{\text {CC }}$ to ground. A currentmode device reverses a constant current between its two outputs, with no significant overlap currents.

This is similar to emitter-coupled logic (ECL) and positive emittercoupled logic (PECL), but without the high quiescent current of ECL and PECL.

ENABLE INPUTS

The ADN4668 has active-high and active-low enable inputs that put all the logic outputs into a high impedance state when disabled, reducing device current consumption from 9 mA typical to 1 mA typical. See Table 5 for a truth table of the enable inputs.

Table 5. Enable Inputs Truth Table

EN	$\overline{\mathbf{E N}}$	$\mathbf{R i N x}_{\mathrm{x}}$	$\mathbf{R i N x}-$	Routx
High	Low or Open	1.045 V	1.355 V	0
High	Low or Open	1.355 V	1.045 V	1
Any other combination of EN and $\overline{\mathrm{EN}}$	X	X	High-Z	

APPLICATIONS INFORMATION

Figure 22 shows a typical application for point-to-point data transmission using the ADN4667 as the driver and the ADN4668 as the receiver.

Figure 22. Typical Application Circuit

ADN4668

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 23. 16-Lead Standard Small Outline Package [SOIC_N]
(R-16)
Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-153-AB
Figure 24. 16-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADN4668ARZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADN4668ARZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADN4668ARUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADN4668ARUZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

${ }^{1} Z=$ RoHS Compliant Part.

