

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG Synchronous Buck Controller with Constant On-Time and Valley Current Mode **On-Time and Valley Current Mode**

Data Sheet

ADP1874/ADP1875

FEATURES

Power input voltage range: 2.95 V to 20 V

On-board bias regulator

Minimum output voltage: 0.6 V

0.6 V reference voltage with ±1.0% accuracy

Supports all N-channel MOSFET power stages

Available in 300 kHz, 600 kHz, and 1.0 MHz options

No current-sense resistor required

Power saving mode (PSM) for light loads (ADP1875 only)

Resistor programmable current limit

Power good with internal pull-up resistor

Externally programmable soft start

Thermal overload protection

Short-circuit protection

Standalone precision enable input

Integrated bootstrap diode for high-side drive

Starts into a precharged output

Available in a 16-lead QSOP package

APPLICATIONS

Telecom and networking systems Mid- to high-end servers **Set-top boxes DSP** core power supplies

GENERAL DESCRIPTION

The ADP1874/ADP1875 are versatile current mode, synchronous step-down controllers. They provide superior transient response, optimal stability, and current-limit protection by using a constant on-time, pseudo fixed frequency with a programmable current limit, current control scheme. In addition, these devices offer optimum performance at low duty cycles by using a valley, current mode control architecture. This allows the ADP1874/ADP1875 to drive all N-channel power stages to regulate output voltages to as low as 0.6 V.

The ADP1875 is the power saving mode (PSM) version of the device and is capable of pulse skipping to maintain output regulation while achieving improved system efficiency at light loads (see the ADP1875 Power Saving Mode (PSM) section for more information).

Available in three frequency options (300 kHz, 600 kHz, and 1.0 MHz, plus the PSM option), the ADP1874/ADP1875 are well suited for a wide range of applications that require a single-input power supply range from 2.95 V to 20 V. Low voltage biasing is supplied via a 5 V internal low dropout regulator (LDO).

TYPICAL APPLICATIONS CIRCUIT

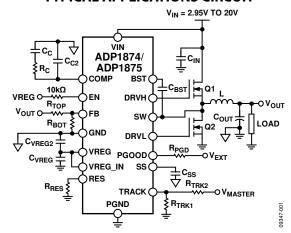


Figure 1. Typical Applications Circuit

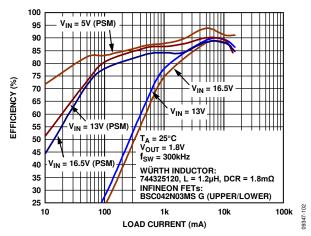


Figure 2. ADP1874/ADP1875 Efficiency vs. Load Current (V_{OUT} = 1.8 V, 300 kHz)

In addition, soft start programmability is included to limit input in-rush current from the input supply during startup and to provide reverse current protection during precharged output conditions. The low-side current sense, current gain scheme, and integration of a boost diode, along with the PSM/forced pulsewidth modulation (PWM) option, reduce the external part count and improve efficiency.

The ADP1874/ADP1875 operate over the -40°C to +125°C junction temperature range and are available in a 16-lead QSOP package.

TABLE OF CONTENTS

Features1
Applications1
General Description1
Typical Applications Circuit1
Revision History2
Specifications3
Absolute Maximum Ratings6
Thermal Resistance
Boundary Condition6
ESD Caution6
Pin Configuration and Function Descriptions7
Typical Performance Characteristics8
ADP1874/ADP1875 Block Digram18
Theory of Operation19
Startup
Soft Start
Precision Enable Circuitry
Undervoltage Lockout
On-Board Low Dropout Regulator
Thermal Shutdown
Programming Resistor (RES) Detect Circuit
Valley Current-Limit Setting
Hiccup Mode During Short Circuit
Synchronous Rectifier
ADP1875 Power Saving Mode (PSM)
REVISION HISTORY
7/12—Rev. 0 to Rev. A
Changes to Table 7

Timer Operation	23
Pseudo-Fixed Frequency	24
Power Good Monitoring	24
Voltage Tracking	25
Applications Information	27
Feedback Resistor Divider	27
Inductor Selection	27
Output Ripple Voltage (ΔV_{RR})	27
Output Capacitor Selection	27
Compensation Network	28
Efficiency Consideration	29
Input Capacitor Selection	30
Thermal Considerations	31
Design Example	32
External Component Recommendations	34
Layout Considerations	36
IC Section (Left Side of Evaluation Board)	38
Power Section	38
Differential Sensing	39
Typical Application Circuits	40
12 A, 300 kHz High Current Application Circu	ıit 40
5.5 V Input, 600 kHz Application Circuit	40
300 kHz High Current Application Circuit	41
Outline Dimensions	42
Ordering Guide	42

7/12—Rev. 0 to Rev. A	
Changes to Table 7	-

3/11—Revision 0: Initial Version

SPECIFICATIONS

All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). VREG = 5 V, BST – SW = VREG – V_{RECT_DROP} (see Figure 40 to Figure 42). V_{IN} = 12 V. The specifications are valid for T_{J} = -40°C to +125°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY CHARACTERISTICS						
High Input Voltage Range	VIN	$C_{VIN} = 22 \mu F(25 \text{ V rating}) \text{ to PGND (at Pin 1)}$				
		ADP1874ARQZ-0.3/ADP1875ARQZ-0.3 (300 kHz)	2.95	12	20	V
		ADP1874ARQZ-0.6/ADP1875ARQZ-0.6 (600 kHz)	2.95	12	20	V
		ADP1874ARQZ-1.0/ADP1875ARQZ-1.0 (1.0 MHz)	3.25	12	20	V
Quiescent Current	lescent Current $I_{Q REG} + I_{Q BST}$ FB = 1.5 V, no switching			1.1		mA
Shutdown Current	$I_{REG,SD} + I_{BST,SD}$	EN < 600 mV		140	225	μΑ
Undervoltage Lockout	UVLO	Rising V _{IN} (see Figure 35 for temperature variation)		2.65		V
UVLO Hysteresis		Falling V _{IN} from operational state		190		mV
INTERNAL REGULATOR CHARACTERISTICS		VREG and VREG_IN tied together and should not be loaded externally because they are intended to only bias internal circuitry				
VREG Operational Output Voltage	VREG	$C_{VREG} = 4.7 \mu\text{F to PGND}, 0.22 \mu\text{F to GND}, V_{IN} = 2.95 \text{V to } 20 \text{V}$				
		ADP1874ARQZ-0.3/ADP1875ARQZ-0.3 (300 kHz)	2.75	5	5.5	V
		ADP1874ARQZ-0.6/ADP1875ARQZ-0.6 (600 kHz)	2.75	5	5.5	V
		ADP1874ARQZ-1.0/ADP1875ARQZ-1.0 (1.0 MHz)	3.05	5	5.5	V
VREG Output in Regulation		$V_{IN} = 7 \text{ V}, 100 \text{ mA}$	4.82	4.981	5.16	V
		$V_{IN} = 12 \text{ V}, 100 \text{ mA}$	4.83	4.982	5.16	V
Load Regulation		$0 \text{ mA to } 100 \text{ mA}, V_{IN} = 7 \text{ V}$		32		mV
		$0 \text{ mA to } 100 \text{ mA}, V_{IN} = 20 \text{ V}$		34		mV
Line Regulation		$V_{IN} = 7 \text{ V to } 20 \text{ V}, 20 \text{ mA}$		2.5		mV
		$V_{IN} = 7 \text{ V to } 20 \text{ V}, 100 \text{ mA}$		2		mV
VIN to VREG Dropout Voltage		100 mA out of VREG, $V_{IN} \le 5 \text{ V}$		300	415	mV
Short VREG to PGND		$V_{IN} = 20 \text{ V}$		229	320	mA
SOFT START						
Soft Start Period Calculation		Connect external capacitor from SS pin to GND, $C_{SS} = 10 \text{ nF/ms}$		10		nF/ms
ERROR AMPLIFER						
FB Regulation Voltage	V_{FB}	$T_J = 25^{\circ}C$		600		mV
		$T_J = -40$ °C to +85°C	596	600	604	mV
		$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	594.2	600	605.8	mV
Transconductance	G _m		320	496	670	μS
FB Input Leakage Current	I _{FB, LEAK}	FB = 0.6 V, EN = VREG		1	50	nA
CURRENT-SENSE AMPLIFIER GAIN						
Programming Resistor (RES) Value from RES to PGND		$RES = 47 \text{ k}\Omega \pm 1\%$	2.7	3	3.3	V/V
		$RES = 22 \text{ k}\Omega \pm 1\%$	5.5	6	6.5	V/V
		RES = none	11	12	13	V/V
		$RES = 100 \text{ k}\Omega \pm 1\%$	22	24	26	V/V
SWITCHING FREQUENCY		Typical values measured at 50% time points with 0 nF at DRVH and DRVL; maximum values are guaranteed by bench evaluation 1				
ADP1874ARQZ-0.3/		-		300		kHz
ADP1875ARQZ-0.3 (300 kHz)		VIN - 5 V V - 2 V T - 25°C	1120	1200	1200	nc
On-Time $VIN = 5 \text{ V, V}_{OUT} = 2 \text{ V, T}_{J} = 25^{\circ}\text{C}$ Minimum On-Time $VIN = 20 \text{ V}$		1120	1200	1280	ns	
		VIN = 20 V		145	190	ns
Minimum Off-Time 84% duty cycle (maximum)			340	400	ns	

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
ADP1874ARQZ-0.6/ ADP1875ARQZ-0.6 (600 kHz)				600		kHz
On-Time		$VIN = 5 \text{ V}, V_{OUT} = 2 \text{ V}, T_{J} = 25^{\circ}\text{C}$	500	540	580	ns
Minimum On-Time		$VIN = 20 \text{ V}, V_{OUT} = 0.8 \text{ V}$		82	110	ns
Minimum Off-Time		65% duty cycle (maximum)		340	400	ns
ADP1874ARQZ-1.0/ ADP1875ARQZ-1.0 (1.0 MHz)				1.0		MHz
On-Time		$VIN = 5 \text{ V}, V_{OUT} = 2 \text{ V}, T_{J} = 25^{\circ}\text{C}$	285	312	340	ns
Minimum On-Time		VIN = 20 V		52	85	ns
Minimum Off-Time		45% duty cycle (maximum)		340	400	ns
OUTPUT DRIVER CHARACTERISTICS		is to daily eyere (maximum,				
High-Side Driver						
Output Source Resistance ²		I _{SOURCE} = 1.5 A, 100 ns, positive pulse (0 V to 5 V)		2.25	3.5	Ω
Output Sink Resistance ²		I _{SINK} = 1.5 A, 100 ns, positive pulse (5 V to 0 V)		0.70	1	Ω
Rise Time ³	+	$R_{SINK} = 1.5 \text{ A}, 100 \text{ ns, flegative pulse (5 V to 0 V)}$ BST – SW = 4.4 V, C _{IN} = 4.3 nF (see Figure 59)		25		ns
Fall Time ³	t _{r, DRVH}			25 11		
Low-Side Driver	t _{f, DRVH}	BST – SW = 4.4 V, C_{IN} = 4.3 nF (see Figure 60)		1.1		ns
		15 4 100		1.6	2.4	
Output Source Resistance ²		I _{SOURCE} = 1.5 A, 100 ns, positive pulse (0 V to 5 V)		1.6	2.4	Ω
Output Sink Resistance ²		I _{SINK} = 1.5 A, 100 ns, negative pulse (5 V to 0 V)		0.7	1	Ω
Rise Time ³	t _{r,DRVL}	VREG = 5.0 V, C_{IN} = 4.3 nF (see Figure 60)		18		ns
Fall Time ³	$t_{f,DRVL}$	$VREG = 5.0 V, C_{IN} = 4.3 nF (see Figure 59)$		16		ns
Propagation Delays						
DRVL Fall to DRVH Rise ³	t _{tpdhDRVH}	BST - SW = 4.4 V (see Figure 59)		15.4		ns
than 1112		BST - SW = 4.4 V (see Figure 60)		18		ns
SW Leakage Current I_{SWLEAK} $BST = 25 \text{ V}, SW = 20 \text{ V}, VREG = 5 \text{ V}$		BST = 25 V, SW = 20 V, VREG = 5 V			110	μΑ
Integrated Rectifier						
Channel Impedance		$I_{SINK} = 10 \text{ mA}$		22		Ω
PRECISION ENABLE THRESHOLD						
Logic High Level		VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V	570	630	680	m۷
Enable Hysteresis		VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V		31		m۷
COMP VOLTAGE						
COMP Clamp Low Voltage	$V_{COMP(LOW)}$	Tie EN pin to VREG to enable device $(2.75 \text{ V} \le \text{VREG} \le 5.5 \text{ V})$	0.47			V
COMP Clamp High Voltage	$V_{COMP(HIGH)}$	$(2.75 \text{ V} \leq \text{VREG} \leq 5.5 \text{ V})$			2.55	٧
COMP Zero Current Threshold	V _{COMP_ZCT}	$(2.75 \text{ V} \leq \text{VREG} \leq 5.5 \text{ V})$		1.15		٧
THERMAL SHUTDOWN	T _{TMSD}					
Thermal Shutdown Threshold		Rising temperature		155		°C
Thermal Shutdown Hysteresis				15		°C
CURRENT LIMIT						
Hiccup Current Limit Timing		COMP = 2.4 V		6		ms
OVERVOLTAGE AND POWER GOOD THRESHOLDS	PGOOD					
FB Power Good Threshold	FB _{PGD}	V _{FR} rising during system power-up		542	568	mV
FB Power Good Hysteresis	. SPGD			30	230	mV
FB Overvoltage Threshold	FB _{ov}	V_{FB} rising during overvoltage event, $I_{PGOOD} = 1$ mA		691	710	mV
FB Overvoltage Hysteresis	1 D _{OV}	VFB 1131119 duting overvoltage event, I _{PGOOD} — I IIIA		30	, 10	mV
PGOOD Low Voltage During Sink	V			143	200	mV
= =	V_{PGOOD}	$I_{PGOOD} = 1 \text{ mA}$				
PGOOD Leakage Current		PGOOD = 5 V		1	400	nA

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
TRACKING						
Track Input Voltage Range			0		5	V
FB-to-Tracking Offset Voltage		$0.5 \text{ V} < \text{TRACK} < 0.6 \text{ V}, \text{ offset} = V_{FB} - V_{TRACK}$		63		mV
Leakage Current		$V_{TRACK} = 5 V$		1	50	nA

¹ The maximum specified values are with the closed loop measured at 10% to 90% time points (see Figure 59 and Figure 60), C_{GATE} = 4.3 nF, and the upper side and lower side MOSFETs being Infineon BSC042N03MS G.
² Guaranteed by design.
³ Not automatic test equipment (ATE) tested.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Tubic 2.	
Parameter	Rating
VREG, VREG_IN, TRACK to PGND, GND	-0.3 V to +6 V
VIN, EN, PGOOD to PGND	−0.3 V to +28 V
FB, COMP, RES, SS to GND	-0.3 V to (VREG + 0.3 V)
DRVL to PGND	-0.3 V to (VREG + 0.3 V)
SW to PGND	-2.0 V to +28 V
BST to SW	-0.6 V to (VREG + 0.3 V)
BST to PGND	-0.3 V to +28 V
DRVH to SW	−0.3 V to VREG
PGND to GND	±0.3 V
PGOOD Input Current	20 mA
θ_{JA} (16-Lead QSOP)	
4-Layer Board	104°C/W
Operating Junction Temperature Range	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Soldering Conditions	JEDEC J-STD-020
Maximum Soldering Lead Temperature	300°C
(10 sec)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings apply individually only, not in combination. Unless otherwise specified, all other voltages are referenced to PGND.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θ_{JA}	Unit
θ _{JA} (16-Lead QSOP)		
4-Layer Board	104°	°C/W

BOUNDARY CONDITION

In determining the values given in Table 2 and Table 3, natural convection is used to transfer heat to a 4-layer evaluation board.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

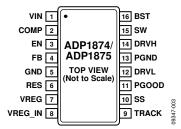


Figure 3. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VIN	High-Side Input Voltage. Connect VIN to the drain of the upper side MOSFET.
2	COMP	Output of the Error Amplifier. Connect the compensation network between this pin and AGND to achieve stability (see the Compensation Network section).
3	EN	Connect to VREG to Enable IC. When pulled down to AGND externally, disables the IC.
4	FB	Noninverting Input of the Internal Error Amplifier. This is the node where the feedback resistor is connected.
5	GND	Analog Ground Reference Pin of the IC. All sensitive analog components should be connected to this ground plane (see the Layout Considerations section).
6	RES	Current Sense Gain Resistor (External). Connect a resistor between the RES pin and GND (Pin 5).
7	VREG	Internal Regulator Supply Bias Voltage for the ADP1874/ADP1875 Controller (Includes the Output Gate Drivers). A bypass capacitor of 1 μ F directly from this pin to PGND and a 0.1 μ F across VREG and GND are recommended.
8	VREG_IN	Input to the Internal LDO. Tie this pin directly to Pin 7 (VREG).
9	TRACK	Tracking Input. If the tracking function is not used, it is recommended to connect TRACK to VREG through a resistor higher than 1 M Ω or simply connect TRACK between 0.7 V and 2 V to reduce the bias current going into the pin.
10	SS	Soft Start Input. Connect an external capacitor to GND to program the soft start period. Capacitance value of 10 nF for every 1 ms of soft start delay.
11	PGOOD	Open-Drain Power Good Output. Sinks current when FB is out of regulation or during thermal shutdown. Connect a 3 kΩ resistor between PGOOD and VREG. Leave unconnected if not used.
12	DRVL	Drive Output for the External Lower Side, N-Channel MOSFET. This pin also serves as the current-sense gain setting pin (see Figure 69).
13	PGND	Power GND. Ground for the lower side gate driver and lower side, N-channel MOSFET.
14	DRVH	Drive Output for the External Upper Side, N-Channel MOSFET.
15	SW	Switch Node Connection.
16	BST	Bootstrap for the Upper Side MOSFET Gate Drive Circuitry. An internal boot rectifier (diode) is connected between VREG and BST. A capacitor from BST to SW is required. An external Schottky diode can also be connected between VREG and BST for increased gate drive capability.

TYPICAL PERFORMANCE CHARACTERISTICS

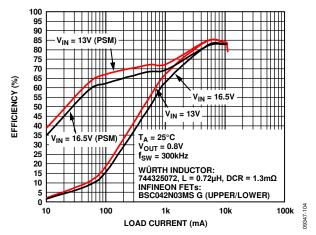


Figure 4. Efficiency—300 kHz, $V_{OUT} = 0.8 \text{ V}$

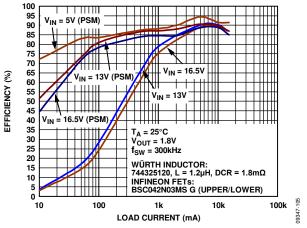


Figure 5. Efficiency—300 kHz, V_{OUT} = 1.8 V

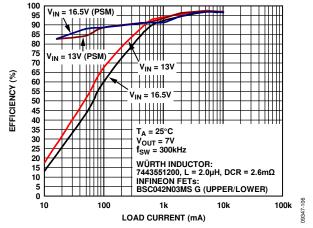


Figure 6. Efficiency—300 kHz, $V_{OUT} = 7 V$

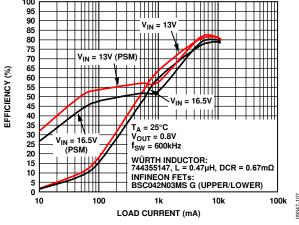


Figure 7. Efficiency—600 kHz, $V_{OUT} = 0.8 \text{ V}$

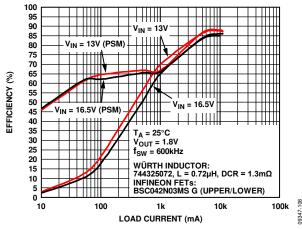


Figure 8. Efficiency—600 kHz, V_{OUT} = 1.8 V

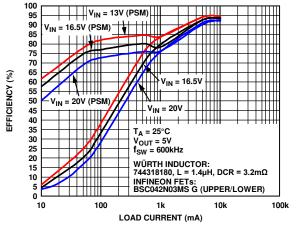


Figure 9. Efficiency—600 kHz, $V_{OUT} = 5 V$

0.807

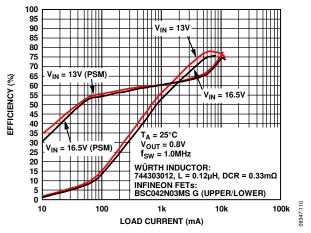
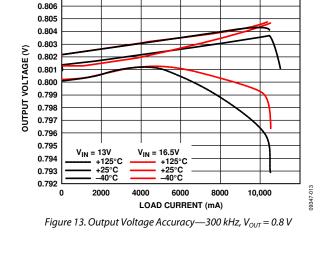



Figure 10. Efficiency—1.0 MHz, $V_{OUT} = 0.8 \text{ V}$

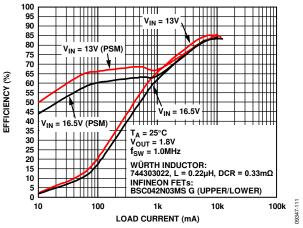


Figure 11. Efficiency—1.0 MHz, V_{OUT} = 1.8 V

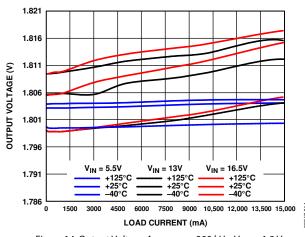


Figure 14. Output Voltage Accuracy—300 kHz, $V_{OUT} = 1.8 \text{ V}$

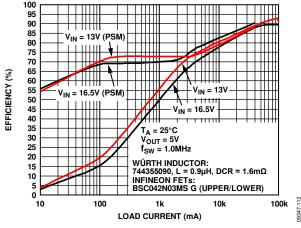


Figure 12. Efficiency—1.0 MHz, $V_{OUT} = 5 V$

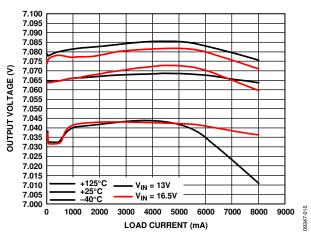


Figure 15. Output Voltage Accuracy—300 kHz, $V_{OUT} = 7 V$

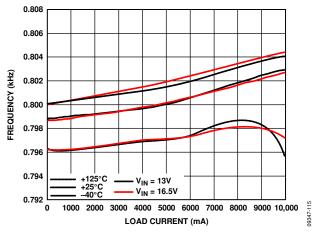


Figure 16. Output Voltage Accuracy—600 kHz, V_{OUT} = 0.8 V

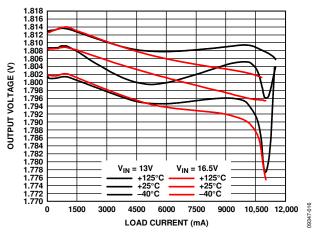


Figure 17. Output Voltage Accuracy—600 kHz, V_{OUT} = 1.8 V

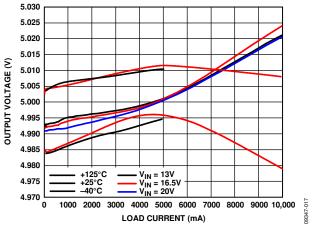


Figure 18. Output Voltage Accuracy—600 kHz, $V_{OUT} = 5 V$

Figure 19. Output Voltage Accuracy—1.0 MHz, $V_{OUT} = 0.8 \text{ V}$

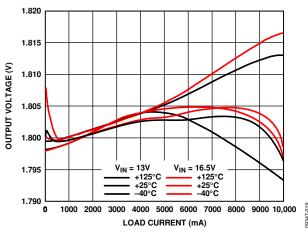


Figure 20. Output Voltage Accuracy—1.0 MHz, $V_{OUT} = 1.8 \text{ V}$

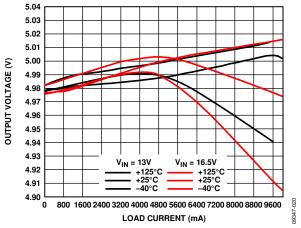


Figure 21. Output Voltage Accuracy—1.0 MHz, V_{OUT} =5 V

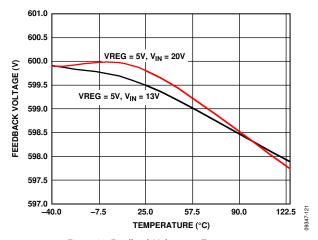


Figure 22. Feedback Voltage vs. Temperature

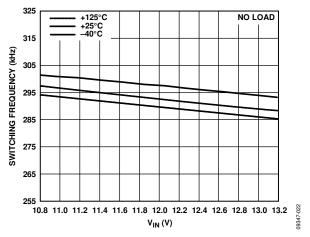


Figure 23. Switching Frequency vs. High Input Voltage, 300 kHz, $\pm 10\%$ of 12 V

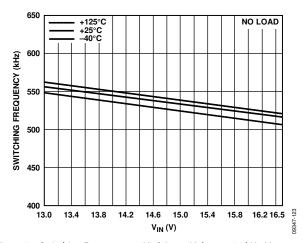


Figure 24. Switching Frequency vs. High Input Voltage, 600 kHz, $V_{\rm OUT}$ = 1.8 V, $V_{\rm IN}$ Range = 13 V to 16.5 V

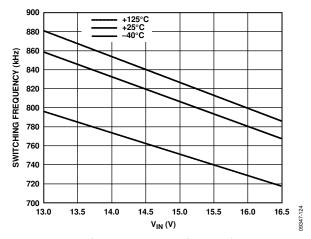


Figure 25. Switching Frequency vs. High Input Voltage, 1.0 MHz, $V_{\rm IN}$ Range = 13 V to 16.5 V

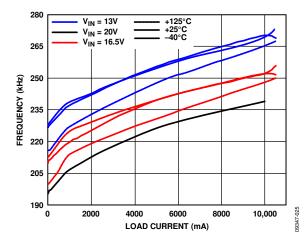


Figure 26. Frequency vs. Load Current, 300 kHz, $V_{OUT} = 0.8 \text{ V}$

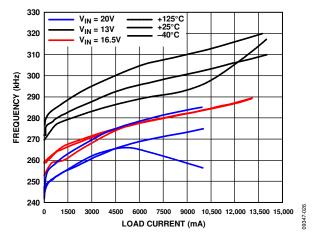


Figure 27. Frequency vs. Load Current, 300 kHz, $V_{OUT} = 1.8 \text{ V}$

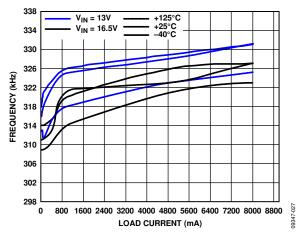


Figure 28. Frequency vs. Load Current, 300 kHz, $V_{OUT} = 7 \text{ V}$

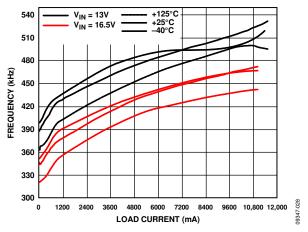


Figure 29. Frequency vs. Load Current, 600 kHz, $V_{OUT} = 0.8 \text{ V}$

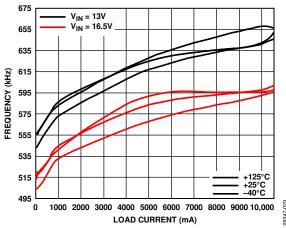


Figure 30. Frequency vs. Load Current, 600 kHz, $V_{OUT} = 1.8 \text{ V}$

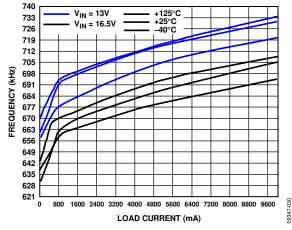


Figure 31. Frequency vs. Load Current, 600 kHz, $V_{OUT} = 5 \text{ V}$

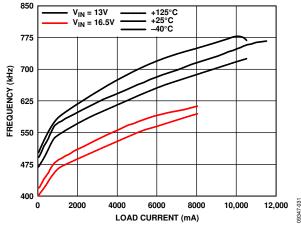


Figure 32. Frequency vs. Load Current, $V_{OUT} = 1.0 \text{ MHz}$, 0.8 V

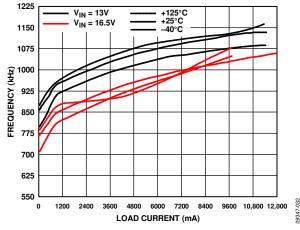


Figure 33. Frequency vs. Load Current, 1.0 MHz, $V_{OUT} = 1.8 \text{ V}$

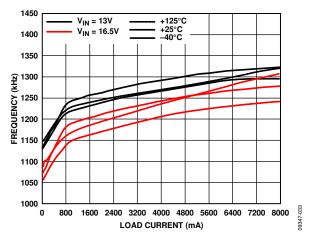


Figure 34. Frequency vs. Load Current, 1.0 MHz, $V_{OUT} = 5 \text{ V}$

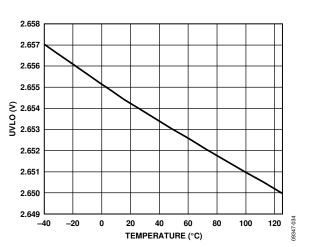


Figure 35. UVLO vs. Temperature

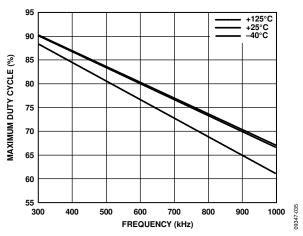


Figure 36. Maximum Duty Cycle vs. Frequency

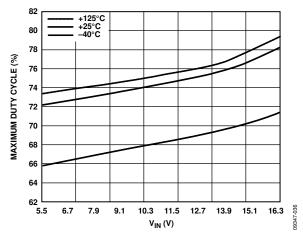


Figure 37. Maximum Duty Cycle vs. High Voltage Input (V_{IN})

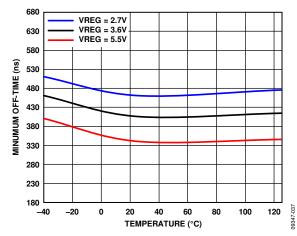


Figure 38. Minimum Off-Time vs. Temperature

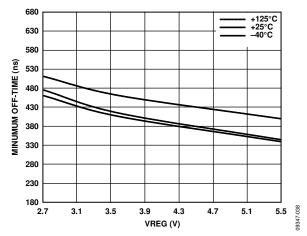


Figure 39. Minimum Off-Time vs. VREG (Low Input Voltage)

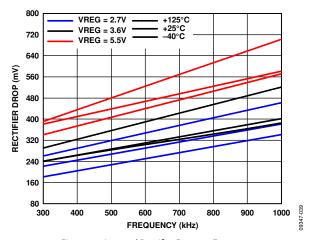


Figure 40. Internal Rectifier Drop vs. Frequency

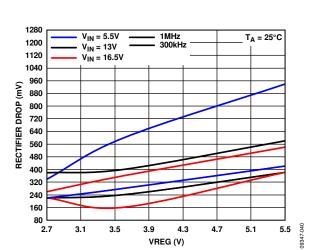


Figure 41. Internal Boost Rectifier Drop vs. VREG (Low Input Voltage) $Over V_{\mathit{IN}} Variation$

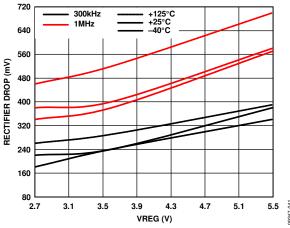


Figure 42. Internal Boost Rectifier Drop vs. VREG

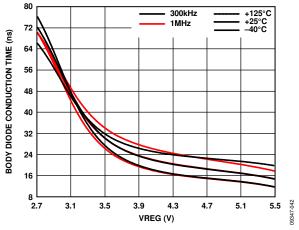


Figure 43. Lower Side MOSFET Body Diode Conduction Time vs. VREG

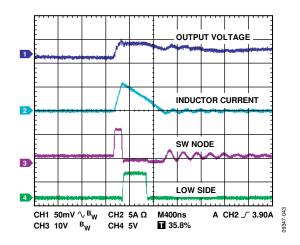


Figure 44. Power Saving Mode (PSM) Operational Waveform, 100 mA

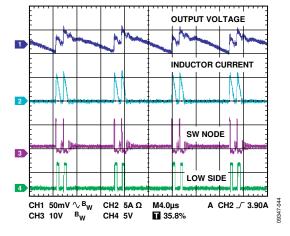


Figure 45. PSM Waveform at Light Load, 500 mA

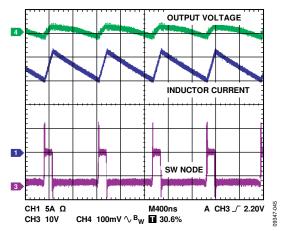


Figure 46. CCM Operation at Heavy Load, 12 A (See Figure 99 for Application Circuit)

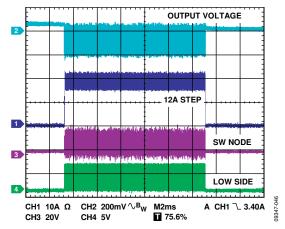


Figure 47. Load Transient Step—PSM Enabled, 12 A (See Figure 99 Application Circuit)

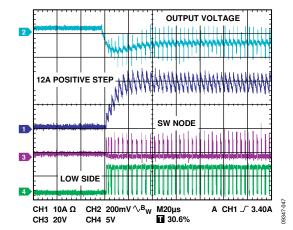


Figure 48. Positive Step During Heavy Load Transient Behavior—PSM Enabled, $12 \text{ A}, V_{\text{OUT}} = 1.8 \text{ V}$ (See Figure 99 Application Circuit)

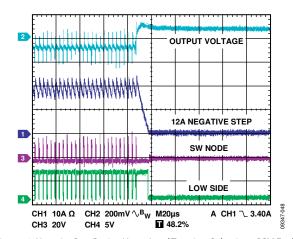


Figure 49. Negative Step During Heavy Load Transient Behavior—PSM Enabled, 12 A (See Figure 99 Application Circuit)

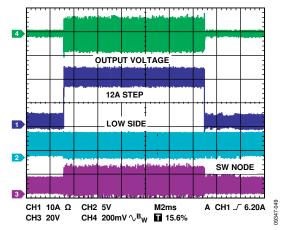


Figure 50. Load Transient Step—Forced PWM at Light Load, 12 A (See Figure 99 Application Circuit)

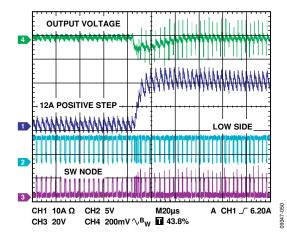


Figure 51. Positive Step During Heavy Load Transient Behavior—Forced PWM at Light Load, 12 A, $V_{\rm OUT}$ = 1.8 V (See Figure 99 Application Circuit)

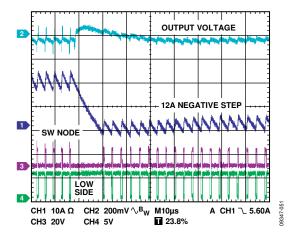


Figure 52. Negative Step During Heavy Load Transient Behavior—Forced PWM at Light Load, 12 A (See Figure 99 Application Circuit)

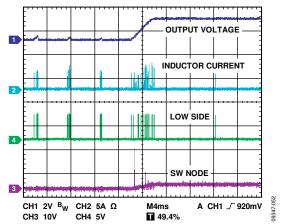


Figure 53. Output Short-Circuit Behavior Leading to Hiccup Mode

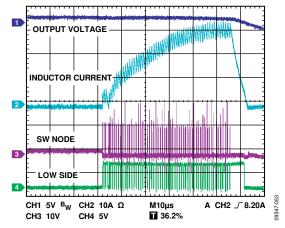


Figure 54. Magnified Waveform During Hiccup Mode

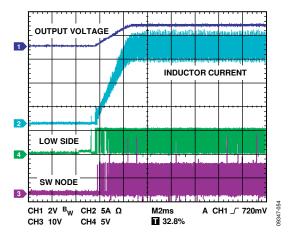


Figure 55. Start-Up Behavior at Heavy Load, 12 A, 300 kHz (See Figure 99 Application Circuit)

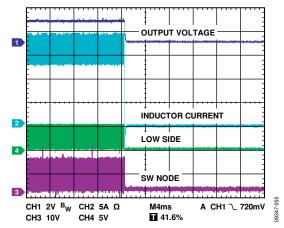


Figure 56. Power-Down Waveform During Heavy Load

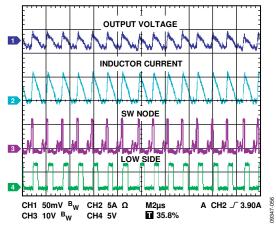


Figure 57. Output Voltage Ripple Waveform During PSM Operation at Light Load, 2 A

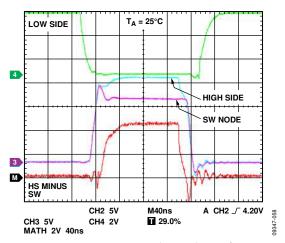


Figure 58. Output Drivers and SW Node Waveforms

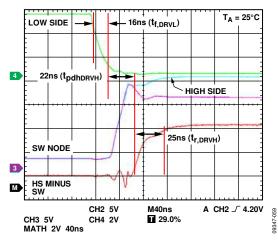


Figure 59. Upper Side Driver Rising and Lower Side Falling Edge Waveforms ($C_{IN} = 4.3$ nF (Upper Side/Lower Side MOSFET), $Q_{TOTAL} = 27$ nC ($V_{GS} = 4.4$ V (Q1), $V_{GS} = 5$ V (Q3))

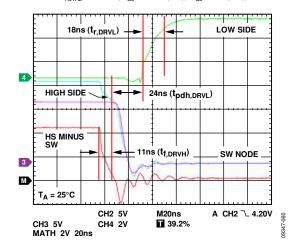


Figure 60. Upper Side Driver Falling and Lower Side Rising Edge Waveforms ($C_{IN} = 4.3$ nF (Upper Side/Lower Side MOSFET), $Q_{TOTAL} = 27$ nC ($V_{GS} = 4.4$ V (Q1), $V_{GS} = 5$ V (Q3))

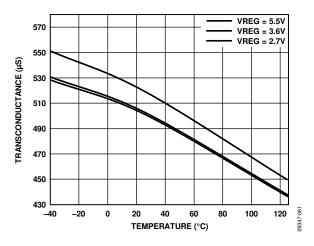


Figure 61. Transconductance (G_m) vs. Temperature

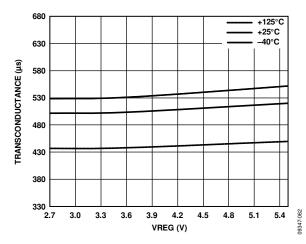


Figure 62. Transconductance (G_m) vs. VREG

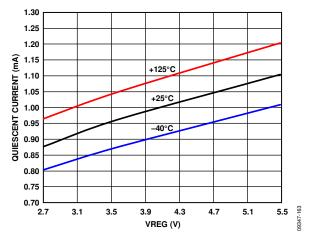


Figure 63. Quiescent Current vs. VREG

ADP1874/ADP1875 BLOCK DIGRAM

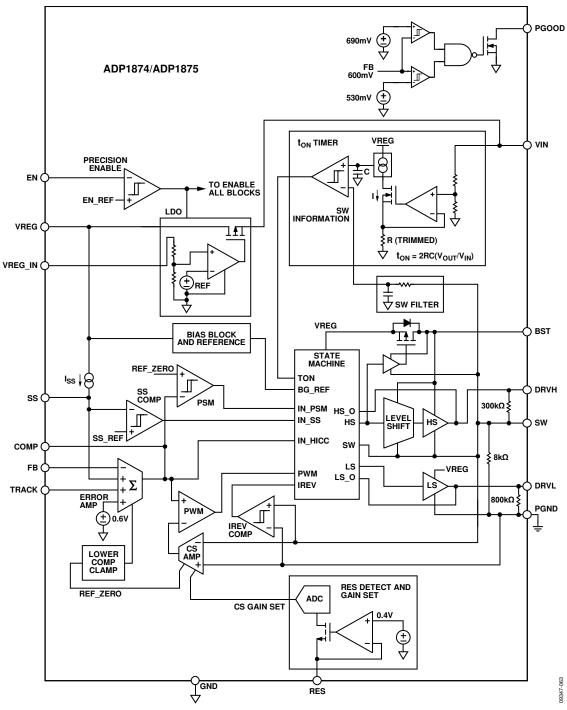


Figure 64. ADP1874/ADP1875 Block Diagram

THEORY OF OPERATION

The ADP1874/ADP1875 are versatile current mode, synchronous step-down controllers that provide superior transient response, optimal stability, and current limit protection by using a constant on-time, pseudo-fixed frequency with a programmable current-sense gain, current-control scheme. In addition, these devices offer optimum performance at low duty cycles by using a valley, current mode control architecture. This allows the ADP1874/ADP1875 to drive all N-channel power stages to regulate output voltages to as low as 0.6 V.

STARTUP

The ADP1874/ADP1875 have an internal regulator (VREG) for biasing and supplying power for the integrated MOSFET drivers. A bypass capacitor should be located directly across the VREG (Pin 7) and PGND (Pin 13) pins. Included in the power-up sequence is the biasing of the current-sense amplifier, the current-sense gain circuit (see the Programming Resistor (RES) Detect Circuit section), the soft start circuit, and the error amplifier.

The current-sense blocks provide valley current information (see the Programming Resistor (RES) Detect Circuit section) and are a variable of the compensation equation for loop stability (see the Compensation Network section). The valley current information is extracted by forcing a voltage across the RES and PGND pins, which generates a current depending on the resistor value across RES and PGND. The current through the resistor is used to set the current-sense amplifier gain. This process takes approximately 800 μs , after which the drive signal pulses appear at the DRVL and DRVH pins synchronously, and the output voltage begins to rise in a controlled manner through the soft start sequence.

The rise time of the output voltage is determined by the soft start and error amplifier blocks (see the Soft Start section). At the beginning of a soft start, the error amplifier charges the external compensation capacitor, causing the COMP pin to begin to rise (see Figure 66). Tying the VREG pin to the EN pin via a pull-up resistor causes the voltage at this pin to rise above the enable threshold of 630 mV to enable the ADP1874/ADP1875.

SOFT START

The ADP1874 employs externally programmable, soft start circuitry that charges up a capacitor tied to the SS pin to GND. This prevents input in-rush current through the external MOSFET from the input supply (V_{IN}) . The output tracks the ramping voltage by producing PWM output pulses to the upper side MOSFET. The purpose is to limit the in-rush current from the high voltage input supply (V_{IN}) to the output (V_{OUT}) .

PRECISION ENABLE CIRCUITRY

The ADP1874/ADP1875 have precision enable circuitry. The precision enable threshold is 630 mV with 30 mV of hysteresis (see Figure 65). Connecting the EN pin to GND disables the ADP1874/ADP1875, reducing the supply current of the device to approximately 140 μ A.

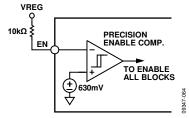


Figure 65. Connecting EN Pin to VREG via a Pull-Up Resistor to Enable the ADP1874/ADP1875

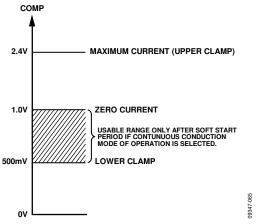


Figure 66. COMP Voltage Range

UNDERVOLTAGE LOCKOUT

The undervoltage lockout (UVLO) feature prevents the part from operating both the upper side and lower side MOSFETs at extremely low or undefined input voltage (VIN) ranges. Operation at an undefined bias voltage may result in the incorrect propagation of signals to the high-side power switches. This, in turn, results in invalid output behavior that can cause damage to the output devices, ultimately destroying the device tied at the output. The UVLO level is set at 2.65 V (nominal).

ON-BOARD LOW DROPOUT REGULATOR

The ADP1874/ADP1875 use an on-board LDO to bias the internal digital and analog circuitry. Connect the VREG and VREG_IN pins together for normal LDO operation for low voltage internal block biasing (see Figure 67).

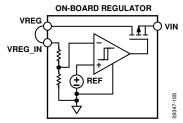


Figure 67. Connecting VREG and VREG_IN Together

With proper bypass capacitors connected to the VREG pin (output of the internal LDO), this pin also provides power for the internal MOSFET drivers. It is recommended to float VREG/VREG_IN if VIN is used for greater than 5.5 V operation. The minimum voltage where bias is guaranteed to operate is 2.75 V at VREG.

For applications where VIN is decoupled from VREG, the minimum voltage at VIN must be 2.9 V. It is recommended to tie VIN and VREG together if the VIN pin is subjected to a 2.75 V rail.

Table 5. Power Input and LDO Output Configurations

VIN	VREG/VREG_IN	Comments
>5.5 V	Float	Must use the LDO.
<5.5 V	Connect to VIN	LDO drop voltage is not realized (that is, if VIN = 2.75 V, then VREG = 2.75 V).
<5.5 V	Float	LDO drop is realized.
VIN Ranging Above and Below 5.5 V	Float	LDO drop is realized, minimum VIN recommendation is 2.95 V.

THERMAL SHUTDOWN

The thermal shutdown is a self-protection feature to prevent the IC from damage due to a very high operating junction temperature. If the junction temperature of the device exceeds 155°C, the part enters the thermal shutdown state. In this state, the device shuts off both the upper side and lower side MOSFETs and disables the entire controller immediately, thus reducing the power consumption of the IC. The part resumes operation after the junction temperature of the part cools to less than 140°C.

PROGRAMMING RESISTOR (RES) DETECT CIRCUIT

Upon startup, one of the first blocks to become active is the RES detect circuit. This block powers up before soft start begins. It forces a 0.4 V reference value at the RES pin (see Figure 68) and is programmed to identify four possible resistor values: 47 k Ω , 22 k Ω , open, and 100 k Ω .

The RES detect circuit digitizes the value of the resistor at the RES pin (Pin 6). An internal ADC outputs a 2-bit digital code that is used to program four separate gain configurations in the current-sense amplifier (see Figure 69). Each configuration corresponds to a current-sense gain (A_{CS}) of 3 V/V, 6 V/V, 12 V/V, or 24 V/V, respectively (see Table 6 and Table 7). This variable is used for the valley current-limit setting, which sets up the appropriate current-sense gain for a given application and sets the compensation necessary to achieve loop stability (see the Valley Current-Limit Setting section and the Compensation Network section).

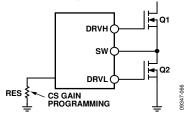


Figure 68. Programming Resistor Location

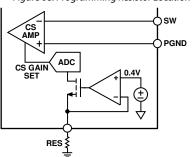


Figure 69. RES Detect Circuit for Current-Sense Gain Programming

Table 6. Current-Sense Gain Programming

Resistor	A _{cs}
47 kΩ	3 V/V
22 kΩ	6 V/V
Open	12 V/V
100 kΩ	24 V/V

VALLEY CURRENT-LIMIT SETTING

The architecture of the ADP1874/ADP1875 is based on valley current-mode control. The current limit is determined by three components: the $\rm R_{ON}$ of the lower side MOSFET, the current-sense amplifier output voltage swing, and the current-sense gain. The CS output voltage range is internally fixed at 1.4 V. The current-sense gain is programmable via an external resistor at the RES pin (see the Programming Resistor (RES) Detect Circuit section). The $\rm R_{ON}$ of the lower side MOSFET can vary over temperature and usually has a positive $\rm T_{C}$ (meaning that it increases with temperature); therefore, it is recommended to program the current-sense gain resistor based on the rated $\rm R_{ON}$ of the MOSFET at 125°C.

Because the ADP1874/ADP1875 are based on valley current control, the relationship between $\rm I_{CLIM}$ and $\rm I_{LOAD}$ is

$$I_{CLIM} = I_{LOAD} \times \left(1 - \frac{K_I}{2}\right)$$

where:

 K_I is the ratio between the inductor ripple current and the desired average load current (see Figure 70).

 I_{CLIM} is the desired valley current limit.

 I_{LOAD} is the current load.

Establishing K_I helps to determine the inductor value (see the Inductor Selection section), but in most cases $K_I = 0.33$.

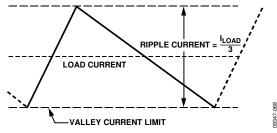


Figure 70. Valley Current Limit to Average Current Relation

When the desired valley current limit (I_{CLIM}) has been determined, the current-sense gain can be calculated as follows:

$$I_{CLIM} = \frac{1.4 \text{ V}}{A_{CS} \times R_{ON}}$$

where:

 R_{ON} is the channel impedance of the lower side MOSFET. A_{CS} is the current-sense gain multiplier (see Table 6 and Table 7).

Although the ADP1874/ADP1875 have only four discrete current-sense gain settings for a given $R_{\rm ON}$ variable, Table 7 and Figure 71 outline several available options for the valley current setpoint based on various $R_{\rm ON}$ values.

Table 7. Valley Current Limit Program (See Figure 71)

	Valley Current Level						
R_{ON}	47 kΩ	22 kΩ	Open	100 kΩ			
(mΩ)	$A_{cs} = 3 \text{ V/V}$	$A_{cs} = 6 \text{ V/V}$	$A_{cs} = 12 \text{ V/V}$	$A_{CS} = 24 \text{ V/V}$			
1.5				38.9			
2				29.2			
2.5				23.3			
3			39.0	19.5			
3.5			33.4	16.7			
4.5			26.0	13			
5			23.4	11.7			
5.5			21.25	10.6			
10		23.3	11.7	5.83			
15	31.0	15.5	7.75	3.87			
18	26.0	13.0	6.5	3.25			

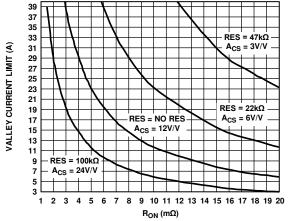


Figure 71. Valley Current-Limit Value vs. R_{ON} of the Lower Side MOSFET for Each Programming Resistor (RES)

The valley current limit is programmed as outlined in Table 7 and Figure 71. The inductor chosen must be rated to handle the peak current, which is equal to the valley current from Table 7 plus the peak-to-peak inductor ripple current (see the Inductor Selection section). In addition, the peak current value must be used to compute the worst-case power dissipation in the MOSFETs (see Figure 72).

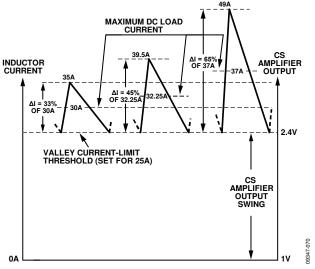


Figure 72. Valley Current-Limit Threshold in Relation to Inductor Ripple Current

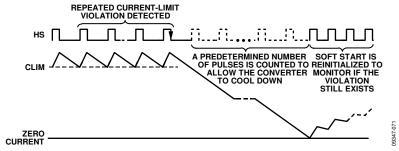


Figure 73. Idle Mode Entry Sequence Due to Current-Limit Violation

HICCUP MODE DURING SHORT CIRCUIT

A current-limit violation occurs when the current across the source and drain of the lower side MOSFET exceeds the current-limit setpoint. When 16 current-limit violations are detected, the controller enters idle mode and turns off the MOSFETs for 6 ms, allowing the converter to cool down. Then, the controller reestablishes soft start and begins to cause the output to ramp up again (see Figure 73). While the output ramps up, CS amplifier output is monitored to determine if the violation is still present. If it is still present, the idle event occurs again, followed by the full chip, power-down sequence. This cycle continues until the violation no longer exists. If the violation disappears, the converter is allowed to switch normally, maintaining regulation.

SYNCHRONOUS RECTIFIER

The ADP1874/ADP1875 employ internal MOSFET drivers for the external upper side and lower side MOSFETs. The low-side synchronous rectifier not only improves overall conduction efficiency but it also ensures proper charging of the bootstrap capacitor located at the upper side driver input. This is beneficial during startup to provide sufficient drive signal to the external upper side MOSFET and to attain fast turn-on response, which is essential for minimizing switching losses. The integrated upper side and lower side MOSFET drivers operate in complementary fashion with built-in anti cross-conduction circuitry to prevent unwanted shoot-through current that may potentially damage the MOSFETs or reduce efficiency because of excessive power loss.

ADP1875 POWER SAVING MODE (PSM)

A power saving mode is provided in the ADP1875. The ADP1875 operates in the discontinuous conduction mode (DCM) and pulse skips at light load to medium load currents. The controller outputs pulses as necessary to maintain output regulation. Unlike the continuous conduction mode (CCM), DCM operation prevents negative current, thus allowing improved system efficiency at light loads. Current in the reverse direction through this pathway, however, results in power dissipation and therefore a decrease in efficiency.

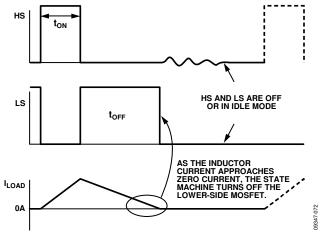


Figure 74. Discontinuous Mode of Operation (DCM)

To minimize the chance of negative inductor current buildup, an on-board zero-cross comparator turns off all upper side and lower side switching activities when the inductor current approaches the zero current line, causing the system to enter idle mode, where the upper side and lower side MOSFETs are turned off. To ensure idle mode entry, a 10 mV offset, connected in series at the SW node, is implemented (see Figure 75).

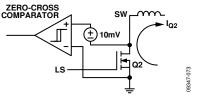


Figure 75. Zero-Cross Comparator with 10 mV of Offset

As soon as the forward current through the lower side MOSFET decreases to a level where

$$10 \text{ mV} = I_{Q2} \times R_{ON(Q2)}$$

the zero-cross comparator (or $I_{\rm REV}$ comparator) emits a signal to turn off the lower side MOSFET. From this point, the slope of the inductor current ramping down becomes steeper (see Figure 76) as the body diode of the lower side MOSFET begins to conduct current and continues conducting current until the remaining energy stored in the inductor has been depleted.

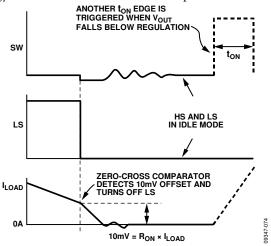


Figure 76. 10 mV Offset to Ensure Prevention of Negative Inductor Current The system remains in idle mode until the output voltage drops below regulation. A PWM pulse is then produced, turning on the upper side MOSFET to maintain system regulation. The ADP1875 does not have an internal clock, so it switches purely as a hysteretic controller as described in this section.

TIMER OPERATION

The ADP1874/ADP1875 employ a constant on-time architecture, which provides a variety of benefits, including improved load and line transient response when compared with a constant (fixed) frequency current-mode control loop of comparable loop design. The constant on-time timer, or $t_{\rm ON}$ timer, senses the high-side input voltage ($V_{\rm IN}$) and the output voltage ($V_{\rm OUT}$) using SW waveform information to produce an adjustable one-shot PWM pulse. The pulse varies the on-time of the upper side MOSFET in response to dynamic changes in input voltage, output voltage, and load current conditions to maintain output regulation. The timer generates an on-time ($t_{\rm ON}$) pulse that is inversely proportional to $V_{\rm IN}$.

$$t_{\scriptscriptstyle ON} = K \times \frac{V_{\scriptscriptstyle OUT}}{V_{\scriptscriptstyle IN}}$$

where *K* is a constant that is trimmed using an RC timer product for the 300 kHz, 600 kHz, and 1.0 MHz frequency options.

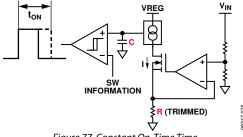


Figure 77. Constant On-Time Time

The constant on-time ($t_{\rm ON}$) is not strictly constant because it varies with $V_{\rm IN}$ and $V_{\rm OUT}$. However, this variation occurs in such a way as to keep the switching frequency virtually independent of $V_{\rm IN}$ and $V_{\rm OUT}$.

The $t_{\rm ON}$ timer uses a feedforward technique, which when applied to the constant on-time control loop makes it a pseudo-fixed frequency to a first-order approximation. Second-order effects, such as dc losses in the external power MOSFETs (see the Efficiency Consideration section), cause some variation in frequency vs. load current and line voltage. These effects are shown in Figure 23 to Figure 34. The variations in frequency are much reduced compared with the variations generated if the feedforward technique is not used.

The feedforward technique establishes the following relationship:

$$f_{SW} = \frac{1}{K}$$

where f_{SW} is the controller switching frequency (300 kHz, 600 kHz, and 1.0 MHz).

The $t_{\rm ON}$ timer senses $V_{\rm IN}$ and $V_{\rm OUT}$ to minimize frequency variation as previously explained. This provides pseudo-fixed frequency as explained in the Pseudo-Fixed Frequency section. To allow headroom for $V_{\rm IN}$ and $V_{\rm OUT}$ sensing, adhere to the following equations:

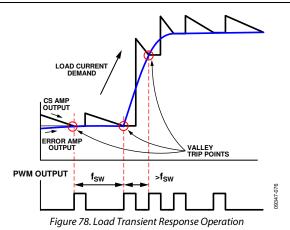
$$VREG \ge V_{IN}/8 + 1.5$$

$$VREG \ge V_{OUT}/4$$

For typical applications where VREG is 5 V, these equations are not relevant; however, care may be required for lower VREG/VIN inputs.

PSEUDO-FIXED FREQUENCY

The ADP1874/ADP1875 employ a constant on-time control scheme. During steady state operation, the switching frequency stays relatively constant, or pseudo-fixed. This is due to the one-shot t_{ON} timer that produces a high-side PWM pulse with a fixed duration, given that external conditions such as input voltage, output voltage, and load current are also at steady state. During load transients, the frequency momentarily changes for the duration of the transient event so that the output comes back within regulation more quickly than if the frequency were fixed or if it were to remain unchanged. After the transient event is complete, the frequency returns to a pseudo-fixed value.


To illustrate this feature more clearly, this section describes one such load transient event—a positive load step—in detail. During load transient events, the high-side driver output pulsewidth stays relatively consistent from cycle to cycle; however, the off-time (DRVL on-time) dynamically adjusts according to the instantaneous changes in the external conditions mentioned.

When a positive load step occurs, the error amplifier (out of phase with the output, V_{OUT}) produces new voltage information at its output (COMP). In addition, the current-sense amplifier senses new inductor current information during this positive load transient event. The error amplifier's output voltage reaction is compared with the new inductor current information that sets the start of the next switching cycle. Because current information is produced from valley current sensing, it is sensed at the down ramp of the inductor current, whereas the voltage loop information is sensed through the counter action upswing of the error amplifier's output (COMP).

The result is a convergence of these two signals (see Figure 78), which allows an instantaneous increase in switching frequency during the positive load transient event. In summary, a positive load step causes $V_{\rm OUT}$ to transient down, which causes COMP to transient up and, therefore, shortens the off time. This resulting increase in frequency during a positive load transient helps to quickly bring $V_{\rm OUT}$ back up in value and within the regulation window.

Similarly, a negative load step causes the off time to lengthen in response to V_{OUT} rising. This effectively increases the inductor demagnetizing phase, helping to bring V_{OUT} within regulation. In this case, the switching frequency decreases, or experiences a foldback, to help facilitate output voltage recovery.

Because the ADP1874/ADP1875 have the ability to respond rapidly to sudden changes in load demand, the recovery period in which the output voltage settles back to its original steady state operating point is much quicker than it would be for a fixed-frequency equivalent. Therefore, using a pseudo-fixed frequency results in significantly better load-transient performance compared to using a fixed frequency.

POWER GOOD MONITORING

The ADP1874/ADP1875 power good circuitry monitors the output voltage via the FB pin. The PGOOD pin is an open-drain output that can be pulled up by an external resistor to a voltage rail that does not necessarily have to be VREG. When the internal NMOS switch is in high impedance (off state), this means that the PGOOD pin is logic high, and the output voltage via the FB pin is within the specified regulation window. When the internal switch is turned on, PGOOD is internally pulled low when the output voltage via the FB pin is outside this regulation window.

The power good window is defined with a typical upper specification of +90 mV and a lower specification of -70 mV below the FB voltage of 600 mV. When an overvoltage event occurs at the output, there is a typical propagation delay of 12 μs prior to the PGOOD pin deassertion (logic low). When the output voltage re-enters the regulation window, there is a propagation delay of 12 μs prior to PGOOD reasserting back to a logic high state. When the output is outside the regulation window, the PGOOD open drain switch is capable of sinking 1mA of current and provides 140 mV of drop across this switch. The user is free to tie the external pull-up resistor (R_{RES}) to any voltage rail up to 20 V. The following equation provides the proper external pull-up resistor value:

$$R_{PGD} = \frac{V_{EXT} - 140 \text{ mV}}{1 \text{ mA}}$$

where:

 R_{PGD} is the PGOOD external resistor. V_{EXT} is a user-chosen voltage rail.

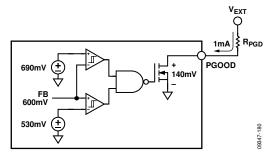


Figure 79. Power Good, Output Voltage Monitoring Circuit

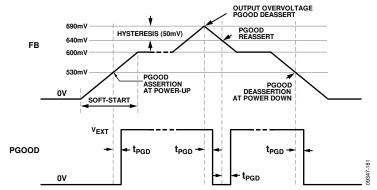
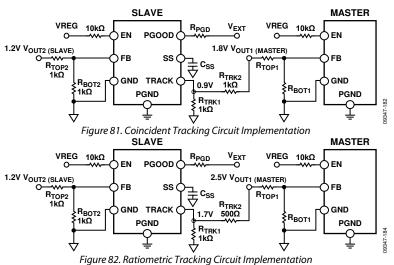



Figure 80. Power Good Timing Diagram, $t_{PGD} = 12 \mu s$ (Diagram May Look Disproportionate for Illustration Purposes.)

VOLTAGE TRACKING

The ADP1874/ADP1875 feature a voltage-tracking function that facilitates proper power-up sequencing in applications that require tracking a master voltage. In this manner, the user is free to impose a master voltage that typically comes with a selectable or programmable ramp rate on slave or secondary power rails. To impose any voltage tracking relationship, the master voltage rise time must be longer than the slave voltage soft start period. This is particularly important in applications such as I/O voltage sequencing and core voltage applications where specific power sequencing is required.

Tracking is made possible by four inputs to the error amplifier, three of which are input pins to the IC. The TRACK and SS pins are positive inputs, and the FB pin provides the negative feedback from the output voltage via the divider network. The fourth input to the amplifier is the reference voltage of 0.6 V. The negative feedback pin (FB pin) regulates the output voltage to the lowest of the three positive inputs (TRACK, SS, and 0.6 V reference).

In all tracking configurations, the slave output can be set to as low as 0.6 V for a given operating condition. The master voltage must have a longer rise time than the slaves programmed soft start period; otherwise, the tracking relationship will not be observed at the slave output.

Coincident and ratiometric tracking are two possible tracking configuration options offered by the ADP1874/ADP1875. Coincident tracking is the most commonly used tracking technique. It is primarily used in core and I/O sequencing applications. The ramp rate of the master voltage is fully imposed onto the ramp rate of the slave output voltage until it has reached its regulation setpoint. Connecting the TRACK pin, by differentially tapping onto the master voltage via a resistive divider of similar ratio to the slave feedback divider network, is depicted in Figure 83.

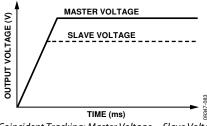


Figure 83. Coincident Tracking: Master Voltage—Slave Voltage Tracking Relationship