imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG DEVICES

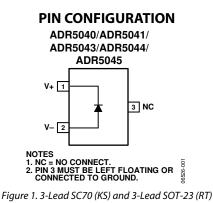
Precision Micropower Shunt Mode Voltage References

Data Sheet

ADR5040/ADR5041/ADR5043/ADR5044/ADR5045

FEATURES

Ultracompact SC70 and SOT-23 packages Low temperature coefficient: 75 ppm/°C (maximum) Pin compatible with LM4040/LM4050 Initial accuracy: ±0.1% No external capacitor required Wide operating current range: 50 µA to 15 mA Extended temperature range: -40°C to +125°C Qualified for automotive applications


APPLICATIONS

Portable, battery-powered equipment Automotives Power supplies Data acquisition systems Instrumentation and process control Energy management

GENERAL DESCRIPTION

Designed for space-critical applications, the ADR5040/ ADR5041/ADR5043/ADR5044/ADR5045 are high precision shunt voltage references, housed in ultrasmall SC70 and SOT-23 packages. These voltage references are multipurpose, easy-to-use references that can be used in a vast array of applications. They feature low temperature drift, an initial accuracy of better than 0.1%, and fast settling time.

Available in output voltages of 2.048 V, 2.5 V, 3.0 V, 4.096 V, and 5.0 V, the advanced design of the ADR5040/ADR5041/ADR5043/ ADR5044/ADR5045 eliminates the need for compensation by an external capacitor, yet the references are stable with any capacitive load. The minimum operating current increases from 50 μ A to a maximum of 15 mA. This low operating current and ease of use make these references ideally suited for handheld, battery-powered applications. This family of references has been characterized over the extended temperature range of -40° C to $+125^{\circ}$ C. The ADR5041W and the ADR5044W are qualified for automotive applications and are available in a 3-lead SOT-23 package.

Table 1	. Selection	Table

Device	Voltage (V)	Initial Accuracy (%)	Temperature Coefficient (ppm/°C)
ADR5040A	2.048	±0.2	100
ADR5040B	2.048	±0.1	75
ADR5041A	2.5	±0.2	100
ADR5041B	2.5	±0.1	75
ADR5043A	3.0	±0.2	100
ADR5043B	3.0	±0.1	75
ADR5044A	4.096	±0.2	100
ADR5044B	4.096	±0.1	75
ADR5045A	5.0	±0.2	100
ADR5045B	5.0	±0.1	75

Rev. C

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2007–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	1
Applications	1
Pin Configuration	1
General Description	1
Revision History	2
Specifications	3
ADR5040 Electrical Characteristics	3
ADR5041 Electrical Characteristics	3
ADR5043 Electrical Characteristics	4
ADR5044 Electrical Characteristics	4
ADR5045 Electrical Characteristics	5

REVISION HISTORY

3/16—Rev. B to Rev. C

Change to Figure 77
Changed Stacking the ADR504x for User-Definable Outputs
Section to Stacking the ADR5040/ADR5041/ADR5043/
ADR5044/ADR5045 for User-Definable Outputs Section 11
Changes to Figure 2312

8/12—Rev. A to Rev. B

Changes to Features Section and General Description Section	1
Updated Outline Dimensions	13
Moved Ordering Guide	14
Changes to Ordering Guide	14
Added Automotive Products Section	15

Absolute Maximum Ratings	6
Thermal Resistance	6
ESD Caution	6
Typical Performance Characteristics	7
Terminology	10
Theory of Operation	
Applications Information	
Outline Dimensions	
Ordering Guide	
Automotive Products	

12/07—Rev. 0 to Rev. A

Changes to Features	1
Changes to Initial Accuracy and Temperature Coefficient	
Parameters in Table 2 Through Table 6	3
Updated Outline Dimensions	. 13
Changes to Ordering Guide	. 13

1/07—Revision 0: Initial Version

SPECIFICATIONS ADR5040 ELECTRICAL CHARACTERISTICS

 $I_{\rm IN}$ = 50 μA to 15 mA, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	V _{OUT}	$I_{IN} = 100 \ \mu A$				
Grade A			2.044	2.048	2.052	V
Grade B			2.046	2.048	2.050	V
INITIAL ACCURACY	VOERR	I _{IN} = 100 μA				
Grade A			-4.096		+4.096	mV
					±0.2	%
Grade B			-2.048		+2.048	mV
					±0.1	%
TEMPERATURE COEFFICIENT ¹	TCVOUT	-40°C < T _A < +125°C				
Grade A				10	100	ppm/°C
Grade B				10	75	ppm/°C
OUTPUT VOLTAGE CHANGE vs. IIN	ΔV _R	$I_{IN} = 50 \ \mu A \text{ to } 1 \ m A$				
		$-40^{\circ}C < T_A < +125^{\circ}C$		0.4	1.75	mV
		$I_{IN} = 1 \text{ mA to } 15 \text{ mA}$				
		$-40^{\circ}C < T_A < +125^{\circ}C$		4	8	mV
DYNAMIC OUTPUT IMPEDANCE	$(\Delta V_R / \Delta I_R)$	$I_{IN} = 50 \ \mu A$ to 15 mA			0.2	Ω
MINIMUM OPERATING CURRENT	l _{in}	$T_A = 25^{\circ}C$			50	μΑ
		$-40^{\circ}C < T_A < +125^{\circ}C$			60	μΑ
VOLTAGE NOISE	e _N	$I_{IN} = 100 \ \mu\text{A}; 0.1 \ \text{Hz} \text{ to } 10 \ \text{Hz}$		2.8		μV rms
		I_{IN} = 100 μ A; 10 Hz to 10 kHz		120		μV rms
TURN-ON SETTLING TIME	t _R	$C_{LOAD} = 0 \ \mu F$		28		μs
OUTPUT VOLTAGE HYSTERESIS	ΔV _{OUT_HYS}	$I_{IN} = 1 \text{ mA}$		40		ppm

¹ Guaranteed by design.

ADR5041 ELECTRICAL CHARACTERISTICS

 $I_{\rm IN}$ = 50 μA to 15 mA, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	$I_{IN} = 100 \ \mu A$				
Grade A			2.495	2.500	2.505	V
Grade B			2.4975	2.500	2.5025	V
INITIAL ACCURACY	VOERR	$I_{IN} = 100 \ \mu A$				
Grade A			-5		+5	mV
					±0.2	%
Grade B			-2.5		+2.5	mV
					±0.1	%
TEMPERATURE COEFFICIENT ¹	TCV _{OUT}	-40°C < T _A < +125°C				
Grade A				10	100	ppm/°C
Grade B				10	75	ppm/°C
OUTPUT VOLTAGE CHANGE vs. IIN	ΔV _R	$I_{IN} = 50 \ \mu A \text{ to } 1 \ \text{mA}$				
		$-40^{\circ}C < T_A < +125^{\circ}C$		0.5	1.8	mV
		$I_{IN} = 1 \text{ mA to } 15 \text{ mA}$				
		-40°C < T _A < +125°C		4	8	mV

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC OUTPUT IMPEDANCE	$(\Delta V_R / \Delta I_R)$	I _{IN} = 50 μA to 15 mA			0.2	Ω
MINIMUM OPERATING CURRENT	I _{IN}	$T_A = 25^{\circ}C$			50	μΑ
		$-40^{\circ}C < T_A < +125^{\circ}C$			60	μΑ
VOLTAGE NOISE	en	$I_{IN} = 100 \ \mu\text{A}; 0.1 \ \text{Hz} \text{ to } 10 \ \text{Hz}$		3.2		μV rms
		$I_{IN} = 100 \ \mu\text{A}$; 10 Hz to 10 kHz		150		μV rms
TURN-ON SETTLING TIME	t _R	$C_{LOAD} = 0 \ \mu F$		35		μs
OUTPUT VOLTAGE HYSTERESIS	ΔV_{OUT_HYS}	$I_{IN} = 1 \text{ mA}$		40		ppm

¹ Guaranteed by design.

ADR5043 ELECTRICAL CHARACTERISTICS

 $I_{\rm IN}$ = 50 μA to 15 mA, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 4.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	I _{IN} = 100 μA				
Grade A			2.994	3.000	3.006	V
Grade B			2.997	3.000	3.003	V
INITIAL ACCURACY	VOERR	$I_{IN} = 100 \ \mu A$				
Grade A			-6		+6	mV
					±0.2	%
Grade B			-3		+3	mV
					±0.1	%
TEMPERATURE COEFFICIENT ¹	TCV _{OUT}	$-40^{\circ}C < T_A < +125^{\circ}C$				
Grade A				10	100	ppm/°C
Grade B				10	75	ppm/°C
OUTPUT VOLTAGE CHANGE vs. IIN	ΔV _R	$I_{IN} = 50 \ \mu A \text{ to } 1 \ m A$				
		-40°C < T _A < +125°C		0.7	2.2	mV
		$I_{IN} = 1 \text{ mA to } 15 \text{ mA}$				
		-40°C < T _A < +125°C		4	8	mV
DYNAMIC OUTPUT IMPEDANCE	$(\Delta V_R / \Delta I_R)$	$I_{IN} = 50 \ \mu A$ to 15 mA			0.2	Ω
MINIMUM OPERATING CURRENT	l _{in}	$T_A = 25^{\circ}C$			50	μA
		$-40^{\circ}C < T_A < +125^{\circ}C$			60	μA
VOLTAGE NOISE	e _N	$I_{IN} = 100 \ \mu\text{A}; 0.1 \ \text{Hz} \text{ to } 10 \ \text{Hz}$		4.3		μV rms
		$I_{IN} = 100 \ \mu A$; 10 Hz to 10 kHz		180		μV rms
TURN-ON SETTLING TIME	t _R	$C_{LOAD} = 0 \ \mu F$		42		μs
OUTPUT VOLTAGE HYSTERESIS	$\Delta V_{\text{OUT}_HYS}$	$I_{IN} = 1 \text{ mA}$		40		ppm

¹ Guaranteed by design.

ADR5044 ELECTRICAL CHARACTERISTICS

 I_{IN} = 50 µA to 15 mA, T_A = 25°C, unless otherwise noted.

Table 5	•
---------	---

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	I _{IN} = 100 μA				
Grade A			4.088	4.096	4.104	V
Grade B			4.092	4.096	4.100	V
INITIAL ACCURACY	V _{OERR}	$I_{IN} = 100 \ \mu A$				
Grade A			-8.192		+8.192	mV
					±0.2	%
Grade B			-4.096		+4.096	mV
					±0.1	%

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit	
TEMPERATURE COEFFICIENT ¹	TCVout	$-40^{\circ}C < T_A < +125^{\circ}C$					
Grade A				10	100	ppm/°C	
Grade B				10	75	ppm/°C	
OUTPUT VOLTAGE CHANGE vs. IIN	ΔV _R	$I_{IN} = 50 \ \mu A$ to 1 mA					
		$-40^{\circ}C < T_A < +125^{\circ}C$		0.7	3	mV	
		$I_{IN} = 1 \text{ mA to } 15 \text{ mA}$					
		$-40^{\circ}C < T_A < +125^{\circ}C$		4	8	mV	
DYNAMIC OUTPUT IMPEDANCE	$(\Delta V_R / \Delta I_R)$	$I_{IN} = 50 \ \mu A$ to 15 mA			0.2	Ω	
MINIMUM OPERATING CURRENT	I _{IN}	$T_A = 25^{\circ}C$			50	μA	
		$-40^{\circ}C < T_A < +125^{\circ}C$			60	μΑ	
VOLTAGE NOISE	e _N	$I_{IN} = 100 \ \mu\text{A}; 0.1 \ \text{Hz} \text{ to } 10 \ \text{Hz}$		5.4		μV rms	
		$I_{IN} = 100 \ \mu\text{A}$; 10 Hz to 10 kHz		240		μV rms	
TURN-ON SETTLING TIME	t _R	$C_{LOAD} = 0 \ \mu F$		56		μs	
OUTPUT VOLTAGE HYSTERESIS	ΔV_{OUT_HYS}	$I_{IN} = 1 \text{ mA}$		40		ppm	

¹ Guaranteed by design.

ADR5045 ELECTRICAL CHARACTERISTICS

 I_{IN} = 50 µA to 15 mA, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	VOUT	I _{IN} = 100 μA				
Grade A			4.990	5.000	5.010	V
Grade B			4.995	5.000	5.005	V
INITIAL ACCURACY	VOERR	I _{IN} = 100 μA				
Grade A			-10		+10	mV
					±0.2	%
Grade B			-5		+5	mV
					±0.1	%
TEMPERATURE COEFFICIENT ¹	TCV _{OUT}	-40°C < T _A < +125°C				
Grade A				10	100	ppm/°C
Grade B				10	75	ppm/°C
OUTPUT VOLTAGE CHANGE vs. IIN	ΔV _R	$I_{IN} = 50 \ \mu A \text{ to } 1 \ m A$				
		$-40^{\circ}C < T_A < +125^{\circ}C$		0.8	4	mV
		$I_{IN} = 1 \text{ mA to } 15 \text{ mA}$				
		$-40^{\circ}C < T_A < +125^{\circ}C$		4	8	mV
DYNAMIC OUTPUT IMPEDANCE	$(\Delta V_R / \Delta I_R)$	$I_{IN} = 50 \ \mu A \text{ to } 15 \ m A$			0.2	Ω
MINIMUM OPERATING CURRENT	lin	$T_A = 25^{\circ}C$			50	μΑ
		−40°C < T _A < +125°C			60	μΑ
VOLTAGE NOISE	e _N	$I_{IN} = 100 \ \mu\text{A}; 0.1 \ \text{Hz} \text{ to } 10 \ \text{Hz}$		6.6		μV rms
		$I_{IN} = 100 \ \mu A$; 10 Hz to 10 kHz		280		μV rms
TURN-ON SETTLING TIME	t _R	$C_{LOAD} = 0 \ \mu F$		70		μs
OUTPUT VOLTAGE HYSTERESIS	ΔV_{OUT_HYS}	$I_{IN} = 1 \text{ mA}$		40		ppm

¹ Guaranteed by design.

ABSOLUTE MAXIMUM RATINGS

Ratings apply at 25°C, unless otherwise noted.

Table 7.

Parameter	Rating
Reverse Current	25 mA
Forward Current	20 mA
Storage Temperature Range	–65°C to +150°C
Extended Temperature Range	-40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 8. Thermal Resistance

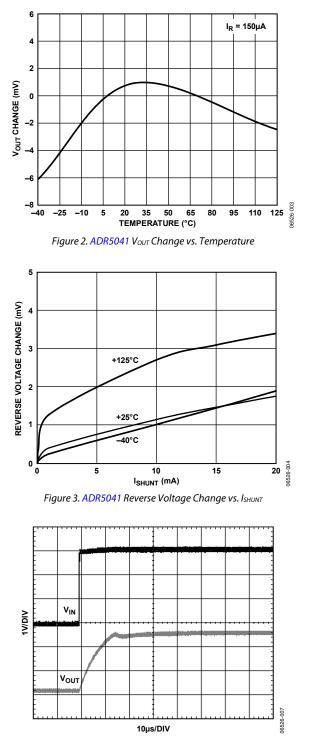
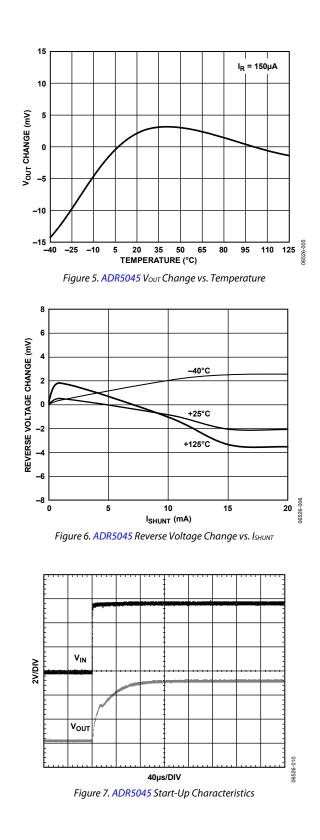
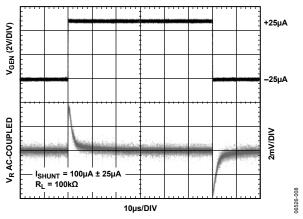
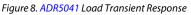
Package Type	Αιθ	ονο	Unit
3-Lead SC70 (KS)	580.5	177.4	°C/W
3-Lead SOT-23 (RT)	270	102	°C/W

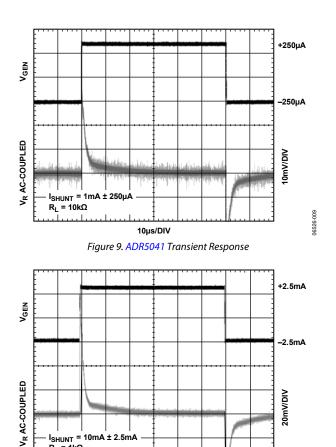
ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

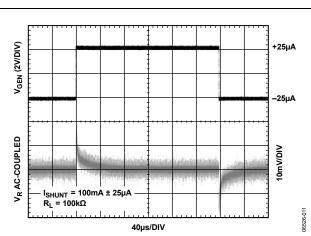
TYPICAL PERFORMANCE CHARACTERISTICS

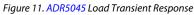
 T_{A} = 25°C, I_{IN} = 100 μA , unless otherwise noted.


Figure 4. ADR5041 Start-Up Characteristics

Data Sheet





10µs/DIV

Figure 10. ADR5041 Transient Response

 $R_L = 1k\Omega$

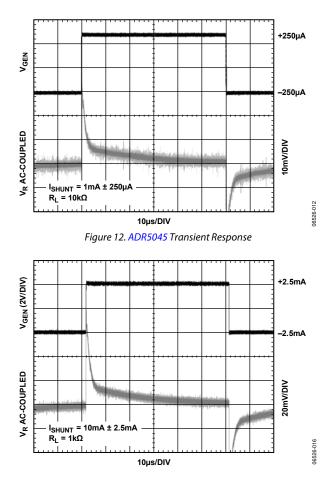


Figure 13. ADR5045 Transient Response

06526-013

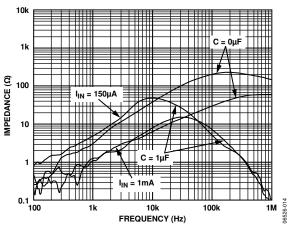


Figure 14. ADR5041 Output Impedance vs. Frequency

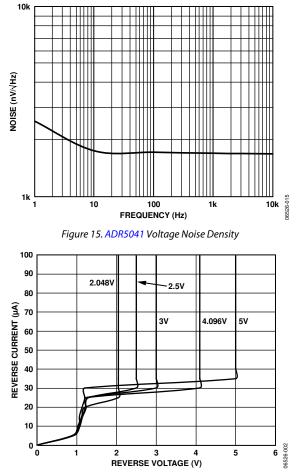


Figure 16. ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 Reverse Characteristics and Minimum Operating Current

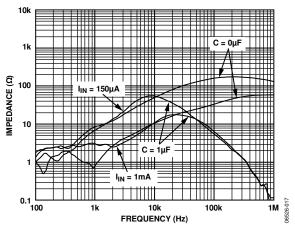
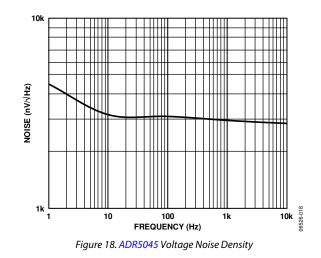



Figure 17. ADR5045 Output Impedance vs. Frequency

TERMINOLOGY

Temperature Coefficient

The change in output voltage with respect to operating temperature changes. It is normalized by an output voltage of 25°C. This parameter is expressed in ppm/°C and is determined by the following equation:

$$TCV_{OUT}\left[\frac{\text{ppm}}{^{\circ}\text{C}}\right] = \frac{V_{OUT}(T_2) - V_{OUT}(T_1)}{V_{OUT}(25^{\circ}\text{C}) \times (T_2 - T_1)} \times 10^6$$
(1)

where:

 $V_{OUT}(25^{\circ}\text{C}) = \text{V}_{OUT} \text{ at } 25^{\circ}\text{C}.$ $V_{OUT}(T_1) = \text{V}_{OUT} \text{ at Temperature } 1.$ $V_{OUT}(T_2) = \text{V}_{OUT} \text{ at Temperature } 2.$

Thermal Hysteresis

The change in output voltage after the device is cycled through temperatures ranging from $+25^{\circ}$ C to -40° C, then to $+125^{\circ}$ C, and back to $+25^{\circ}$ C. This is common in precision reference and is caused by thermal-mechanical package stress. Changes in environmental storage temperature, board mounting temperature, and the operating temperature are some of the factors that can contribute to thermal hysteresis. The following equation expresses a typical value from a sample of parts put through such a cycle:

$$V_{OUT_{HYS}} = V_{OUT} (25^{\circ} \text{C}) - V_{OUT_{TC}}$$

$$V_{OUT_{HYS}} [\text{ppm}] = \frac{V_{OUT} (25^{\circ} \text{C}) - V_{OUT_{TC}}}{V_{OUT} (25^{\circ} \text{C})} \times 10^{6}$$
(2)

where:

 $V_{OUT}(25^{\circ}\text{C}) = V_{OUT} \text{ at } 25^{\circ}\text{C}.$

 $V_{OUT_TC} = V_{OUT}$ at 25°C after a temperature cycle from +25°C to -40°C, then to +125°C, and back to +25°C.

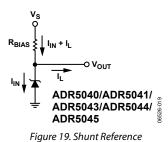
THEORY OF OPERATION

The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 use

the band gap concept to produce a stable, low temperature coefficient voltage reference suitable for high accuracy data acquisition components and systems. The devices use the physical nature of a silicon transistor base-emitter voltage in the forward-biased operating region. All such transistors have approximately a $-2 \text{ mV/}^{\circ}\text{C}$ temperature coefficient (TC), making them unsuitable for direct use as a low temperature coefficient reference. Extrapolation of the temperature characteristic of any one of these devices to absolute zero (with the collector current proportional to the absolute temperature), however, reveals that its V_{BE} approaches approximately the silicon band gap voltage. Therefore, if a voltage develops with an opposing temperature coefficient to sum the V_{BE} , a zero temperature coefficient reference results.

APPLICATIONS INFORMATION

The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 are


a series of precision shunt voltage references. They are designed to operate without an external capacitor between the positive and negative terminals. If a bypass capacitor is used to filter the supply, the references remain stable.

For a stable voltage, all shunt voltage references require an external bias resistor (R_{BIAS}) between the supply voltage and the reference (see Figure 19). The R_{BIAS} sets the current that flows through the load (I_L) and the reference (I_{IN}). Because the load and the supply voltage can vary, the R_{BIAS} needs to be chosen based on the following considerations:

- R_{BIAS} must be small enough to supply the minimum I_{IN} current to the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045, even when the supply voltage is at its minimum value and the load current is at its maximum value.
- R_{BIAS} must be large enough so that I_{IN} does not exceed 15 mA when the supply voltage is at its maximum value and the load current is at its minimum value.

Given these conditions, R_{BIAS} is determined by the supply voltage (V_s), the ADR5040/ADR5041/ADR5043/ADR5044/ ADR5045 load and operating current (I_L and I_{IN}), and the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 output voltage (V_{OUT}).

$$R_{BIAS} = \frac{V_S - V_{OUT}}{I_L + I_{IN}}$$
(3)

Precision Negative Voltage Reference

The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 are suitable for applications where a precise negative voltage is desired. Figure 20 shows the ADR5045 configured to provide a negative output. Exercise caution in using a low temperature sensitive resistor to avoid errors from the resistor.

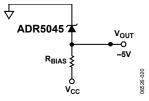


Figure 20. Negative Precision Reference Configuration

Stacking the ADR5040/ADR5041/ADR5043/ADR5044/ ADR5045 for User-Definable Outputs

Multiple ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 devices can be stacked together to allow the user to obtain a desired higher voltage. Figure 21a shows three ADR5045 devices configured to give 15 V. The bias resistor, R_{BIAS}, is chosen using Equation 3, noting that the same bias current flows through all the shunt references in series. Figure 21b shows three ADR5045 devices stacked together to give -15 V. R_{BIAS} is calculated in the same manner as before. Parts of different voltages can also be added together; that is, an ADR5041 and an ADR5045 can be added together to give an output of +7.5 V or -7.5 V, as desired. Note, however, that the initial accuracy error is the sum of the errors of all the stacked parts, as are the temperature coefficient and output voltage change vs. input current.

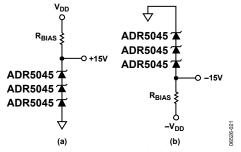


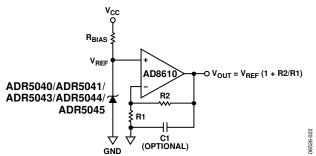
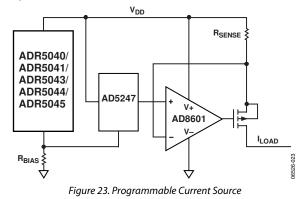
Figure 21. ±15 V Output with Stacked ADR5045 Devices

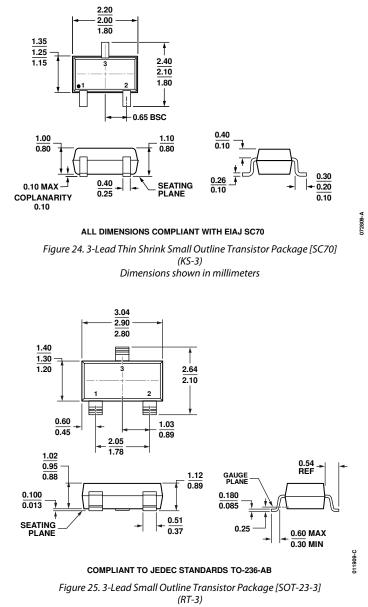
Adjustable Precision Voltage Source

The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045, combined with a precision low input bias op amp such as the AD8610, can be used to output a precise adjustable voltage. Figure 22 illustrates the implementation of this application using the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045. The output of the op amp, V_{OUT}, is determined by the gain of the circuit, which is completely dependent on the resistors, R1 and R2.

$$V_{OUT} = (1 + R2/R1)V_{REF}$$

An additional capacitor, C1, in parallel with R2, can be added to filter out high frequency noise. The value of C1 is dependent on the value of R2.


Figure 22. Adjustable Voltage Source

Programmable Current Source

By using just a few ultrasmall and inexpensive parts, it is possible to build a programmable current source, as shown in Figure 23. The constant voltage on the gate of the transistor sets the current through the load. Varying the voltage on the gate changes the current. The AD5247 is a digital potentiometer with I^2C^* digital interface, and the AD8601 is a precision rail-to-rail input op amp. Each incremental step of the digital potentiometer increases or decreases the voltage at the noninverting input of the op amp. Therefore, this voltage varies with respect to the reference voltage.

OUTLINE DIMENSIONS

Dimensions shown in millimeters

ORDERING GUIDE

		Initial	Tempco					
Model ^{1, 2}	Output Voltage (V)	Accuracy (mV)	Industrial (ppm/°C)	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADR5040AKSZ-R2	2.048	4.096	100	-40°C to +125°C	3-Lead SC70	KS-3	250	R2J
ADR5040AKSZ-REEL	2.048	4.096	100	–40°C to +125°C	3-Lead SC70	KS-3	10,000	R2J
ADR5040AKSZ-REEL7	2.048	4.096	100	-40°C to +125°C	3-Lead SC70	KS-3	3,000	R2J
ADR5040ARTZ-R2	2.048	4.096	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2J
ADR5040ARTZ-REEL	2.048	4.096	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	10,000	R2J
ADR5040ARTZ-REEL7	2.048	4.096	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2J
ADR5040BKSZ-R2	2.048	2.048	75	-40°C to +125°C	3-Lead SC70	KS-3	250	R2L
ADR5040BKSZ-REEL7	2.048	2.048	75	-40°C to +125°C	3-Lead SC70	KS-3	3,000	R2L
ADR5040BRTZ-R2	2.048	2.048	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2L
ADR5040BRTZ-REEL7	2.048	2.048	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2L
ADR5041AKSZ-R2	2.500	5	100	-40°C to +125°C	3-Lead SC70	KS-3	250	R2N
ADR5041AKSZ-REEL	2.500	5	100	-40°C to +125°C	3-Lead SC70	KS-3	10,000	R2N
ADR5041AKSZ-REEL7	2.500	5	100	-40°C to +125°C	3-Lead SC70	KS-3	3,000	R2N
ADR5041ARTZ-R2	2.500	5	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2N
ADR5041ARTZ-REEL	2.500	5	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	10,000	R2N
ADR5041ARTZ-REEL7	2.500	5	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2N
ADR5041BKSZ-R2	2.500	2.5	75	–40°C to +125°C	3-Lead SC70	KS-3	250	R2Q
ADR5041BKSZ-REEL7	2.500	2.5	75	-40°C to +125°C	3-Lead SC70	KS-3	3,000	R2Q
ADR5041BRTZ-R2	2.500	2.5	75	–40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2Q
ADR5041BRTZ-REEL7	2.500	2.5	75	–40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2Q
ADR5041WARTZ-R7	2500	5	100	–40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2N
ADR5041WBRTZ-R7	2.500	2.5	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2Q
ADR5043AKSZ-R2	3.0	6	100	–40°C to +125°C	3-Lead SC70	KS-3	250	R2S
ADR5043AKSZ-REEL	3.0	6	100	–40°C to +125°C	3-Lead SC70	KS-3	10,000	R2S
ADR5043AKSZ-REEL7	3.0	6	100	–40°C to +125°C	3-Lead SC70	KS-3	3,000	R2S
ADR5043ARTZ-R2	3.0	6	100	–40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2S
ADR5043ARTZ-REEL	3.0	6	100	–40°C to +125°C	3-Lead SOT-23-3	RT-3	10,000	R2S
ADR5043ARTZ-REEL7	3.0	6	100	–40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2S
ADR5043BKSZ-R2	3.0	3	75	-40°C to +125°C	3-Lead SC70	KS-3	250	R2U
ADR5043BKSZ-REEL7	3.0	3	75	–40°C to +125°C	3-Lead SC70	KS-3	3,000	R2U
ADR5043BRTZ-R2	3.0	3	75	–40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2U
ADR5043BRTZ-REEL7	3.0	3	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2U
ADR5044AKSZ-R2	4.096	8.192	100	-40°C to +125°C	3-Lead SC70	KS-3	250	R2W
ADR5044AKSZ-REEL	4.096	8.192	100	-40°C to +125°C	3-Lead SC70	KS-3	10,000	R2W
ADR5044AKSZ-REEL7	4.096	8.192	100	–40°C to +125°C	3-Lead SC70	KS-3	3,000	R2W
ADR5044ARTZ-R2	4.096	8.192	100	–40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2W
ADR5044ARTZ-REEL	4.096	8.192	100	–40°C to +125°C	3-Lead SOT-23-3	RT-3	10,000	R2W
ADR5044ARTZ-REEL7	4.096	8.192	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2W
ADR5044BKSZ-R2	4.096	4.096	75	-40°C to +125°C	3-Lead SC70	KS-3	250	R2Y
ADR5044BKSZ-REEL7	4.096	4.096	75	-40°C to +125°C	3-Lead SC70	KS-3	3,000	R2Y
ADR5044BRTZ-R2	4.096	4.096	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R2Y
ADR5044BRTZ-REEL7	4.096	4.096	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2Y
ADR5044WARTZ-R7	4.096	8.192	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2W
ADR5044WBRTZ-R7	4.096	4.096	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R2Y

Model ^{1, 2}	Output Voltage (V)	Initial Accuracy (mV)	Tempco Industrial (ppm/°C)	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADR5045AKSZ-R2	5.0	10	100	-40°C to +125°C	3-Lead SC70	KS-3	250	R30
ADR5045AKSZ-REEL	5.0	10	100	-40°C to +125°C	3-Lead SC70	KS-3	10,000	R30
ADR5045AKSZ-REEL7	5.0	10	100	-40°C to +125°C	3-Lead SC70	KS-3	3,000	R30
ADR5045ARTZ-R2	5.0	10	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R30
ADR5045ARTZ-REEL	5.0	10	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	10,000	R30
ADR5045ARTZ-REEL7	5.0	10	100	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R30
ADR5045BKSZ-R2	5.0	5	75	-40°C to +125°C	3-Lead SC70	KS-3	250	R32
ADR5045BKSZ-REEL7	5.0	5	75	-40°C to +125°C	3-Lead SC70	KS-3	3,000	R32
ADR5045BRTZ-R2	5.0	5	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	250	R32
ADR5045BRTZ-REEL7	5.0	5	75	-40°C to +125°C	3-Lead SOT-23-3	RT-3	3,000	R32

¹ Z = RoHS Compliant Part.

 2 W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADR5041W and ADR5044W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

NOTES

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2007–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06526-0-3/16(C)

www.analog.com

Rev. C | Page 16 of 16