: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

Rx mixer with integrated fractional-N PLL
RF input frequency range: $1200 \mathbf{M H z}$ to $\mathbf{3 6 0 0} \mathbf{~ M H z}$
Internal LO frequency range: $\mathbf{2 5 0 0} \mathbf{~ M H z}$ to $\mathbf{2 9 0 0} \mathbf{~ M H z}$
Input P1dB: 14.5 dBm
Input IP3: $\mathbf{2 7 . 5}$ dBm
IIP3 optimization via external pin
SSB noise figure
IP3SET pin open: 14.3 dB
IP3SET pin at 3.3 V : 15.5 dB
Voltage conversion gain: 6.8 dB
Matched $\mathbf{2 0 0} \Omega$ IF output impedance
IF 3 dB bandwidth: $500 \mathbf{~ M H z}$
Programmable via 3-wire SPI interface
40 -lead, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP

APPLICATIONS

Cellular base stations

GENERAL DESCRIPTION

The ADRF6604 is a high dynamic range active mixer with integrated phase-locked loop (PLL) and voltage controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate a f_{LO} input to the mixer. The reference input can be divided or multiplied and then applied to the PLL phase frequency detector (PFD).

The PLL can support input reference frequencies from 12 MHz to 160 MHz . The PFD output controls a charge pump whose output drives an off-chip loop filter.

The loop filter output is then applied to an integrated VCO. The VCO output at $2 \times \mathrm{f}_{\mathrm{LO}}$ is applied to an LO divider, as well as to a programmable PLL divider. The programmable PLL divider is controlled by a sigma-delta ($\Sigma-\Delta$) modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047.
The active mixer converts the single-ended, 50Ω RF input to a differential, 200Ω IF output. The IF output can operate up to 500 MHz .

The ADRF6604 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40-lead, RoHS-compliant, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP with an exposed paddle. Performance is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
Table 1.

	Internal LO Part No.	$\mathbf{\pm 3}$ dB RFin Balun Range	$\mathbf{\pm 1}$ dB RFin Balun Range
ADRF6601	750 MHz	300 MHz	450 MHz
	1160 MHz	2500 MHz	1600 MHz
ADRF6602	1550 MHz	1000 MHz	1350 MHz
	2150 MHz	3100 MHz	2750 MHz
ADRF6603	2100 MHz	1100 MHz	1450 MHz
	2600 MHz	3200 MHz	2850 MHz
ADRF6604	2500 MHz	1200 MHz	1600 MHz
	2900 MHz	3600 MHz	3200 MHz

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010-2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- ADRF6604 Evaluation Board

DOCUMENTATION

Data Sheet

- ADRF6604: 1200 MHz to 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO Data Sheet

TOOLS AND SIMULATIONS

- ADIsimPLL ${ }^{\text {TM }}$
- ADIsimRF

REFERENCE MATERIALS \square

Press

- Industry's First Half Watt RF Driver Amplifier with Dynamically Adjustable Bias and Extended Temperature Range

Product Selection Guide

- RF Source Booklet

Technical Articles

- Integrated Devices Arm Infrastructure Radios

DESIGN RESOURCES

- ADRF6604 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS
View all ADRF6604 EngineerZone Discussions.
SAMPLE AND BUY \square
Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
RF Specifications 3
Synthesizer/PLL Specifications 4
Logic Input and Power Specifications 4
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 9
RF Frequency Sweep 9
IF Frequency Sweep 10
Spurious Performance 15
Register Structure 16
Register 0—Integer Divide Control (Default: 0x0001C0) 16
Register 1—Modulus Divide Control (Default: 0x003001) 16
Register 2—Fractional Divide Control (Default: 0x001802) 17
REVISION HISTORY
1/14—Rev. A to Rev. B
Change to Product Title. 1
Updated Outline Dimensions (Lead-to-Pad Dimension) 29
5/11—Rev. 0 to Rev. A
Changes to Features and General Description Sections 1
Changes to Table 2 3
Changes to Synthesizer Specifications Parameter and to Phase Noise Parameter, Table 3 4
Changes to Power Supplies Parameter, Table 4 4
Replaced Typical Performance Characteristics Section; Renumbered Sequentially 9
Added Spurious Performance Section 15
Change to Figure 41 17
Changes to Figure 42 18
Changes to Theory of Operation Section 20
Changes to Figure 46 22
Added AC Test Fixture Section and Figure 47 23
Changes to Evaluation Board Control Software Section and Figure 48 24
Changes to Figure 49 25
Register 3- $\Sigma-\Delta$ Modulator Dither Control(Default: 0x10000B)17
Register 4-PLL Charge Pump, PFD, and Reference Path Control (Default: 0x0AA7E4) 18
Register 5-PLL Enable and LO Path Control (Default: 0x0000E5) 19
Register 6-VCO Control and VCO Enable (Default: 0x1E2106) 19
Register 7-Mixer Bias Enable and External VCO Enable (Default: 0x000007) 19
Theory of Operation 20
Programming the ADRF6604 20
Initialization Sequence 20
LO Selection Logic 21
Applications Information 22
Basic Connections for Operation 22
AC Test Fixture 23
Evaluation Board 24
Evaluation Board Control Software 24
Schematic and Artwork 26
Evaluation Board Configuration Options 28
Outline Dimensions 29
Ordering Guide 29
6/10—Revision 0: Initial Version

SPECIFICATIONS
 RF SPECIFICATIONS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$, $\mathrm{f}_{\mathrm{REF}}=153.6 \mathrm{MHz}, \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}$, high-side LO injection, $\mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, IIP3 optimized using CDAC $=0 \mathrm{xC}$ and IP3SET $=3.3 \mathrm{~V}$, unless otherwise noted.

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
INTERNAL LO FREQUENCY RANGE		2500		2900	MHz
RF INPUT FREQUENCY RANGE	$\pm 3 \mathrm{~dB}$ RF input range	1200		3600	MHz
RF INPUT AT 2360 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Sideband Noise Figure LO-to-IF Leakage	Relative to 50Ω (can be improved with external match) -5 dBm each tone (10 MHz spacing between tones) -5 dBm each tone (10 MHz spacing between tones) $\text { IP3SET = } 3.3 \mathrm{~V}$ IP3SET = open At $1 \times$ LO frequency, 50Ω termination at the RF port		$\begin{aligned} & -16.2 \\ & 14.6 \\ & 54.5 \\ & 28 \\ & 14.8 \\ & 13.9 \\ & -43 \end{aligned}$		dB dBm dBm dBm dB dB dBm
RF INPUT AT 2560 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Sideband Noise Figure LO-to-IF Leakage	Relative to 50Ω (can be improved with external match) -5 dBm each tone (10 MHz spacing between tones) -5 dBm each tone (10 MHz spacing between tones) $\text { IP3SET = } 3.3 \mathrm{~V}$ IP3SET = open At $1 \times$ LO frequency, 50Ω termination at the RF port		$\begin{aligned} & -21 \\ & 14.5 \\ & 58.2 \\ & 27.6 \\ & 14.9 \\ & 14.2 \\ & -42 \end{aligned}$		dB dBm dBm dBm dB dB dBm
RF INPUT AT 2760 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Sideband Noise Figure LO-to-IF Leakage	Relative to 50Ω (can be improved with external match) -5 dBm each tone (10 MHz spacing between tones) -5 dBm each tone (10 MHz spacing between tones) $\text { IP3SET = } 3.3 \mathrm{~V}$ IP3SET = open At $1 \times$ LO frequency, 50Ω termination at the RF port		$\begin{aligned} & -20 \\ & 14.4 \\ & 64.4 \\ & 27 \\ & 15.5 \\ & 14.6 \\ & -44 \\ & \hline \end{aligned}$		dB dBm dBm dBm dB dB dBm
IF OUTPUT Voltage Conversion Gain IF Bandwidth Output Common-Mode Voltage Gain Flatness Gain Variation Output Swing Output Return Loss	Differential 200Ω load Small signal 3 dB bandwidth External pull-up balun or inductors required Over frequency range, any $5 \mathrm{MHz} / 50 \mathrm{MHz}$ Over full temperature range Differential 200Ω load Relative to 200Ω		$\begin{aligned} & 6.8 \\ & 500 \\ & 5 \\ & 0.2 / 0.5 \\ & 1.3 \\ & 2 \\ & -15 \\ & \hline \end{aligned}$		dB MHz V dB dB V p-p dB
LO INPUT/OUTPUT (LOP, LON) Frequency Range Output Level (LO as Output) Input Level (LO as Input) Input Impedance	Externally applied $1 \times$ LO input, internal PLL disabled $1 \times$ LO into a 50Ω load, LO output buffer enabled	250 -6	$\begin{aligned} & -9 \\ & 0 \\ & 50 \end{aligned}$	$\begin{aligned} & 6000 \\ & +6 \end{aligned}$	MHz dBm dBm Ω

ADRF6604

SYNTHESIZER/PLL SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$, $\mathrm{f}_{\text {REF }}=153.6 \mathrm{MHz}$, $\mathrm{f}_{\text {REF }}$ power $=4 \mathrm{dBm}, \mathrm{f}_{\text {PFD }}=38.4 \mathrm{MHz}$, high-side LO injection, $\mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, IIP3 optimized using CDAC $=0 \mathrm{xC}$ and IP3SET $=3.3 \mathrm{~V}$, unless otherwise noted.

Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SYNTHESIZER SPECIFICATIONS Frequency Range Figure of Merit ${ }^{1}$ Reference Spurs	```Synthesizer specifications referenced to \(1 \times\) LO Internally generated LO \(\mathrm{P}_{\text {REF_IN }}=0 \mathrm{dBm}\) \(\mathrm{f}_{\text {PFD }}=38.4 \mathrm{MHz}\) \(\mathrm{f}_{\mathrm{PFD}} / 4\) fPFD \(>f_{\text {PFD }}\)```	2500	$\begin{aligned} & -221.4 \\ & -107 \\ & -82 \\ & -80 \end{aligned}$	2900	MHz $\mathrm{dBc} / \mathrm{Hz} / \mathrm{Hz}$ dBc dBc dBc
PHASE NOISE Integrated Phase Noise PFD Frequency	```\(\mathrm{f}_{\mathrm{LO}}=2500 \mathrm{MHz}\) to \(2900 \mathrm{MHz}, \mathrm{f}_{\text {PFD }}=38.4 \mathrm{MHz}\) 1 kHz to 10 kHz offset 100 kHz offset 500 kHz offset 1 MHz offset 5 MHz offset 10 MHz offset 20 MHz offset 1 kHz to 40 MHz integration bandwidth```	20	$\begin{aligned} & -87.7 \\ & -96 \\ & -117 \\ & -126 \\ & -142 \\ & -148 \\ & -150 \\ & 0.69 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$ ${ }^{\circ} \mathrm{rms}$ MHz
REFERENCE CHARACTERISTICS REF_IN Input Frequency REF_IN Input Capacitance MUXOUT Output Level MUXOUT Duty Cycle	REF_IN, MUXOUT pins Vol (lock detect output selected) $V_{\text {он }}$ (lock detect output selected)	12 2.7	4 50	$\begin{aligned} & 160 \\ & 0.25 \end{aligned}$	MHz pF V V \%
CHARGE PUMP Pump Current Output Compliance Range	Programmable to $250 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 750 \mu \mathrm{~A}, 1 \mathrm{~mA}$	1	500	2.8	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~V} \end{aligned}$

${ }^{1}$ The figure of merit (FOM) is computed as phase noise $(\mathrm{dBc} / \mathrm{Hz})-10 \log 10\left(\mathrm{f}_{\mathrm{PFD}}\right)-20 \log 10\left(f_{\mathrm{L} /} / \mathrm{f}_{\text {PFD }}\right)$. The FOM was measured across the full LO range, with $\mathrm{f}_{\text {REF }}=80 \mathrm{MHz}$, and $f_{\text {REF }}$ power $=10 \mathrm{dBm}\left(500 \mathrm{~V} / \mathrm{\mu s}\right.$ slew rate) with a $40 \mathrm{MHz} \mathrm{f}_{\text {PFD }}$. The FOM was computed at 50 kHz offset.

LOGIC INPUT AND POWER SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$, $\mathrm{f}_{\mathrm{REF}}=153.6 \mathrm{MHz}, \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}$, high-side LO injection, $\mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, IIP3 optimized using CDAC $=0 \mathrm{xC}$ and IP3SET $=3.3 \mathrm{~V}$, unless otherwise noted.

Table 4.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
LOGIC INPUTS Input High Voltage, Vinh Input Low Voltage, VinL Input Current, $\mathrm{I}_{\mathrm{Nh}} / \mathrm{I}_{\mathrm{INL}}$ Input Capacitance, CIN	CLK, DATA, LE	$\begin{aligned} & 1.4 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLIES Voltage Range Supply Current	VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins PLL only External LO mode (internal PLL disabled, IP3SET pin $=3.3$ V, LO output buffer off) Internal LO mode (internal PLL enabled, IP3SET pin $=3.3$ V, LO output buffer on) Internal LO mode (internal PLL enabled, IP3SET pin $=3.3$ V, LO output buffer off) Power-down mode	4.75	$\begin{aligned} & 5 \\ & 96 \\ & 164 \\ & 274 \\ & 260 \\ & 30 \end{aligned}$	5.25	V mA mA mA mA mA

TIMING CHARACTERISTICS

$\mathrm{VCC} 2=5 \mathrm{~V} \pm 5 \%$.
Table 5.

Parameter	Limit	Unit	Description
t_{1}	20	ns min	LE setup time
t_{2}	10	ns min	DATA-to-CLK setup time
t_{3}	10	ns min	DATA-to-CLK hold time
t_{4}	25	ns min	CLK high duration
t_{5}	25	ns min	CLK low duration
t_{6}	10	ns min	CLK-to-LE setup time
t_{7}	20	ns min	LE pulse width

Timing Diagram

Figure 2. Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Supply Voltage, VCC1, VCC2, VCC_LO,	-0.5 V to +5.5 V
\quad VCC_MIX, VCC_V2I	
Digital I/O, CLK, DATA, LE, LODRV_EN,	-0.3 V to +3.6 V
\quad PLL_EN	
VTUNE	0 V to 3.3 V
IFP, IFN	-0.3 V to VCC_V2I +0.3 V
RFIN	16 dBm
LOP, LON, REF_IN	13 dBm
OJA (Exposed Paddle Soldered Down)	$35^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VCC1	Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
2	DECL3P3	Decoupling Node for 3.3 V LDO. Connect a $0.1 \mu \mathrm{~F}$ capacitor between this pin and ground.
3	CP	Charge Pump Output Pin. Connect to VTUNE through the loop filter.
$\begin{aligned} & 4,7,11,15,20, \\ & 21,23,24,25, \\ & 28,30,31,35 \end{aligned}$	GND	Ground. Connect these pins to a low impedance ground plane.
5	RSEt	Charge Pump Current. The nominal charge pump current can be set to $250 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 750 \mu \mathrm{~A}$, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In this mode, no external $\mathrm{R}_{\text {Set }}$ is required. If Bit DB18 is set to 1 , the four nominal charge pump currents (Inominal) can be externally adjusted according to the following equation: $R_{S E T}=\left(\frac{217.4 \times I_{C P}}{I_{\text {NOMINAL }}}\right)-37.8 \Omega$
6	REF_IN	Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz . This pin is internally dcbiased and should be ac-coupled.
8	MUXOUT	Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect signal. The output is selected by programming the appropriate register.
9	DECL2P5	Decoupling Node for 2.5 V LDO. Connect a $0.1 \mu \mathrm{~F}$ capacitor between this pin and ground.
10	VCC2	Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
12	DATA	Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits.
13	CLK	Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched into the 24 -bit shift register on the CLK rising edge. The maximum clock frequency is 20 MHz .
14	LE	Load Enable. When the LE input pin goes high, the data stored in the shift register is loaded into one of the eight registers. The relevant latch is selected by the three control bits of the 24-bit word.
16	PLL_EN	PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be used to switch modes.
17,34	VCC_LO	Power Supply. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
18,19	IFP, IFN	Mixer IF Outputs. These outputs should be pulled to VCC_MIX with RF chokes.

Pin No.	Mnemonic	Description
22	VCC_MIX	Power Supply. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
26	RFin	RF Input. Single-ended, 50Ω.
27	VCC_V2I	Power Supply. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
29	IP3SET	Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open.
32,33	NC	NC = No Connect. Do not connect to this pin.
36	LODRV_EN	LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive frequency must be $1 \times$ LO. This pin has an internal $100 \mathrm{k} \Omega$ pull-down resistor.
37,38	LON, LOP	Local Oscillator Input/Output. The internally generated $1 \times$ LO is available on these pins. When internal LO generation is disabled, an external $1 \times$ LO can be applied to these pins.
39	VTUNE	VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage range on this pin is 1.5 V to 2.5 V .
40	DECLVCO EPAD	Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a $10 \mu \mathrm{~F}$ capacitor between this pin and ground. Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

rf Frequency sweep

$\mathrm{CDAC}=0 \mathrm{xC}$, internally generated high-side LO, $\mathrm{RF}_{\mathrm{IN}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, unless otherwise noted.

Figure 4. Gain vs. RF Frequency

Figure 5. Input IP2 vs. RF Frequency

Figure 6. Noise Figure vs. RF Frequency

Figure 7. Input IP3 vs. RF Frequency

Figure 8. Input P1dB vs. RF Frequency

IF FREQUENCY SWEEP

$\mathrm{CDAC}=0 \mathrm{xC}$, internally generated swept low-side $\mathrm{LO}, \mathrm{f}_{\mathrm{RF}}=2490 \mathrm{MHz}, \mathrm{RF}_{\mathrm{IN}}=-5 \mathrm{dBm}$, unless otherwise noted.

Figure 9. Gain vs. IF Frequency

Figure 10. Input IP2 vs. IF Frequency, $R F_{I N}=-5 \mathrm{dBm}$

Figure 11. Noise Figure vs. IF Frequency

Figure 12. Input IP3 vs. IF Frequency, $R F_{I N}=-5 d B m$

Figure 13. Input P1dB vs. IF Frequency

Figure 14. LO-to-IF Feedthrough vs. LO Frequency, LO Output Turned Off, CDAC = 0xC

Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off

Figure 16. RF Input Return Loss vs. RF Frequency

Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun)

Figure 18. IF Differential Output Impedance (R Parallel, C Equivalent)

Figure 19. SSB Noise Figure vs. 5 MHz Offset CW Blocker Level, LO Frequency $=2500 \mathrm{MHz}$, RF Frequency $=2358 \mathrm{MHz}$

Figure 20. RF-to-IF Isolation vs. RF Frequency, High-Side LO, IF = 140 MHz , LO Output Turned Off

Figure 21. LO Output Amplitude vs. LO Frequency

Figure 22. Frequency Deviation from 2500 MHz vs. Time (Demonstrates LO Frequency Settling Time from 2490 MHz to 2500 MHz)

Figure 23. VTUNE vs. LO Frequency

Figure 24. Supply Current vs. LO Frequency

Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open)

Complementary cumulative distribution function $(\mathrm{CCDF}), \mathrm{f}_{\mathrm{RF}}=2360 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$.

Figure 26. Gain

Figure 27. Input IP2

Figure 28. Noise Figure

Figure 29. Input IP3

Figure 30. Input P1dB

Figure 31. LO Feedthrough to IF, LO Output Turned Off

ADRF6604

Measured at IF output, $\mathrm{CDAC}=0 \mathrm{xC}, \mathrm{IP} 3 \mathrm{SET}=$ open, internally generated high-side $\mathrm{LO}, \mathrm{f}_{\mathrm{REF}}=153.6 \mathrm{MHz}, \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}$, $\mathrm{RF}_{\mathrm{IN}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted.

Figure 32. Phase Noise vs. Offset Frequency

Figure 33. PLL Reference Spurs vs. LO Frequency ($2 \times$ PFD and $4 \times$ PFD)

Figure 34. PLL Reference Spurs vs. LO Frequency ($0.25 \times$ PFD, $1 \times$ PFD, and $3 \times$ PFD)

Figure 35. Integrated Phase Noise vs. LO Frequency

Figure 36. Phase Noise vs. LO Frequency ($1 \mathrm{kHz}, 100 \mathrm{kHz}$, and 5 MHz Steps)

Figure 37. Phase Noise vs. LO Frequency ($10 \mathrm{kHz}, 1 \mathrm{MHz}$ Steps)

Data Sheet

SPURIOUS PERFORMANCE

$\left(N \times f_{R F}\right)-\left(M \times f_{L O}\right)$ spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious products were measured in decibels relative to the carrier (dBc) from the IF output power level. All spurious components greater than -125 dBc are shown.
$\mathrm{LO}=2500 \mathrm{MHz}, \mathrm{RF}=2360 \mathrm{MHz}$ (horizontal axis is M , vertical axis is N), and $\mathrm{RF}_{\text {In }}$ power $=0 \mathrm{dBm}$.

$\mathbf{\| c \| l \| l \| l \| l \|}$							
	$\mathbf{0}$	$\mathbf{1}$	\mathbf{M}	$\mathbf{3}$	$\mathbf{4}$		
$\mathbf{0}$	-115.19	-43.0184	-33.3455				
$\mathbf{1}$	-23.6708	0.0	-67.1671	-47.1921	-80.0324		
$\mathbf{2}$	-63.4281	-65.1191	-61.1065	-79.8957	-105.514		
$\mathbf{3}$		-83.6746	-86.8944	-58.5001	-108.518		
$\mathbf{4}$			-108.708	-104.041	-113.19		
$\mathbf{5}$				-110.825	-108.548		
$\mathbf{6}$							
$\mathbf{7}$							

$\mathrm{LO}=2700 \mathrm{MHz}, \mathrm{RF}=2560 \mathrm{MHz}$ (horizontal axis is M , vertical axis is N), and $\mathrm{RF}_{\text {In }}$ power $=0 \mathrm{dBm}$.

$\mathbf{~ M}$							
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		
$\mathbf{0}$	-114.804	-42.7987	-31.9174				
$\mathbf{1}$	-22.6289	0.0	-65.0063	-48.5279			
$\mathbf{2}$	-61.2522	-66.5602	-57.5224	-77.0905	-76.8305		
$\mathbf{3}$		-84.4436	-82.5056	-56.9437	-98.8811		
$\mathbf{4}$			-108.087	-98.5103	-99.2295		
$\mathbf{5}$				-110.572	-113.601		
$\mathbf{6}$					-109.829		
$\mathbf{7}$							

$\mathrm{LO}=2900 \mathrm{MHz}, \mathrm{RF}=2760 \mathrm{MHz}$ (horizontal axis is M , vertical axis is N), and $\mathrm{RF}_{\text {IN }}$ power $=0 \mathrm{dBm}$.

								\mathbf{M}						
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$									
	-114.956	-44.0336	-31.2423	-48.9358										
	-22.092	0.0	-62.6978	-73.218										
	-60.2824	-69.8043	-56.7826	-56.7503	-105.061									
		-85.957	-80.7407	-100.938	-100.159									
			-108.949	-110.193	-111.146									
$\mathbf{5}$					-111.428									
$\mathbf{6}$														
$\mathbf{7}$														

ADRF6604

REGISTER STRUCTURE

This section provides the register maps for the ADRF6604. The three LSBs determine the register that is programmed.

REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)

Figure 38. Register 0—Integer Divide Control Register Map

REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)

RESERVED										MODULUS VALUE											CONTROL BITS		
DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	C3(0)	C2(0)	C1(1)

MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	MODULUS VALUE
0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1	0	2
\ldots											
\ldots											
1	1	0	0	0	0	0	0	0	0	0	1536 (DEFAULT)
\ldots											
\ldots											
1	1	1	1	1	1	1	1	1	1	1	2047

Figure 39. Register 1—Modulus Divide Control Register Map

REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)

RESERVED										FRACtional value											CONTROL BITS		
DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	FD10	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FDO	C3(0)	C2(1)	C1(0)

FD10	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0	FRACTIONAL VALUE
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	1
\ldots											
\ldots											
0	1	1	0	0	0	0	0	0	0	0	768 (DEFAULT)
\ldots											
\ldots											
FRACTIONAL VALUE MUST BE LESS THAN MODULUS								\ldots			

Figure 40. Register 2—Fractional Divide Control Register Map

REGISTER 3- $\Sigma-\Delta$ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)

Figure 41. Register 3- $\Sigma-\Delta$ Modulator Dither Control Register Map

REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)

Figure 42. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map

REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)

Figure 43. Register 5-PLL Enable and LO Path Control Register Map

REGISTER 6-VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)

REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)

Figure 45. Register 7—Mixer Bias Enable and External VCO Enable Register Map

THEORY OF OPERATION

The ADRF6604 integrates a high performance downconverting mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the fractional-N PLL functions and the mixer optimization functions, as well as allowing for an externally applied LO or VCO.
The mixer core within the ADRF6604 is the next generation of an industry-leading family of mixers from Analog Devices, Inc. The RF input is converted to a current and then mixed down to IF using high performance NPN transistors. The mixer output currents are transformed to a differential output. The high performance active mixer core results in an exceptional IIP3 and IP1dB with a very low output noise floor for excellent dynamic range. Over the specified frequency range, the ADRF6604 typically provides IF input P1dB of 14.5 dBm and IIP3 of 27.5 dBm .
Improved performance at specific frequencies can be achieved with the use of the internal capacitor DAC (CDAC), which is programmable via the SPI port, and by using a resistor to a 5 V supply from the IP3SET pin (Pin 29). Adjustment of the capacitor DAC allows increments in phase shift at internal nodes in the ADRF6604, thus allowing cancellation of third-order distortion with no change in supply current. Connecting a resistor to a 5 V supply from the IP3SET pin increases the internal mixer core current, thereby improving overall IIP2 and IIP3, as well as IP1dB. Using the IP3SET pin for this purpose increases the overall supply current.
The fractional divide function of the PLL allows the frequency multiplication value from REF_IN to LO output to be a fractional value rather than to be restricted to an integer value as in traditional PLLs. In operation, this multiplication value is

$$
I N T+(F R A C / M O D)
$$

where:
$I N T$ is the integer value.
$F R A C$ is the fractional value.
$M O D$ is the modulus value.
The INT, FRAC, and MOD values are all programmable via the SPI port. In other fractional-N PLL designs, fractional multiplication is achieved by periodically changing the fractional value in a deterministic way. The disadvantage of this approach is that there are often spurious components close to the fundamental signal. In the ADRF6604, a Σ - Δ modulator is used to distribute the fractional value randomly, thus significantly reducing the spurious content due to the fractional function.

PROGRAMMING THE ADRF6604

The ADRF6604 is programmed via a 3-pin SPI port. The timing requirements for the SPI port are shown in Figure 2. Eight programmable registers, each with 24 bits, control the operation of the device. The register functions are listed in Table 8.

Table 8. ADRF6604 Register Functions

Register	Function
Register 0	Integer divide control for the PLL
Register 1	Modulus divide control for the PLL
Register 2	Fractional divide control for the PLL
Register 3	Σ - Δ modulator dither control
Register 4	PLL charge pump, PFD, reference path control
Register 5	PLL enable and LO path control
Register 6	VCO control and VCO enable
Register 7	Mixer bias enable and external VCO enable

Note that internal calibration for the PLL must be run when the ADRF6604 is initialized at a given frequency. This calibration is run automatically whenever Register 0, Register 1, or Register 2 is programmed. Because the other registers affect PLL performance, Register 0, Register 1, and Register 2 should always be programmed last and in the following order: Register 0, Register 1, Register 2.

To program the frequency of the ADRF6604, the user typically programs only Register 0, Register 1, and Register 2. However, if registers other than these are programmed first, a short delay should be inserted before programming Register 0 . This delay ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.
Software is available on the ADRF6604 product page under the Evaluation Boards \& Kits section that allows easy programming from a PC running Windows ${ }^{\star}$ XP or Vista.

INITIALIZATION SEQUENCE

To ensure proper power-up of the ADRF6604, it is important to reset the PLL circuitry after the VCC supply rail settles to $5 \mathrm{~V} \pm$ 0.25 V . Resetting the PLL ensures that the internal bias cells are properly configured, even under poor supply start-up conditions.

To ensure that the PLL is reset after power-up, use the following procedure:

1. Disable the PLL by setting the PLEN bit to 0 (Register 5, Bit DB6).
2. After a delay of $>100 \mathrm{~ms}$, set the PLEN bit to 1 (Register 5, Bit DB6).

After this procedure is completed, the other registers should be programmed in the following order: Register 7, Register 6, Register 4, Register 3, Register 2, Register 1. Then, after a delay of $>100 \mathrm{~ms}$, Register 0 should be programmed.

ADRF6604

LO SELECTION LOGIC

The downconverting mixer in the ADRF6604 can be used without the internal PLL by applying an external differential LO to Pin 37 (LON) and Pin 38 (LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be accessed directly at these pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer.

The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3 (LDRV) and Bit DB6 (PLEN) in Register 5. The combination of externally applied logic and internal bits required for particular LO functions is given in Table 9.

Table 9. LO Selection Logic

Pins ${ }^{1}$		Register 5 Bits ${ }^{1}$		Outputs	
Pin 16 (PLL_EN)	Pin 36 (LODRV_EN)	Bit DB6 (PLEN)	Bit DB3 (LDRV)	Output Buffer	LO
0	X	0	X	Disabled	External
0	X	1	X	Disabled	External
1	X	0	X	Disabled	External
1	0	1	0	Disabled	Internal
1	X	1	1	Enabled	Internal
1	1	1	X	Enabled	Internal

[^0]
APPLICATIONS INFORMATION

BASIC CONNECTIONS FOR OPERATION

Figure 46 shows the basic connections for the ADRF6604 evaluation board. The six power supply pins should be individually decoupled using 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled with the capacitor values shown in Figure 46.
The RF input is internally ac-coupled and needs no external bias. The IF outputs are open collector, and a bias inductor is required from these outputs to VCC.
A peak-to-peak differential swing on $\mathrm{RF}_{\text {IN }}$ of $1 \mathrm{~V}(0.353 \mathrm{~V} \mathrm{rms}$ for a sine wave input) results in an IF output power of 4.7 dBm .

The reference frequency for the PLL should be from 12 MHz to 160 MHz and should be applied to the REF_IN pin, which should
be ac-coupled and terminated with a 50Ω resistor as shown in Figure 46. The reference signal, or a divided-down version of the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage proportional to the ambient temperature can also be selected on the multiplexer output pin.
The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Evaluation Board Configuration Options section.

Operation with an external VCO is also possible. In this case, the loop filter components should be referred to ground. The output of the loop filter is connected to the input voltage pin of the external VCO. The output of the VCO is brought back into the device on the LOP and LON pins, using a balun if necessary.

AC TEST FIXTURE

Characterization data for the ADRF6604 was taken under very strict test conditions. All possible techniques were used to achieve optimum accuracy and to remove degrading effects of
the signal generation and measurement equipment. Figure 47 shows the typical AC test setup used in the characterization of the ADRF6604.

Figure 47. ADRF6604 AC Test Setup

EVALUATION BOARD

Figure 50 shows the schematic of the RoHS-compliant evaluation board for the ADRF6604. This board has four layers and was designed using Rogers 4350 hybrid material to minimize high frequency losses. FR4 material is also adequate if the design can accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or using an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must be changed to enable operation with an external VCO (see the Register 6-VCO Control and VCO Enable (Default: 0x1E2106) section).
Additional configuration options for the evaluation board are described in Table 10.

EVALUATION BOARD CONTROL SOFTWARE

Software to program the ADRF6604 is available for download from the ADRF6604 product page under the Evaluation Boards \& Kits section. To install the software

1. Download and extract the zip file: ADRF6x0x_customer_6p0p0_install.zip file.
2. Follow the instructions in the read me file.

The evaluation board can be connected to the PC using a PC parallel port or a USB port. These options are selectable from the opening menu of the software interface (see Figure 48). The evaluation board is shipped with a 25 -pin parallel port cable for connection to the PC parallel port.

To connect the evaluation board to a USB port, a USB adapter board (EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices. This board connects to the PC using a standard USB cable with a USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the EVAL-ADF4XXXZUSB board to the 9-pin D-Sub connector on the ADRF6604 evaluation board.

Figure 48. Control Software Opening Menu
Figure 49 shows the main window of the control software with the default settings displayed.

[^0]: ${ }^{1} \mathrm{X}=$ don't care.

