imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG 700 MHz to 3000 MHz, Dual Passive DEVICES Receive Mixer with Integrated PLL and VCO

Data Sheet

ADRF6614

FEATURES

RF frequency: 700 MHz to 3000 MHz, continuous LO input frequency: 200 MHz to 2700 MHz, high-side or lowside injection IF range: 40 MHz to 500 MHz Power conversion gain of 9.0 dB Phase noise performance of -144 dBc/Hz at 800 kHz offset supporting stringent GSM standards in both 800 MHz to 900 MHz and 1800 MHz to 1900 MHz bands Single-sideband (SSB) noise figure of 11.3 dB Input IP3 of 30 dBm Input P1dB of 10.6 dBm Typical LO input drive of 0 dBm Single-ended, 50 Ω RF port Single-ended or balanced LO input port Serial port interface (SPI) control on all functions Exposed pad, 7 mm × 7 mm, 48-lead LFCSP

APPLICATIONS

Multiband/multistandard cellular base station diversity receivers Wideband radio link diversity downconverters Multimode cellular extenders and picocells

GENERAL DESCRIPTION

The ADRF6614 is a dual radio frequency (RF) mixer and intermediate frequency (IF) amplifier with an integrated phaselocked loop (PLL) and voltage controlled oscillators (VCOs). The ADRF6614 uses revolutionary broadband square wave limiting local oscillator (LO) amplifiers to achieve a wideband RF bandwidth of 700 MHz to 3000 MHz. Unlike narrow-band sine wave LO amplifier solutions, the LO can be applied above or below the RF input over a wide bandwidth. Energy storage elements are not utilized in the LO amplifier, thus dc current consumption also decreases with decreasing LO frequency.

The ADRF6614 utilizes highly linear, doubly balanced passive mixer cores with integrated RF and LO balancing circuits to allow single-ended operation. Integrated RF baluns allow optimal performance over the 700 MHz to 3000 MHz RF input frequency. The balanced passive mixer arrangement provides outstanding LO to RF and LO to IF leakages, excellent RF to IF isolation, and excellent intermodulation performance over the full RF bandwidth.

The balanced mixer cores provide extremely high input linearity, allowing the device to be used in demanding wideband applications where in-band blocking signals may otherwise result in the degradation of dynamic range. Noise performance under blocking is comparable to narrow-band passive mixer designs. High linearity

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

IF buffer amplifiers follow the passive mixer cores, yielding typical power conversion gains of 9.0 dB, and can be matched to a wide range of output impedances.

The PLL architecture supports both integer-N and fractional-N operation and can generate the entire LO frequency range of 200 MHz to 2700 MHz using an external reference input frequency anywhere in the range of 12 MHz to 320 MHz. An external loop filter provides flexibility in trading off phase noise vs. acquisition time. To reduce fractional spurs in fractional-N mode, a Σ - Δ modulator controls the post VCO-programmable divider. The device integrates six VCO cores, four of which provide complete frequency coverage between 200 MHz and 2700 MHz, and meet the GSM phase noise requirements in the 800 MHz and 900 MHz bands. Two additional GSM only cores enable the ADRF6614 to meet the GSM phase noise requirements in the digital cellular system 1800 MHz (DCS1800) and personal communications service 1900 MHz (PCS1900) bands.

All features of the ADRF6614 are controlled via a 3-wire SPI, resulting in optimum performance and minimum external components.

The ADRF6614 is fabricated using a BiCMOS, high performance IC process. The device is available in a 7 mm \times 7 mm, 48-lead LFCSP package and operates over a -40° C to $+85^{\circ}$ C temperature range. An evaluation board is available.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

ADRF6614* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

View a parametric search of comparable parts.

EVALUATION KITS

ADRF6614 Evaluation Board

DOCUMENTATION

Data Sheet

 ADRF6614: 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet

User Guides

 UG-968: Evaluating the ADRF6612/ADRF6614, 700 MHz to 3000 MHz Rx Dual Mixer with Integrated Fractional-N PLL and VCO

DESIGN RESOURCES

- ADRF6614 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADRF6614 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram1
General Description
Revision History 2
Specifications
RF Specifications
Synthesizer/PLL Specifications
VCO Specifications, Open-Loop7
Logic Input and Power Specifications
Digital Logic Specifications9
Absolute Maximum Ratings10
Thermal Resistance10
ESD Caution10
Pin Configuration and Function Descriptions11
Typical Performance Characteristics
Mixer, High Performance Mode13
Mixer, High Efficiency Mode22
Synthesizer

Basic Connections by Pin Description 39 Mixer Optimization 40 RF Input Balun Insertion Loss Optimization...... 40 Evaluation Board 55 Ordering Guide 61

REVISION HISTORY

3/16—Revision 0: Initial Version

SPECIFICATIONS

RF SPECIFICATIONS

 $T_{A} = 25^{\circ}C, f_{RF} = 1900 \text{ MHz}, f_{LO} = 1697 \text{ MHz}, Z_{O} = 50 \Omega, \text{ frequency of the reference } (f_{REF}) = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{REF} \text{ power} = 4 \text{ dBm}, f_{PFD} = 122.88 \text{ MHz}, f_{PFD} = 122.88 \text{ MHz}$ 1.536 MHz, low-side LO injection, optimum RF balun (RFB) and low-pass filter (LPF) settings, unless otherwise noted.

Table 1. High Performance Mode		•			
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
RF INTERFACE					
Return Loss	Tunable to >20 dB broadband via serial port		17.9		dB
Input Impedance			50		Ω
RF Frequency Range (f _{RF})		700		3000	MHz
IF OUTPUT INTERFACE					
Output Impedance	Differential impedance, f = 200 MHz		300 1.5		Ω∥pF
IF Frequency Range (f _⊮)		40		500	MHz
DC Bias Voltage ¹	Externally generated		IFOUTx±		V
EXTERNAL LO INPUT					
External LO Power Input		-5	0	+5	dBm
Return Loss			-11		dB
Input Impedance			50		Ω
External VCO Input Frequency	External VCO input supports divide by 1, 2, 4, 8, 16, and 32	250		5700	MHz
LO Frequency Range	Low-side or high-side LO, internally or externally	250		2850	MHz
	generated				
DYNAMIC PERFORMANCE					
Power Conversion Gain	4:1 IF port transformer and printed circuit board (PCB) loss		9.0		dB
Voltage Conversion Gain	$Z_{\text{SOURCE}} = 50 \text{ O. differential } Z_{10\text{AD}} = 200 \text{ O.}$		15.0		dB
SSB Noise Figure			11.3		dB
IF Output Phase Noise Under Blocking	10 dBm blocker present 10 MHz above desired the RF input.		-153		dBc/Hz
5	$f_{RF} = 1900 \text{ MHz}, f_{BLOCK} = 1910 \text{ MHz}, f_{LO} = 1697 \text{ MHz}, f_{IF} =$				
	203 MHz, $IF_{BLOCKER} = 213 MHz$				
Input Third-Order Intercept (IIP3)	$f_{RF1} = 1900 \text{ MHz}, f_{RF2} = 1901 \text{ MHz}, f_{LO} = 1697 \text{ MHz}, \text{ each RF}$		30		dBm
Input Cocond Order Intercent (IID2)	tone at -10 dBm		60		dDma
input second-Order intercept (IP2)	$I_{RF1} = 1900 \text{ MHZ}, I_{RF2} = 1950 \text{ MHZ}, I_{LO} = 1097 \text{ MHZ}, each RFtone at -10 \text{ dBm}$		00		UDIN
Input 1 dB Compression Point (P1dB)			10.6		dBm
LO to IF Output Leakage	Unfiltered IF output		-35		dBm
LO to RF Input Leakage			-45		dBm
RF to IF Output Isolation			-22		dB
IF/2 Spurious	–10 dBm input power		-72		dBc
IF/3 Spurious	–10 dBm input power		-69		dBc
POWER INTERFACE					
VCC1, VCC2, VCC7, VCC12					
Supply Voltage		3.55	3.7	3.85	V
Quiescent Current			260		mA
VCC3, VCC4, VCC5, VCC6, VCC8, VCC9,					
VCC10, VCC11, IFOUT1+, IFOUT1-,					
IFOUT2+, IFOUT2-			_		
Supply Voltage		3.55	5	5.25	V .
			214		mA
LO OUTPUT (LOOUT+, LOOUT–)					
Frequency Range (fLo)		200		2700	MHz
Output Level	Adjustable via SPI in four steps, in 50 Ω balanced load	-5		+7	dBm
Output Impedance	Balanced		50		Ω

. 1. 1 1. ~

¹ Supply voltage must be applied from the external circuit through choke inductors.

 $T_A = 25^{\circ}$ C, $f_{RF} = 1900$ MHz, $f_{LO} = 1697$ MHz, $Z_O = 50 \Omega$, $f_{REF} = 122.88$ MHz, f_{REF} power = 4 dBm, $f_{PFD} = 1.536$ MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

Table 2. High Efficiency Mode

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
Power Conversion Gain	4:1 IF port transformer and PCB loss removed		8.7		dB
Voltage Conversion Gain	$Z_{\text{SOURCE}} = 50 \Omega$, differential $Z_{\text{LOAD}} = 200 \Omega$		14.7		dB
SSB Noise Figure			10.7		dB
IIP3	f_{RF1} = 1900 MHz, f_{RF2} = 1901 MHz, f_{LO} = 1697 MHz, each RF tone at -10 dBm		20.5		dBm
IIP2	f_{RF1} = 1900 MHz, f_{RF2} = 1950 MHz, f_{LO} = 1697 MHz, each RF tone at -10 dBm		53		dBm
Input P1dB			8.2		dBm
LO to IF Output Leakage	Unfiltered IF output		-45.0		dBm
LO to RF Input Leakage			-52.0		dBm
RF to IF Output Isolation			-22.8		dB
IF/2 Spurious	–10 dBm input power		-58		dBc
IF/3 Spurious	–10 dBm input power		-58		dBc
POWER INTERFACE					
VCC1, VCC2, VCC7, VCC12					
Supply Voltage		3.55	3.7	3.85	V
Quiescent Current			260		mA
VCC3, VCC4, VCC5, VCC6, VCC8, VCC9, VCC10, VCC11, IFOUT1+, IFOUT1–, IFOUT2+, IFOUT2–					
Supply Voltage		3.55	3.7	5.25	V
Quiescent Current			210		mA

SYNTHESIZER/PLL SPECIFICATIONS

High performance mode, $T_A = 25^{\circ}$ C, measured on LO output, $f_{LO} = 1700$ MHz, $Z_O = 50 \Omega$, $f_{REF} = 122.88$ MHz, $f_{PFD} = 1.536$ MHz, f_{REF} power (P_{REFIN}) = 4 dBm, CSCALE = 8 mA, bleed = 0 μ A, ABLDLY = 0.9 ns, integer mode loop filter, unless otherwise noted.

Table 3. Integer Mode

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
SYNTHESIZER SPECIFICATIONS	Synthesizer specifications referenced to $1 \times LO$				
Frequency Range (f _{LO})	Internally generated LO	200		2700	MHz
Figure of Merit (FOM) ¹	$P_{REFIN} = 6.5 \text{ dBm}$		-223		dBc/Hz/Hz
Phase and Frequency Detector (PFD) Frequency (f _{PFD})		0.8		70	MHz
Reference Spurs	f _{PFD} = 1.536 MHz				
	$1 \times f_{PFD}$		-105		dBc
	$4 \times f_{PFD}$		-105		dBc
	$>4 \times f_{PFD}$		-90		dBc
CHARGE PUMP					
Pump Current	Programmable to 250 μΑ, 500 μΑ,, 8 mA		8	8.75	mA
Output Compliance Range		0.7		2.5	V
REFERENCE CHARACTERISTICS	REFIN, MUXOUT pins				
REFIN Input Frequency		12		320	MHz
REFIN Input Capacitance			4		pF
Reference Divider Value	Programmable to 0.5, 1, 2, 3,, 2047			2047	
MUXOUT Output Level	Vol (lock detect output selected)			0.25	V
	V _{OH} (lock detect output selected) 2.7				V
MUXOUT Duty Cycle	Reference output selected		50		%

Parameter	Test Conditions/Comments	Min	Τνρ	Мах	Unit
VCO 0			-76		
Phase Noise, Locked	$f_{LO} = 2.55 \text{ GHz}$				
	1 kHz offset		-87		dBc/Hz
	50 kHz offset		-94.9		dBc/Hz
	100 kHz offset		-103.3		dBc/Hz
	1 MHz offset		-132.9		dBc/Hz
	10 MHz offset		-154.1		dBc/Hz
	40 MHz offset		-155.2		dBc/Hz
Integrated Phase Noise VCO_1	1 kHz to 40 MHz integration bandwidth		0.87		°rms
Phase Noise, Locked	f _{LO} = 2.22 GHz				
	1 kHz offset		-90		dBc/Hz
	50 kHz offset		-98.4		dBc/Hz
	100 kHz offset		-106.5		dBc/Hz
	1 MHz offset		-136.1		dBc/Hz
	10 MHz offset		-154.8		dBc/Hz
	40 MHz offset		-155.5		dBc/Hz
Integrated Phase Noise VCO_2	1 kHz to 40 MHz integration bandwidth		0.63		°rms
Phase Noise, Locked	f _{LO} = 1.9 GHz				
	1 kHz offset		-90		dBc/Hz
	50 kHz offset		-98.1		dBc/Hz
	100 kHz offset		-109.8		dBc/Hz
	1 MHz offset		-137.1		dBc/Hz
	10 MHz offset		-155.7		dBc/Hz
	40 MHz offset		-156.2		dBc/Hz
Integrated Phase Noise VCO_3	1 kHz to 40 MHz integration bandwidth		0.61		°rms
Phase Noise, Locked	$f_{LO} = 1.6 \text{ GHz}$				
	1 kHz offset		-89		dBc/Hz
	50 kHz offset		-97.2		dBc/Hz
	100 kHz offset		-107		dBc/Hz
	1 MHz offset		-136.2		dBc/Hz
	10 MHz offset		-155.7		dBc/Hz
	40 MHz offset		-157.3		dBc/Hz
Integrated Phase Noise VCO_4	1 kHz to 40 MHz integration bandwidth		0.64		°rms
Phase Noise, Locked	$f_{LO} = 1.57 \text{ GHz}$				
	1 kHz offset		-90		dBc/Hz
	50 kHz offset		-109		dBc/Hz
	100 kHz offset		-119		dBc/Hz
	800 kHz offset		-144		dBc/Hz
	1 MHz offset		-145		dBc/Hz
	10 MHz offset		-156		dBc/Hz
	40 MHz offset		-156		dBc/Hz
Integrated Phase Noise VCO_5	1 kHz to 40 MHz integration bandwidth		0.26		°rms
Phase Noise, Locked	$f_{LO} = 1.68 \text{ GHz}$				
	1 kHz offset		-93		dBc/Hz
	50 kHz offset		-107		dBc/Hz
	100 kHz offset		-118		dBc/Hz
	800 kHz offset		-144		dBc/Hz
	1 MHz offset		-145		dBc/Hz

Parameter	Test Conditions/Comments		Тур	Max	Unit
	10 MHz offset		-157		dBc/Hz
	40 MHz offset		-157.5		dBc/Hz
Integrated Phase Noise	1 kHz to 40 MHz integration bandwidth		0.27		°rms

¹ The FOM is computed as phase noise (dBc/Hz) -10log₁₀(f_{PFD}) - 20log₁₀(f_{LC} / f_{PFD}). The FOM was measured across the full LO range, with f_{REF} = 122.88 MHz and f_{REF} power = 6.5 dBm with a 1.536 MHz f_{PFD} . The FOM was computed at 50 kHz offset.

High performance mode, $T_A = 25^{\circ}$ C, measured on LO output, $f_{LO} = 1700$ MHz, $Z_O = 50 \Omega$, $f_{REF} = 122.88$ MHz, $f_{PFD} = 30.72$ MHz, f_{REF} power = 4 dBm, CSCALE = 250 μ A, bleed = 93.75 μ A, ABLDLY = 0 ns, fractional mode loop filter, unless otherwise noted.

Table 4. Fractional Mode

Parameter	Test Conditions/Comments	Min	Тур Ма	x Unit
SYNTHESIZER SPECIFICATIONS	Synthesizer specifications referenced to $1 \times LO$			
FOM ¹	$P_{\text{REFIN}} = 6.5 \text{ dBm}$		219	dBc/Hz/Hz
REFERENCE CHARACTERISTICS	REFIN, MUXOUT pins			
VCO_0				
Phase Noise, Locked	$f_{LO} = 2.55 \text{ GHz}$			
	1 kHz offset		-92.5	dBc/Hz
	50 kHz offset		-97.4	dBc/Hz
	100 kHz offset		-109.7	dBc/Hz
	1 MHz offset		-137.6	dBc/Hz
	10 MHz offset		-153.6	dBc/Hz
	40 MHz offset		-155.5	dBc/Hz
Integrated Phase Noise	1 kHz to 40 MHz integration bandwidth		0.36	°rms
VCO_1				
Phase Noise, Locked	$f_{LO} = 2.22 \text{ GHz}$			
	1 kHz offset		-93.6	dBc/Hz
	50 kHz offset		-101.8	dBc/Hz
	100 kHz offset		-112.5	dBc/Hz
	1 MHz offset		-140.5	dBc/Hz
	10 MHz offset		-154.3	dBc/Hz
	40 MHz offset		-155.3	dBc/Hz
Integrated Phase Noise	1 kHz to 40 MHz integration bandwidth		0.32	°rms
VCO_2				
Phase Noise, Locked	$f_{LO} = 1.9 \text{ GHz}$			
	1 kHz offset		-94.2	dBc/Hz
	50 kHz offset		-101.7	dBc/Hz
	100 kHz offset		-112.4	dBc/Hz
	1 MHz offset		-141.3	dBc/Hz
	10 MHz offset		-155.8	dBc/Hz
	40 MHz offset		-156.8	dBc/Hz
Integrated Phase Noise	1 kHz to 40 MHz integration bandwidth		0.32	°rms
VCO_3				
Phase Noise, Locked	$f_{LO} = 1.6 \text{ GHz}$			
	1 kHz offset		-93.1	dBc/Hz
	50 kHz offset		-99.8	dBc/Hz
	100 kHz offset		-110.9	dBc/Hz
	1 MHz offset		-140.2	dBc/Hz
	10 MHz offset		-155.7	dBc/Hz
	40 MHz offset		-157.2	dBc/Hz
Integrated Phase Noise	1 kHz to 40 MHz integration bandwidth		0.33	°rms

¹ The FOM is computed as phase noise (dBc/Hz) - 10log₁₀(f_{PFD}) - 20log₁₀(f_{LO}/f_{PFD}). The FOM was measured across the full LO range, with f_{REF} = 122.88 MHz and f_{REF} power = 6.5 dBm with a 30.72 MHz f_{PFD}. The FOM was computed at 45 kHz offset.

VCO SPECIFICATIONS, OPEN-LOOP

High performance mode, $T_A = 25^{\circ}$ C, measured on LO output, unless otherwise noted.

Table 5.

Parameter	Test Conditions/Comments	Min Typ	Max Unit
VCO_0 PHASE NOISE	f _{LO} = 2.55 GHz		
	1 kHz offset	-50	dBc/Hz
	50 kHz offset	-104.4	dBc/Hz
	100 kHz offset	-112.6	dBc/Hz
	1 MHz offset	-137.7	dBc/Hz
	10 MHz offset	-154	dBc/Hz
	40 MHz offset	-155.1	dBc/Hz
VCO_1 PHASE NOISE	$f_{LO} = 2.15 \text{ GHz}$		
	1 kHz offset	-54	dBc/Hz
	50 kHz offset	-106.1	dBc/Hz
	100 kHz offset	-115	dBc/Hz
	1 MHz offset	-138.9	dBc/Hz
	10 MHz offset	-155.8	dBc/Hz
	40 MHz offset	-155.2	dBc/Hz
VCO_2 PHASE NOISE	$f_{LO} = 1.9 \text{ GHz}$		
	1 kHz offset	-53.6	dBc/Hz
	50 kHz offset	-106.6	dBc/Hz
	100 kHz offset	-114.6	dBc/Hz
	1 MHz offset	-140.8	dBc/Hz
	10 MHz offset	-155.4	dBc/Hz
	40 MHz offset	-156.3	dBc/Hz
VCO_3 PHASE NOISE	$f_{LO} = 1.6 \text{ GHz}$		
	1 kHz offset	-48.5	dBc/Hz
	50 kHz offset	-106	dBc/Hz
	100 kHz offset	-115.3	dBc/Hz
	800 kHz offset	-139.2	dBc/Hz
	1 MHz offset	-140.2	dBc/Hz
	10 MHz offset	-157.7	dBc/Hz
	40 MHz offset	-156.3	dBc/Hz
VCO_4 PHASE NOISE	$f_{VCO} = 3.14 \text{ GHz}$		
	1 kHz offset	-53.8	dBc/Hz
	50 kHz offset	-110.3	dBc/Hz
	100 kHz offset	-118	dBc/Hz
	800 kHz offset	-139.5	dBc/Hz
	1 MHz offset	-140.6	dBc/Hz
	10 MHz offset	-155.4	dBc/Hz
	40 MHz offset	-157.4	dBc/Hz
VCO_5 PHASE NOISE	$f_{VCO} = 3.36 \text{ GHz}$		
	1 kHz offset	-54	dBc/Hz
	50 kHz offset	-108.3	dBc/Hz
	100 kHz offset	-116.3	dBc/Hz
	800 kHz offset	-138.5	dBc/Hz
	1 MHz offset	-140	dBc/Hz
	10 MHz offset	-156.3	dBc/Hz
	40 MHz offset	-157.8	dBc/Hz

LOGIC INPUT/OUTPUT AND POWER SPECIFICATIONS

 $T_A = 25^{\circ}$ C, $f_{RF} = 1900$ MHz, $f_{LO} = 1697$ MHz, $Z_O = 50 \Omega$, $f_{REF} = 122.88$ MHz, f_{REF} power = 4 dBm, $f_{PFD} = 1.536$ MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

Table 6.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
LOGIC INPUT/OUTPUTS	SCLK, SDIO, CS				
Input Voltage					
High, V⊪		1.4		3.3	V
Low, V _{IL}		0		0.7	V
Output Voltage					
High, V _{он}	$I_{OH} = -100 \mu\text{A}$	2.3			V
Low, Vol	$I_{OL} = 100 \ \mu A$			0.2	V
Input Current, I _{INH} /I _{INL}			0.1		μΑ
POWER SUPPLIES					
High Performance Mode					
Voltage Range					
VCC1, VCC2, VCC7, VCC12		3.55	3.7	5.25	V
VCC3, VCC4, VCC5, VCC6, VCC8, VCC9, VCC10, VCC11, IFOUT1+, IFOUT1-, IFOUT2+, IFOUT2-		4.75	5	5.25	V
Power Dissipation	Internal LO mode (internal PLL)				
	External LO output enabled		2.7		W
	External LO output disabled		2.5		W
High Efficiency Mode					
Voltage Range					
VCC1, VCC2, VCC3, VCC4, VCC5, VCC6, VCC7, VCC8, VCC9, VCC10, VCC11, VCC12, IFOUT1+, IFOUT1–, IFOUT2+, IFOUT2–		3.55	3.7	3.85	V
Power Dissipation	Internal LO mode (internal PLL)				
	External LO output enabled		2.0		W
	External LO output disabled		1.8		W

Rev. 0 | Page 8 of 61

DIGITAL LOGIC SPECIFICATIONS

Table 7.					
Symbol	Description	Min	Тур	Max	Unit
t _{clk}	Serial clock period	38			ns
t _{DS}	Setup time between data and rising edge of SCLK	8			ns
t _{DH}	Hold time between data and rising edge of SCLK	8			ns
ts	Setup time between falling edge of CS and SCLK	10			ns
t _H	Hold time between rising edge of CS and SCLK	10			ns
thigh	Minimum period for SCLK to be in a logic high state	10			ns
t _{LOW}	Minimum period for SCLK to be in a logic low state	10			ns
tACCESS	Maximum delay between falling edge of SCLK and output data Valid for a read operation			231	ns
tz	Maximum delay between $\overline{\text{CS}}$ deactivation and SDIO bus return to high impedance			5	ns

Figure 2. Setup and Hold Timing Measurements

ABSOLUTE MAXIMUM RATINGS

Table 8.

Parameter	Rating
Supply Voltage (VCC1, VCC2, VCC3,	–0.5 V to +5.5 V
VCC4, VCC5, VCC6, VCC7, VCC8, VCC9,	
VCC10, VCC11, VCC12, IFOUT1+,	
IFOUT1–, IFOUT2+, IFOUT2–)	
Digital Input/Output (SCLK, SDIO, CS)	–0.3 V to +3.6 V
RFINx	20 dBm
EXTVCOIN+, EXTVCOIN-	13 dBm
Maximum Junction Temperature	150°C
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 $\theta_{\rm JC}$ is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 9. Thermal Resistance

Package Type	ον	Unit
48-Lead LFCSP	1.62	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 10. Pin Function Descriptions

14010 10.1	In Tunetion Descriptions	
Pin No.	Mnemonic	Description
1	GND	Common Ground Connection for External Loop Filter.
2	VCOVTUNE	Control Voltage for Internal VCO.
3, 6	GND	Common Ground for External VCO.
4, 5	EXTVCOIN+, EXTVCOIN-	Inputs from External VCO to Internal Divider.
7	VCC1	3.7 V VCO Supply.
8,9	DECL1, DECL2	LDO Output Decouplers for VCO.
10, 11	DECL3, DECL4	External Decouplers for VCO Buffer.
12	DECL5	External Decoupler for VCO Circuitry.
13, 14	LOOUT+, LOOUT-	Differential Outputs of Internally Generated LO.
15	LDO1	External Decoupling for Internal 2.5 V SPI Port LDO.
16	VCC2	3.7 V Supply for Programmable SPI Port.
17	SDIO	Serial Data Input/Output for Programmable SPI Port.
18	SCLK	Clock for Programmable SPI Port.
19	CS	SPI Chip Select, Active Low.
20, 41	VCC3, VCC11	5 V Biases for Channel 1 and Channel 2 IF.
21, 40	DNC	Do Not Connect. Do not connect these pins externally.
22, 23	IFOUT2+, IFOUT2-	Channel 2 Differential IF Outputs.
24, 37	GND	Ground Connections for Channel 1 and Channel 2 IF Stage.
25	RFBCT2	Balun Center Tap Connection for Channel 2 RF Input.
26	RFIN2	Channel 2 RF Input.
27, 28, 29	VCC4, VCC5, VCC6	5 V Supplies for Mixer LO Amplifiers.
30	LDO2	External Decoupling for Internal 3.3 V PLL/Divider LDO.
31	VCC7	3.7 V Supply for Mixer LO Divider Chain.
32, 33, 34	VCC8, VCC9, VCC10	5 V Supplies for Mixer LO Amplifiers.
35	RFIN1	Channel 1 RF Input.
36	RFBCT1	Balun Center Tap Connection for Channel 1 RF Input.
38, 39	IFOUT1-, IFOUT1+	Channel 1 Differential IF Outputs.
42	MUXOUT	Internal Multiplexer Output.

Pin No.	Mnemonic	Description
43	REFIN	Reference Input for Internal PLL (Single-Ended, CMOS).
44	LDO3	External Decoupling for Internal 2.5 V PLL LDO.
45	LDO4	External Decoupling for Internal 3.3 V PLL LDO.
46	VCC12	3.7 V Supply for Internal PLL.
47	CPOUT	Charge Pump Output.
48	GND	Common Ground for External Charge Pump.
	EPAD	Exposed Pad. The exposed pad must be connected to a ground plane with low thermal impedance.

TYPICAL PERFORMANCE CHARACTERISTICS

MIXER, HIGH PERFORMANCE MODE

 $T_A = 25^{\circ}$ C, $f_{RF} = 1900$ MHz, $f_{LO} = 1697$ MHz, $Z_O = 50 \Omega$, $f_{REF} = 122.88$ MHz, f_{REF} power = 4 dBm, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted. For integer mode: $f_{PFD} = 1.536$ MHz, CSCALE = 8 mA, bleed = 0 μ A, ABLDLY = 0.9 ns. For fractional mode: $f_{PFD} = 30.72$ MHz, CSCALE = 250 μ A, bleed = 93.75 μ A, ABLDLY = 0.0 ns.

Figure 4. Power Dissipation vs. RF Frequency over Three Temperatures

Figure 5. Power Conversion Gain vs. RF Frequency over Three Temperatures, IF Balun and Board Loss Removed

Figure 6. Input IP3 vs. RF Frequency over Three Temperatures

Figure 7. Input IP2 vs. RF Frequency over Three Temperatures

Figure 8. Input P1dB vs. RF Frequency over Three Temperatures

Figure 9. SSB Noise Figure vs. RF Frequency over Three Temperatures

Figure 10. Power Dissipation vs. Temperature for Three RF Frequencies

Figure 11. Power Conversion Gain vs. Temperature for Three RF Frequencies

Figure 12. Input IP3 vs. Temperature for Three RF Frequencies

Figure 13. Input IP2 vs. Temperature for Three RF Frequencies

Figure 15. SSB Noise Figure vs. Temperature for Three RF Frequencies

Data Sheet

Figure 16. Power Dissipation vs. IF Frequency for Three RF Frequencies

Figure 17. Power Conversion Gain vs. IF Frequency for Three RF Frequencies

Figure 18. Input IP3 vs. IF Frequency for Three RF Frequencies

Figure 19. Input IP2 vs. IF Frequency for Three RF Frequencies

Figure 21. SSB Noise Figure vs. IF Frequency for Three Temperatures

Figure 22. IF/2 Spurious vs. RF Frequency over Three Temperatures

Figure 23. IF/3 Spurious vs. RF Frequency over Three Temperatures

Figure 24. RF to IF Isolation vs. RF Frequency over Three Temperatures

Figure 25. LO to IF Leakage vs. LO Frequency over Three Temperatures

to RF and $2 \times LO$ to IF)

Data Sheet

Figure 28. 3 \times LO Leakage vs. LO Frequency over Three Temperatures (3 \times LO to RF and 3 \times LO to IF)

Figure 37. IF Channel to Channel Isolation vs. RF Frequency over Three Temperatures

Figure 38. Input IP3 vs. RF Frequency for All RFB Settings, VGS Bit and LPF Use Optimum Settings

VGS Bit and LPF Use Optimum Settings

Data Sheet

350

Figure 48. Power Dissipation vs. Temperature for Various IFA_LINBIAS Settings

20

TEMPERATURE (°C)

40

60

80 4115-348

-40

-20

0

Figure 51. Input IP3 vs. Temperature for Various IFA_LINBIAS Settings

20

TEMPERATURE (°C)

40

60

80 4115.351

-40

-20

0

Data Sheet

-60 - 890MHz +10dBm - 1910MHz +10dBm - 2510MHz +10dBm -70 111111 -80 111 90 -90 -100 GBC/Hz -110 -120 -120 -130 **V**M N -140 -150 -160 0.001 14115-352 0.01 0.1 10 1 OFFSET FREQUENCY (MHz)

Figure 52. Phase Noise at IF Output vs. Offset Frequency with 10 dBm Blocker in Integer Mode

-60

-70

-80

Figure 53. Phase Noise at IF Output vs. Offset Frequency with 10 dBm Blocker in Fractional Mode

MIXER, HIGH EFFICIENCY MODE

 $T_A = 25^{\circ}$ C, $f_{RF} = 1900$ MHz, $f_{LO} = 1697$ MHz, $Z_O = 50 \Omega$, $f_{REF} = 122.88$ MHz, f_{REF} power = 4 dBm, $f_{PFD} = 1.536$ MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

Figure 54. Power Dissipation vs. RF Frequency over Three Temperatures

Figure 55. Conversion Gain vs. RF Frequency over Three Temperatures

Figure 56. Input IP3 vs. RF Frequency over Three Temperatures

Figure 57. Input IP2 vs. RF Frequency over Three Temperatures

Figure 58. Input P1dB vs. RF Frequency over Three Temperatures

Figure 59. SSB Noise Figure vs. RF Frequency over Three Temperatures

SYNTHESIZER

 V_s = high performance mode, T_A = 25°C, measured on LO output, f_{LO} = 1700 MHz, Z_O = 50 Ω , f_{REF} = 122.88 MHz, f_{PFD} = 1.536 MHz, f_{REF} power = 4 dBm, integer mode loop filter, unless otherwise noted.

157

4115-

Figure 61. VCO_1 Open-Loop Phase Noise vs. Offset Frequency, $f_{VCO_1} = 2.2 \text{ GHz}$, Divide by Two Selected, VCOVTUNE = 1.5 V

Figure 62. VCO_2 Open-Loop Phase Noise vs. Offset Frequency, $f_{VCO_2} = 1.9$ GHz, Divide by Two Selected, VCOVTUNE = 1.5 V

Figure 63. VCO_0 Closed-Loop Phase Noise vs. Offset Frequency for Various LO_DIV Dividers, $f_{VCO_0} = 5.1$ GHz

Figure 64. VCO_1 Closed-Loop Phase Noise vs. Offset Frequency for Various LO_DIV Dividers, $f_{VCO_1} = 4.5$ GHz

Figure 65. VCO_2 Closed-Loop Phase Noise vs. Offset Frequency for Various LO_DIV Dividers, f_{VCO_2} = 3.8 GHz

Figure 66. VCO_3 Open-Loop Phase Noise vs. Offset Frequency, $f_{VCO_3} = 1.6$ GHz, Divide by Two Selected, VCOVTUNE = 1.5 V

Figure 67. VCO_4 Open-Loop Phase Noise vs. Offset Frequency, $f_{VCO_4} = 3.087$ GHz, Divide by One Selected, VCOVTUNE = 1.5 V

Figure 69. VCO_3 Closed-Loop Phase Noise for Various LO_DIV Dividers vs. Offset Frequency, $f_{VCO_3} = 3.2 \text{ GHz}$

Figure 71. VCO_5 Closed-Loop Phase Noise for Various Temperatures vs. Offset Frequency, $f_{VCO_5} = 1.688$ GHz, Divide by Two Selected