

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# 100 MHz to 2400 MHz I/Q Modulator with Integrated Fractional-N PLL and VCO

Data Sheet ADRF6755

#### **FEATURES**

I/Q modulator with integrated fractional-N PLL and VCO

Gain control span: 47 dB in 1 dB steps

Output frequency range: 100 MHz to 2400 MHz Output 1 dB compression: 8 dBm at LO = 1800 MHz

Output IP3: 20.5 dBm at LO = 1800 MHz Noise floor: -161 dBm/Hz at LO = 1800 MHz Baseband modulation bandwidth: 600 MHz (3 dB)

Output frequency resolution: 1 Hz SPI and I<sup>2</sup>C-compatible serial interfaces

Power supply: 5 V/380 mA

#### **GENERAL DESCRIPTION**

The ADRF6755 is a highly integrated quadrature modulator, frequency synthesizer, and programmable attenuator. The device covers an operating frequency range from 100 MHz to 2400 MHz for use in satellite, cellular, and broadband communications.

The ADRF6755 modulator includes a high modulus, fractional-N frequency synthesizer with integrated VCO, providing less than 1 Hz frequency resolution, and a 47 dB digitally controlled output attenuator with 1 dB steps.

Control of all the on-chip registers is through a user-selected SPI interface or  $I^2C$  interface. The device operates from a single power supply ranging from 4.75 V to 5.25 V.



Figure 1.

# ADRF6755\* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

# COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

# **EVALUATION KITS**

· ADRF6755 Evaluation Board

# **DOCUMENTATION**

## **Data Sheet**

 ADRF6755:100MHz TO 2400 MHz I/Q Modulator With Integrated Fractional-N PLL And VCO

# **TOOLS AND SIMULATIONS**

- ADIsimPLL™
- ADIsimRF

# REFERENCE MATERIALS 🖵

#### **Press**

 New Version of Simulation Tool Significantly Eases Development of RF Systems

#### **Product Selection Guide**

RF Source Booklet

# **DESIGN RESOURCES**

- · ADRF6755 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

# **DISCUSSIONS**

View all ADRF6755 EngineerZone Discussions.

# SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

# TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

# DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

# **TABLE OF CONTENTS**

7/12—Revision 0: Initial Version

| Features                                      |
|-----------------------------------------------|
| General Description1                          |
| Revision History                              |
| Specifications                                |
| Timing Characteristics                        |
| Absolute Maximum Ratings                      |
| ESD Caution10                                 |
| Pin Configuration and Function Descriptions11 |
| Typical Performance Characteristics           |
| Theory of Operation                           |
| Overview21                                    |
| PLL Synthesizer and VCO21                     |
| Quadrature Modulator                          |
| Attenuator                                    |
| Voltage Regulator25                           |
| I <sup>2</sup> C Interface                    |
| REVISION HISTORY 4/13—Rev. A to Rev. B        |
| ,                                             |
| Changes to Ordering Guide                     |
| 11/12—Rev. 0 to Rev. A                        |
| Changes to Figure 1                           |
| Changed 0x00 to 0x60 in Step 13               |
| Updated Outline Dimensions                    |
| Changes to Ordering Guide                     |

| SPI Interface                   | 27 |
|---------------------------------|----|
| Program Modes                   | 29 |
| Register Map                    | 31 |
| Register Map Summary            | 31 |
| Register Bit Descriptions       | 32 |
| Suggested Power-Up Sequence     | 35 |
| Initial Register Write Sequence | 35 |
| Evaluation Board                | 37 |
| General Description             | 37 |
| Hardware Description            | 37 |
| PCB Artwork                     | 41 |
| Bill of Materials               | 44 |
| Outline Dimensions              | 45 |
| Ordering Guide                  | 45 |

# **SPECIFICATIONS**

 $V_{CC}$  = 5 V ± 5%, operating temperature range = -40°C to +85°C, I/Q inputs = 0.9 V p-p differential sine waves in quadrature on a 500 mV dc bias, REFIN = 80 MHz, PFD = 40 MHz, baseband frequency = 1 MHz, LOMON off, loop bandwidth (LBW) = 100 kHz, I<sub>CP</sub> = 5 mA, unless otherwise noted.

Table 1.

| Parameter                           | Test Conditions/Comments                                                                        | Min                                                                                           | Тур        | Max  | Unit   |
|-------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|------|--------|
| OPERATING FREQUENCY RANGE           | RATING FREQUENCY RANGE                                                                          |                                                                                               |            | 2400 | MHz    |
| RF OUTPUT = 100 MHz                 | RFOUT pin                                                                                       |                                                                                               |            |      |        |
| Nominal Output Power                | V <sub>IQ</sub> = 0.9 V p-p differential                                                        |                                                                                               | -0.2       |      | dBm    |
| Gain Flatness                       | Any 40 MHz                                                                                      | ±2.0                                                                                          |            |      | dB     |
| Output P1dB                         |                                                                                                 |                                                                                               | 9.0        |      | dBm    |
| Output IP3                          | $f1_{BB} = 3.5 \text{ MHz}$ , $f2_{BB} = 4.5 \text{ MHz}$ , $P_{OUT} = -6 \text{ dBm per tone}$ | $1_{BB} = 3.5 \text{ MHz}, f2_{BB} = 4.5 \text{ MHz}, P_{OUT} = -6 \text{ dBm per tone}$ 21.0 |            |      | dBm    |
| Output Return Loss                  | Attenuator setting = 0 dB                                                                       |                                                                                               | -12        |      | dB     |
| LO Carrier Feedthrough <sup>1</sup> | Attenuator setting = 0 dB to 47 dB                                                              |                                                                                               | -55        |      | dBc    |
| 2× LO Carrier Feedthrough           | Attenuator setting = 0 dB to 47 dB                                                              |                                                                                               | -80        |      | dBm    |
| Sideband Suppression                |                                                                                                 |                                                                                               | -70        |      | dBc    |
| Noise Floor                         | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                                    |                                                                                               | -153       |      | dBm/Hz |
| Baseband Harmonics                  |                                                                                                 |                                                                                               | -60        |      | dBc    |
| Synthesizer Spurs                   | Integer boundary < loop bandwidth                                                               |                                                                                               | -85        |      | dBc    |
|                                     | >10 MHz offset from carrier                                                                     |                                                                                               | -90        |      | dBc    |
| Phase Noise                         | 100 Hz offset                                                                                   |                                                                                               | -106       |      | dBc/Hz |
|                                     | 1 kHz offset                                                                                    |                                                                                               | -116       |      | dBc/Hz |
|                                     | 10 kHz offset                                                                                   |                                                                                               | -127       |      | dBc/Hz |
|                                     | 100 kHz offset                                                                                  |                                                                                               | -131       |      | dBc/Hz |
|                                     | 1 MHz offset                                                                                    |                                                                                               | -146       |      | dBc/Hz |
|                                     | 10 MHz offset                                                                                   |                                                                                               | -152       |      | dBc/Hz |
| Integrated Phase Noise              | 1 kHz to 8 MHz integration bandwidth                                                            |                                                                                               | 0.02       |      | ° rms  |
| RF OUTPUT = 300 MHz                 | RFOUT pin                                                                                       |                                                                                               |            |      |        |
| Nominal Output Power                | V <sub>IQ</sub> = 0.9 V p-p differential                                                        |                                                                                               | 0.2        |      | dBm    |
| Gain Flatness                       | Any 40 MHz                                                                                      |                                                                                               | ±0.5       |      | dB     |
| Output P1dB                         |                                                                                                 |                                                                                               | 9.3        |      | dBm    |
| Output IP3                          | $f1_{BB} = 3.5 \text{ MHz}$ , $f2_{BB} = 4.5 \text{ MHz}$ , $P_{OUT} = -6 \text{ dBm per tone}$ |                                                                                               | 23.0       |      | dBm    |
| Output Return Loss                  | Attenuator setting = 0 dB                                                                       |                                                                                               | -20        |      | dB     |
| LO Carrier Feedthrough <sup>1</sup> | Attenuator setting = 0 dB to 47 dB                                                              |                                                                                               | -50        |      | dBc    |
| 2× LO Carrier Feedthrough           | Attenuator setting = 0 dB to 47 dB                                                              |                                                                                               | <b>-75</b> |      | dBm    |
| Sideband Suppression                |                                                                                                 |                                                                                               | -70        |      | dBc    |
| Noise Floor                         | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                                    |                                                                                               | -158       |      | dBm/Hz |
| <b>Baseband Harmonics</b>           |                                                                                                 |                                                                                               | -60        |      | dBc    |
| Synthesizer Spurs                   | Integer boundary < loop bandwidth                                                               |                                                                                               | -85        |      | dBc    |
|                                     | >10 MHz offset from carrier                                                                     |                                                                                               | -85        |      | dBc    |
| Phase Noise                         | 100 Hz offset                                                                                   |                                                                                               | -105       |      | dBc/Hz |
|                                     | 1 kHz offset                                                                                    |                                                                                               | -113       |      | dBc/Hz |
|                                     | 10 kHz offset                                                                                   |                                                                                               | -117       |      | dBc/Hz |
|                                     | 100 kHz offset                                                                                  |                                                                                               | -122       |      | dBc/Hz |
|                                     | 1 MHz offset                                                                                    |                                                                                               | -145       |      | dBc/Hz |
|                                     | 10 MHz offset                                                                                   |                                                                                               | -150       |      | dBc/Hz |
| Integrated Phase Noise              | 1 kHz to 8 MHz integration bandwidth                                                            | 1                                                                                             | 0.04       |      | ° rms  |

| Parameter                           | Test Conditions/Comments                                                                        | Min Typ Max  | Unit      |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------|--------------|-----------|--|
| RF OUTPUT = 700 MHz                 | RFOUT pin                                                                                       |              |           |  |
| Nominal Output Power                | $V_{IQ} = 0.9 \text{ V p-p differential}$                                                       | 0.2          | dBm       |  |
| Gain Flatness                       | Any 40 MHz                                                                                      | ±0.5         | dB        |  |
| Output P1dB                         |                                                                                                 | 9.4          |           |  |
| Output IP3                          | $f1_{BB} = 3.5 \text{ MHz}$ , $f2_{BB} = 4.5 \text{ MHz}$ , $P_{OUT} = -6 \text{ dBm per tone}$ | 23.0         | dBm       |  |
| Output Return Loss                  | Attenuator setting = 0 dB                                                                       | -16          | dB        |  |
| LO Carrier Feedthrough <sup>1</sup> | Attenuator setting = 0 dB to 47 dB                                                              | -48          | dBc       |  |
| 2× LO Carrier Feedthrough           | Attenuator setting = 0 dB to 47 dB                                                              | -70          | dBm       |  |
| Sideband Suppression                |                                                                                                 | -70          | dBc       |  |
| Noise Floor                         | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                                    | -158         | dBm/Hz    |  |
| Baseband Harmonics                  |                                                                                                 | -60          | dBc       |  |
| Synthesizer Spurs                   | Integer boundary < loop bandwidth                                                               | -60          | dBc       |  |
|                                     | >10 MHz offset from carrier                                                                     | -85          | dBc       |  |
| Phase Noise                         | 100 Hz offset                                                                                   | -97          | dBc/Hz    |  |
|                                     | 1 kHz offset                                                                                    | -106         | dBc/Hz    |  |
|                                     | 10 kHz offset                                                                                   | -112         | dBc/Hz    |  |
|                                     | 100 kHz offset                                                                                  | -115         | dBc/Hz    |  |
|                                     | 1 MHz offset                                                                                    | -139         | dBc/Hz    |  |
|                                     | 10 MHz offset                                                                                   | -154         | dBc/Hz    |  |
| Integrated Phase Noise              | 1 kHz to 8 MHz integration bandwidth                                                            | 0.07         | ° rms     |  |
| RF OUTPUT = 900 MHz                 | RFOUT pin                                                                                       |              |           |  |
| Nominal Output Power                | $V_{IQ} = 0.9 \text{ V p-p differential}$                                                       | 0.0          | dBm       |  |
| Gain Flatness                       | Any 40 MHz                                                                                      | ±0.5         | dB        |  |
| Output P1dB                         | ,                                                                                               | 9.2          | dBm       |  |
| Output IP3                          | $f1_{BB} = 3.5 \text{ MHz}, f2_{BB} = 4.5 \text{ MHz}, P_{OUT} = -6 \text{ dBm per tone}$       | 22.8         | dBm       |  |
| Output Return Loss                  | Attenuator setting = 0 dB                                                                       | -15          | dB        |  |
| LO Carrier Feedthrough <sup>1</sup> | Attenuator setting = 0 dB to 47 dB                                                              | -48          | dBc       |  |
| 2× LO Carrier Feedthrough           | Attenuator setting = 0 dB to 47 dB                                                              | -68          | dBm       |  |
| Sideband Suppression                |                                                                                                 | -60          | dBc       |  |
| Noise Floor                         | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                                    | -158.5       | dBm/Hz    |  |
|                                     | Attenuator setting = 0 dB to 21 dB, carrier offset = 10 MHz                                     | -152         | dBc/Hz    |  |
|                                     | Attenuator setting = 21 dB to 47 dB, carrier offset = 10 MHz                                    | -171         | dBm/Hz    |  |
| Baseband Harmonics                  |                                                                                                 | -60          | dBc       |  |
| Synthesizer Spurs                   | Integer boundary < loop bandwidth                                                               | -60          | dBc       |  |
| ,                                   | >10 MHz offset from carrier                                                                     | -80          | dBc       |  |
| Phase Noise                         | 100 Hz offset                                                                                   | -94          | dBc/Hz    |  |
|                                     | 1 kHz offset                                                                                    | -104         | dBc/Hz    |  |
|                                     | 10 kHz offset                                                                                   | -109         | dBc/Hz    |  |
|                                     | 100 kHz offset                                                                                  | -114         | dBc/Hz    |  |
|                                     | 1 MHz offset                                                                                    | -139         | dBc/Hz    |  |
|                                     | 10 MHz offset                                                                                   | -154         | dBc/Hz    |  |
| Integrated Phase Noise              | 1 kHz to 8 MHz integration bandwidth                                                            | 0.11         | ° rms     |  |
| RF OUTPUT = 1800 MHz                | RFOUT pin                                                                                       |              | 11113     |  |
| Nominal Output Power                | $V_{IQ} = 0.9 \text{ V p-p differential}$                                                       | -0.4         | dBm       |  |
| Gain Flatness                       | Any 40 MHz                                                                                      | -0.4<br>±0.5 |           |  |
| Output P1dB                         | Ally 40 Mill2                                                                                   | 8.0          | dB<br>dBm |  |
| Output IP3                          | $f1_{BB} = 3.5 \text{ MHz}, f2_{BB} = 4.5 \text{ MHz}, P_{OUT} = -6 \text{ dBm per tone}$       |              |           |  |
| Output Return Loss                  | Attenuator setting = 0 dB                                                                       | 20.5<br>-13  | dBm<br>dB |  |
| LO Carrier Feedthrough <sup>1</sup> | Attenuator setting = 0 dB Attenuator setting = 0 dB to 47 dB                                    | -15<br>-45   | dBc       |  |
| 2× LO Carrier Feedthrough           | Attenuator setting = 0 dB to 47 dB  Attenuator setting = 0 dB to 47 dB                          | -45<br>-53   | dBm       |  |
| ZA LO Carrier reedifficación        | Attenuator Setting - 0 up t0 47 up                                                              | -33          | udiii     |  |

| Parameter                           | Test Conditions/Comments                                                                        | Min Typ | Max | Unit   |
|-------------------------------------|-------------------------------------------------------------------------------------------------|---------|-----|--------|
| Noise Floor                         | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                                    | -161    |     | dBm/Hz |
|                                     | Attenuator setting = 0 dB to 21 dB, carrier offset = 10 MHz                                     | -150    |     | dBc/Hz |
|                                     | Attenuator setting = 21 dB to 47 dB, carrier offset = 10 MHz                                    | -170    |     | dBm/Hz |
| Baseband Harmonics                  |                                                                                                 | -58     | dBc |        |
| Synthesizer Spurs                   | Integer boundary < loop bandwidth                                                               | -60     |     | dBc    |
|                                     | >10 MHz offset from carrier                                                                     | -75     |     | dBc    |
| Phase Noise                         | 100 Hz offset                                                                                   | -89     |     | dBc/Hz |
|                                     | 1 kHz offset                                                                                    | -99     |     | dBc/Hz |
|                                     | 10 kHz offset                                                                                   | -103    |     | dBc/Hz |
|                                     | 100 kHz offset                                                                                  | -108    |     | dBc/Hz |
|                                     | 1 MHz offset                                                                                    | -133    |     | dBc/Hz |
|                                     | 10 MHz offset                                                                                   | -152    |     | dBc/Hz |
| Integrated Phase Noise              | 1 kHz to 8 MHz integration bandwidth                                                            | 0.17    |     | ° rms  |
| RF OUTPUT = 1875 MHz                | RFOUT pin                                                                                       |         |     |        |
| Nominal Output Power                | $V_{IQ} = 0.9 \text{ V p-p differential}$                                                       | -0.6    |     | dBm    |
| Gain Flatness                       | Any 40 MHz                                                                                      | ±0.5    |     | dB     |
| Output P1dB                         |                                                                                                 | 7.8     |     | dBm    |
| Output IP3                          | $f1_{BB} = 3.5 \text{ MHz}$ , $f2_{BB} = 4.5 \text{ MHz}$ , $P_{OUT} = -6 \text{ dBm per tone}$ | 20.2    |     | dBm    |
| Output Return Loss                  | Attenuator setting = 0 dB                                                                       | -13     |     | dB     |
| LO Carrier Feedthrough <sup>1</sup> | Attenuator setting = 0 dB to 47 dB                                                              | -45     |     | dBc    |
| 2× LO Carrier Feedthrough           | Attenuator setting = 0 dB to 47 dB                                                              | -52     |     | dBm    |
| Sideband Suppression                |                                                                                                 | -50     |     | dBc    |
| Noise Floor                         | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                                    | -160    |     | dBm/Hz |
|                                     | Attenuator setting = 0 dB to 21 dB, carrier offset = 10 MHz                                     | -150    |     | dBc/Hz |
|                                     | Attenuator setting = 21 dB to 47 dB, carrier offset = 10 MHz                                    | -170    |     | dBm/Hz |
| Baseband Harmonics                  |                                                                                                 | -60     |     | dBc    |
| Synthesizer Spurs                   | Integer boundary < loop bandwidth                                                               | -60     |     | dBc    |
|                                     | >10 MHz offset from carrier                                                                     | -73     |     | dBc    |
| Phase Noise                         | 100 Hz offset                                                                                   | -89     |     | dBc/Hz |
|                                     | 1 kHz offset                                                                                    | -97     |     | dBc/Hz |
|                                     | 10 kHz offset                                                                                   | -103    |     | dBc/Hz |
|                                     | 100 kHz offset                                                                                  | -108    |     | dBc/Hz |
|                                     | 1 MHz offset                                                                                    | -133    |     | dBc/Hz |
|                                     | 10 MHz offset                                                                                   | -152    |     | dBc/Hz |
| Integrated Phase Noise              | 1 kHz to 8 MHz integration bandwidth                                                            | 0.18    |     | ° rms  |
| RF OUTPUT = 2100 MHz                | RFOUT pin                                                                                       |         |     |        |
| Nominal Output Power                | $V_{IQ} = 0.9 \text{ V p-p differential}$                                                       | -1.0    |     | dBm    |
| Gain Flatness                       | Any 40 MHz                                                                                      | ±0.5    |     | dB     |
| Output P1dB                         |                                                                                                 | 7.4     |     | dBm    |
| Output IP3                          | $f1_{BB} = 3.5 \text{ MHz}$ , $f2_{BB} = 4.5 \text{ MHz}$ , $P_{OUT} = -6 \text{ dBm per tone}$ | 19.5    |     | dBm    |
| Output Return Loss                  | Attenuator setting = 0 dB                                                                       | -12     |     | dB     |
| LO Carrier Feedthrough <sup>1</sup> | Attenuator setting = 0 dB to 47 dB                                                              | _44     |     | dBc    |
| 2× LO Carrier Feedthrough           | Attenuator setting = 0 dB to 47 dB                                                              | _51     |     | dBm    |
| Sideband Suppression                |                                                                                                 | -45     | dBc |        |
| Noise Floor                         | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                                    | -161    |     | dBm/Hz |
|                                     | Attenuator setting = 0 dB to 21 dB, carrier offset = 10 MHz                                     | -149    |     | dBc/Hz |
|                                     | Attenuator setting = 21 dB to 47 dB, carrier offset = 10 MHz                                    | -170    |     | dBm/Hz |
| Baseband Harmonics                  | 2 do to 17 day currier oriset – 10 WHZ                                                          | -60     |     | dBc    |
| Synthesizer Spurs                   | Integer boundary < loop bandwidth                                                               | -60     |     | dBc    |
| Synthesizer Spars                   | >10 MHz offset from carrier                                                                     | -67     |     | dBc    |

| Parameter                                        | Test Conditions/Comments                                                                  | Min | Тур                    | Max                    | Unit   |
|--------------------------------------------------|-------------------------------------------------------------------------------------------|-----|------------------------|------------------------|--------|
| Phase Noise                                      | 100 Hz offset                                                                             |     | -88                    |                        | dBc/Hz |
|                                                  | 1 kHz offset                                                                              |     | -98                    |                        | dBc/Hz |
|                                                  | 10 kHz offset                                                                             |     | -101                   |                        | dBc/Hz |
|                                                  | 100 kHz offset                                                                            |     | -108                   |                        | dBc/Hz |
|                                                  | 1 MHz offset                                                                              |     | -134                   |                        | dBc/Hz |
|                                                  | 10 MHz offset                                                                             |     | -152                   |                        | dBc/Hz |
| Integrated Phase Noise                           | 1 kHz to 8 MHz integration bandwidth                                                      |     | 0.25                   |                        | ° rms  |
| RF OUTPUT = 2400 MHz                             | RFOUT pin                                                                                 |     |                        |                        |        |
| Nominal Output Power                             | $V_{IQ} = 0.9 \text{ V p-p differential}$                                                 |     | -1.7                   |                        | dBm    |
| Gain Flatness                                    | Any 40 MHz                                                                                |     | ±0.5                   |                        | dB     |
| Output P1dB                                      |                                                                                           |     | 6.5                    |                        | dBm    |
| Output IP3                                       | $f1_{BB} = 3.5 \text{ MHz}, f2_{BB} = 4.5 \text{ MHz}, P_{OUT} = -6 \text{ dBm per tone}$ |     | 18.5                   |                        | dBm    |
| Output Return Loss                               | Attenuator setting = 0 dB                                                                 |     | -11                    |                        | dB     |
| LO Carrier Feedthrough <sup>1</sup>              | Attenuator setting = 0 dB to 47 dB                                                        |     | -43                    |                        | dBc    |
| 2× LO Carrier Feedthrough                        | Attenuator setting = 0 dB to 47 dB                                                        |     | -60                    |                        | dBm    |
| Sideband Suppression                             | , mendator setting of the to the the                                                      |     | <b>-40</b>             |                        | dBc    |
| Noise Floor                                      | I/Q inputs = 0 V p-p differential, attenuator setting = 0 dB                              |     | -160.5                 |                        | dBm/H  |
| Noise Floor                                      | Attenuator setting = 0 dB to 21 dB, carrier offset = 10 MHz                               |     | -148                   |                        | dBc/Hz |
|                                                  | Attenuator setting = 21 dB to 47 dB, carrier offset = 10 MHz                              |     | -170                   |                        | dBm/Hz |
| Baseband Harmonics                               | Attendator setting = 21 db to 47 db, carner onset = 10 Will2                              |     | -55                    |                        | dBc    |
| Synthesizer Spurs                                | Integer boundary < loop bandwidth                                                         |     | -55<br>-55             |                        | dBc    |
| synthesizer spurs                                | >10 MHz offset from carrier                                                               |     | -55<br>-64             |                        | dBc    |
| Phase Noise                                      | 100 Hz offset                                                                             |     | -6 <del>4</del><br>-85 |                        | dBc/Hz |
| Phase Noise                                      |                                                                                           |     |                        |                        |        |
|                                                  | 1 kHz offset                                                                              |     | -96                    |                        | dBc/Hz |
|                                                  | 10 kHz offset                                                                             |     | -100                   |                        | dBc/Hz |
|                                                  | 100 kHz offset                                                                            |     | -107                   |                        | dBc/Hz |
|                                                  | 1 MHz offset                                                                              |     | -132                   |                        | dBc/Hz |
|                                                  | 10 MHz offset                                                                             |     | -152                   |                        | dBc/Hz |
| Integrated Phase Noise                           | 1 kHz to 8 MHz integration bandwidth                                                      |     | 0.25                   |                        | ° rms  |
| REFERENCE CHARACTERISTICS                        | REFIN pin                                                                                 |     |                        |                        |        |
| Input Frequency                                  | With reference divide-by-2 enabled                                                        | 10  |                        | 300                    | MHz    |
|                                                  | With reference divide-by-2 disabled                                                       | 10  |                        | 165                    | MHz    |
|                                                  | With reference doubler enabled                                                            | 10  |                        | 80                     | MHz    |
| Input Sensitivity                                | AC-coupled                                                                                | 0.4 |                        | VREG                   | V p-p  |
| Input Capacitance                                |                                                                                           |     |                        | 10                     | pF     |
| Input Current                                    |                                                                                           |     |                        | ±100                   | μΑ     |
| CHARGE PUMP                                      |                                                                                           |     |                        |                        |        |
| I <sub>CP</sub> Sink/Source                      | Programmable, RSET = 4.7 kΩ                                                               |     |                        |                        |        |
| High Value                                       |                                                                                           |     | 5                      |                        | mA     |
| Low Value                                        |                                                                                           |     | 312.5                  |                        | μΑ     |
| Absolute Accuracy                                |                                                                                           |     | 4.0                    |                        | %      |
| VCO                                              |                                                                                           |     |                        |                        |        |
| Gain                                             | Кусо                                                                                      |     | 25                     |                        | MHz/V  |
| SYNTHESIZER                                      | LO = 100 MHz to 2400 MHz                                                                  |     |                        |                        |        |
| Frequency Resolution                             |                                                                                           |     |                        | 1                      | Hz     |
| Frequency Settling                               | Any step size, maximum frequency error = 100 Hz                                           |     | 0.17                   |                        | ms     |
| Maximum Frequency Step for<br>No Autocalibration | Frequency step with no autocalibration routine;<br>Register CR24, Bit 0 = 1               |     |                        | 100/2 <sup>RFDIV</sup> | kHz    |
| Phase Detector Frequency                         |                                                                                           | 10  |                        | 40                     | MHz    |

| Parameter                                         |                                                                                                                                                              |      | Тур        | Max  | Unit   |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|------|--------|
| GAIN CONTROL                                      |                                                                                                                                                              |      |            |      |        |
| Gain Range                                        |                                                                                                                                                              |      | 47         |      | dB     |
| Step Size                                         |                                                                                                                                                              |      | 1          |      | dB     |
| Relative Step Accuracy                            | Fixed frequency, adjacent steps, all attenuation steps, LO > 300 MHz <sup>2</sup>                                                                            |      | ±0.3       |      | dB     |
|                                                   | Over full frequency range, adjacent steps, all attenuation steps, LO > 300 MHz <sup>3</sup>                                                                  |      | ±1.5       |      | dB     |
| Absolute Step Accuracy <sup>4</sup>               | 47 dB attenuation step, LO > 300 MHz <sup>5</sup>                                                                                                            |      | -2.0       |      | dB     |
| Output Settling Time                              | Any step; output power settled to $\pm 0.2$ dB                                                                                                               |      | 15         |      | μs     |
| OUTPUT DISABLE                                    | TXDIS pin                                                                                                                                                    |      |            |      |        |
| Off Isolation                                     | RFOUT, attenuator setting = 0 dB to 47 dB, TXDIS high                                                                                                        |      | -100       |      | dBm    |
|                                                   | LO, attenuator setting = 0 dB to 47 dB, TXDIS high                                                                                                           |      | <b>-75</b> |      | dBm    |
|                                                   | 2× LO, attenuator setting = 0 dB to 47 dB, TXDIS high                                                                                                        |      | -50        |      | dBm    |
| Turn-On Settling Time                             | TXDIS high to low: output power to 90% of envelope                                                                                                           |      | 180        |      | ns     |
| _                                                 | Frequency settling to 100 Hz                                                                                                                                 |      | 20         |      | μs     |
| Turn-Off Settling Time                            | TXDIS low to high (to –55 dBm)                                                                                                                               |      | 350        |      | ns     |
| MONITOR OUTPUT                                    | LOMON, LOMON pins                                                                                                                                            |      |            |      |        |
| Nominal Output Power                              |                                                                                                                                                              |      | -24        |      | dBm    |
| BASEBAND INPUTS                                   | IBB, IBB, QBB, QBB pins                                                                                                                                      |      |            |      |        |
| I and Q Input Bias Level                          | 100,100, 200, 200 p.m.s                                                                                                                                      |      | 500        |      | mV     |
| 3 dB Bandwidth                                    |                                                                                                                                                              |      | 600        |      | MHz    |
| LOGIC INPUTS                                      |                                                                                                                                                              |      |            |      | 171112 |
| Input High Voltage, V <sub>INH</sub>              | CS, TXDIS pins                                                                                                                                               | 1.4  |            |      | V      |
| Input Low Voltage, V <sub>INL</sub>               | CS, TXDIS pins                                                                                                                                               | 1    |            | 0.6  | v      |
| Input High Voltage, V <sub>INH</sub>              | SDI/SDA, CLK/SCL pins                                                                                                                                        | 2.1  |            | 0.0  | v      |
| Input Low Voltage, VINL                           | SDI/SDA, CLK/SCL pins                                                                                                                                        | 2.1  |            | 1.1  | v      |
| Input Current, I <sub>INH</sub> /I <sub>INL</sub> | CS, TXDIS, SDI/SDA, CLK/SCL pins                                                                                                                             |      |            | ±1   | μA     |
| Input Capacitance, C <sub>IN</sub>                | CS, TXDIS, SDI/SDA, CLK/SCL pins                                                                                                                             |      |            | 10   | pF     |
| LOGIC OUTPUTS                                     | CS, TADIS, SDI, SDIY, CERVICE PINS                                                                                                                           |      |            | 10   | Pi     |
| Output High Voltage, V <sub>OH</sub>              | SDO, LDET pins; l <sub>OH</sub> = 500 μA                                                                                                                     | 2.8  |            |      | V      |
| Output Low Voltage, Vol                           | SDO, LDET pins; $I_{OL} = 500  \mu\text{A}$                                                                                                                  | 2.0  |            | 0.4  | V      |
| output Low Voltage, Vol                           | SDA (SDI/SDA); I <sub>OL</sub> = 3 mA                                                                                                                        |      |            | 0.4  | v      |
| POWER SUPPLIES                                    | VCC1, VCC2, VCC3, VCC4, VREG1, VREG2, VREG3, VREG4, VREG5, VREG6, and REGOUT pins; REGOUT normally connected to VREG1, VREG2, VREG3, VREG4, VREG5, and VREG6 |      |            |      |        |
| Voltage Range                                     | VCC1, VCC2, VCC3, and VCC4                                                                                                                                   | 4.75 | 5          | 5.25 | V      |
| 3 3.                                              | REGOUT, VREG1, VREG2, VREG3, VREG4, VREG5, and VREG6                                                                                                         |      | 3.3        |      | V      |
| Supply Current                                    | VCC1, VCC2, VCC3, and VCC4 combined; REGOUT connected to VREG1, VREG2, VREG3, VREG4, VREG5, and VREG6                                                        |      | 380        | 420  | mA     |
| Power-Down Current                                | CR29[0] = 0, power down modulator,                                                                                                                           |      | 7          |      | mA     |
|                                                   | CR12[2] = 1, power down PLL,                                                                                                                                 |      |            |      |        |
|                                                   | CR28[4] = 1, power down RFDIVIDER,                                                                                                                           |      |            |      |        |
|                                                   | CR27[2] = 0, power down LOMON                                                                                                                                |      |            |      |        |
| Operating Temperature                             |                                                                                                                                                              | -40  |            | +85  | °C     |

LO carrier feedthrough is expressed in dBc relative to the RF output power changing as the attenuator is stepped. LO carrier feedthrough is constant as the RF output is altered due to a change in the I/Q input amplitude.
 For relative step accuracy at LO < 300 MHz, refer to Figure 37.</li>
 For relative step accuracy over frequency range at LO < 300 MHz, refer to Figure 39.</li>
 All other attenuation steps have an absolute error of <±2.0 dB.</li>
 For absolute step accuracy at LO < 300 MHz, refer to Figure 40.</li>

# **TIMING CHARACTERISTICS**

# I<sup>2</sup>C Interface Timing

Table 2.

| Parameter <sup>1</sup>      | Symbol              | Limit | Unit    |
|-----------------------------|---------------------|-------|---------|
| SCL Clock Frequency         | f <sub>SCL</sub>    | 400   | kHz max |
| SCL Pulse Width High        | t <sub>HIGH</sub>   | 600   | ns min  |
| SCL Pulse Width Low         | t <sub>LOW</sub>    | 1300  | ns min  |
| Start Condition Hold Time   | t <sub>HD;STA</sub> | 600   | ns min  |
| Start Condition Setup Time  | t <sub>SU;STA</sub> | 600   | ns min  |
| Data Setup Time             | t <sub>SU;DAT</sub> | 100   | ns min  |
| Data Hold Time              | t <sub>HD;DAT</sub> | 300   | ns min  |
| Stop Condition Setup Time   | t <sub>su;sto</sub> | 600   | ns min  |
| Data Valid Time             | t <sub>VD;DAT</sub> | 900   | ns max  |
| Data Valid Acknowledge Time | t <sub>VD;ACK</sub> | 900   | ns max  |
| Bus Free Time               | t <sub>BUF</sub>    | 1300  | ns min  |

<sup>&</sup>lt;sup>1</sup> See Figure 2.



Figure 2. I<sup>2</sup>C Port Timing Diagram

# SPI Interface Timing

Table 3.

| Parameter <sup>1</sup>    | Symbol                | Limit | Unit    |
|---------------------------|-----------------------|-------|---------|
| CLK Frequency             | f <sub>CLK</sub>      | 20    | MHz max |
| CLK Pulse Width High      | t <sub>1</sub>        | 15    | ns min  |
| CLK Pulse Width Low       | t <sub>2</sub>        | 15    | ns min  |
| Start Condition Hold Time | t <sub>3</sub>        | 5     | ns min  |
| Data Setup Time           | t <sub>4</sub>        | 10    | ns min  |
| Data Hold Time            | <b>t</b> <sub>5</sub> | 5     | ns min  |
| Stop Condition Setup Time | <b>t</b> <sub>6</sub> | 5     | ns min  |
| SDO Access Time           | <b>t</b> <sub>7</sub> | 15    | ns min  |
| CS to SDO High Impedance  | t <sub>8</sub>        | 25    | ns max  |

<sup>&</sup>lt;sup>1</sup> See Figure 3.



Figure 3. SPI Port Timing Diagram

# **ABSOLUTE MAXIMUM RATINGS**

#### Table 4.

| Parameter                                                   | Rating            |
|-------------------------------------------------------------|-------------------|
| VCC1, VCC2, VCC3, and VCC4 Supply Voltage                   | −0.3 V to +6 V    |
| VREG1, VREG2, VREG3, VREG4, VREG5, and VREG6 Supply Voltage | -0.3 V to +4 V    |
| IBB, IBB, QBB, and QBB                                      | 0 V to 2.5 V      |
| Digital I/O                                                 | -0.3  V to  +4  V |
| Analog I/O (Other Than IBB, IBB, QBB, and QBB)              | -0.3 V to +4 V    |
| Maximum Junction Temperature                                | 125°C             |
| Storage Temperature Range                                   | −65°C to +150°C   |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 4. Pin Configuration

**Table 5. Pin Function Descriptions** 

| Pin No.                                                               | Mnemonic            | Description                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11, 55, 56, 41, 42, 1                                                 | VCC1 to VCC4        | Positive Power Supplies for I/Q Modulator. Apply a 5 V power supply to VCC1, which should be decoupled with power supply decoupling capacitors. Connect VCC2, VCC3, and VCC4 to the same 5 V power supply.                                                                                           |
| 12                                                                    | REGOUT              | 3.3 V Output Supply. Drives VREG1, VREG2, VREG3, VREG4, VREG5, and VREG6.                                                                                                                                                                                                                            |
| 13, 14, 15, 16, 31,<br>36                                             | VREG1 to<br>VREG6   | Positive Power Supplies for PLL Synthesizer, VCO, and Serial Port. Connect these pins to REGOUT (3.3 V) and decouple them separately.                                                                                                                                                                |
| 6, 19, 20, 21, 22, 23, 24, 37, 39, 40, 46, 47, 49, 50, 51, 52, 53, 54 | AGND                | Analog Ground. Connect to a low impedance ground plane.                                                                                                                                                                                                                                              |
| 32                                                                    | DGND                | Digital Ground. Connect to the same low impedance ground plane as the AGND pins.                                                                                                                                                                                                                     |
| 2, 3                                                                  | IBB, IBB            | Differential In-Phase Baseband Inputs. These high impedance inputs must be dc biased to approximately 500 mV dc and should be driven from a low impedance source. Nominal characterized ac signal swing is 450 mV p-p on each pin. These inputs are not self-biased and must be externally biased.   |
| 4, 5                                                                  | QBB, QBB            | Differential Quadrature Baseband Inputs. These high impedance inputs must be dc-biased to approximately 500 mV dc and should be driven from a low impedance source. Nominal characterized ac signal swing is 450 mV p-p on each pin. These inputs are not self-biased and must be externally biased. |
| 33, 34, 35                                                            | CCOMP1 to<br>CCOMP3 | Internal Compensation Nodes. These pins must be decoupled to ground with a 100 nF capacitor.                                                                                                                                                                                                         |
| 38                                                                    | VTUNE               | Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CP output voltage.                                                                                                                                                                          |
| 7                                                                     | RSET                | Charge Pump Current Set. Connecting a resistor between this pin and ground sets the maximum charge pump output current. The relationship between I <sub>CP</sub> and R <sub>SET</sub> is as follows:                                                                                                 |
|                                                                       |                     | $I_{CPmax} = \frac{23.5}{R_{SET}}$                                                                                                                                                                                                                                                                   |
|                                                                       |                     | where $R_{SET} = 4.7 \text{ k}\Omega$ and $I_{CP max} = 5 \text{ mA}$ .                                                                                                                                                                                                                              |
| 9                                                                     | СР                  | Charge Pump Output. When enabled, this output provides $\pm l_{CP}$ to the external loop filter, which, in turn, drives the internal VCO.                                                                                                                                                            |
| 27                                                                    | CS                  | Chip Select, CMOS Input. When CS is high, the data stored in the shift registers is loaded into one of 31 latches. In I <sup>2</sup> C mode, when CS is high, the slave address of the device is 0x60, and, when CS is low, the slave address is 0x40.                                               |

| Pin No.               | Mnemonic        | Description                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29                    | SDI/SDA         | Serial Data Input for SPI Port/Serial Data Input/Output for I <sup>2</sup> C Port. In SPI mode, this pin is a high impedance CMOS data input, and data is loaded in an 8-bit word. In I <sup>2</sup> C mode, this pin is a bidirectional port.                                                                                                                                                                 |
| 30                    | CLK/SCL         | Serial Clock Input for SPI/I <sup>2</sup> C Port. This serial clock is used to clock in the serial data to the registers. This input is a high impedance CMOS input.                                                                                                                                                                                                                                           |
| 28                    | SDO             | Serial Data Output for SPI Port. Register states can be read back on the SDO data output line.                                                                                                                                                                                                                                                                                                                 |
| 17                    | REFIN           | Reference Input. This high impedance CMOS input should be ac-coupled.                                                                                                                                                                                                                                                                                                                                          |
| 18                    | REFIN           | Reference Input Bar. This pin should be either grounded or ac-coupled to ground.                                                                                                                                                                                                                                                                                                                               |
| 48                    | RFOUT           | RF Output. Single-ended, $50 \Omega$ , internally biased RF output. This pin must be ac-coupled to the load.                                                                                                                                                                                                                                                                                                   |
| 45                    | TXDIS           | Output Disable. This pin can be used to disable the RF output. Connect to a high logic level to disable the output. Connect to a low logic level for normal operation.                                                                                                                                                                                                                                         |
| 25, 26                | LOMON,<br>LOMON | Differential Monitor Outputs. These pins provide a replica of the internal local oscillator frequency $(1 \times LO)$ at four different power levels: $-6$ dBm, $-12$ dBm, $-18$ dBm, and $-24$ dBm, approximately. These open-collector outputs must be terminated with external resistors to REGOUT. These outputs can be disabled through serial port programming and should be tied to REGOUT if not used. |
| 8, 10                 | NC              | No Connect. Do not connect to these pins.                                                                                                                                                                                                                                                                                                                                                                      |
| 44                    | LDET            | Lock Detect. This output pin indicates the state of the PLL: a high level indicates a locked condition, whereas a low level indicates a loss of lock condition.                                                                                                                                                                                                                                                |
| 43                    | MUXOUT          | Mux Output. This pin is a test output for diagnostic use only. Do not connect to this pin.                                                                                                                                                                                                                                                                                                                     |
| <b>Exposed Paddle</b> | EP              | Exposed Paddle. Connect to ground plane via a low impedance path.                                                                                                                                                                                                                                                                                                                                              |

# TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{\rm CC}$  = 5 V  $\pm$  5%, operating temperature range = -40°C to +85°C, I/Q inputs = 0.9 V p-p differential sine waves in quadrature on a 500 mV dc bias, REFIN = 80 MHz, PFD = 40 MHz, baseband frequency = 1 MHz, LOMON is off, loop bandwidth (LBW) = 100 kHz, I\_{CP} = 5 mA, unless otherwise noted. A nominal condition is defined as 25°C, 5.00 V, and an LO frequency of 1800 MHz. A worst-case condition is defined as having the worst-case temperature, supply voltage, and LO frequency.



Figure 5. Output Power vs. LO Frequency, Supply, and Temperature



Figure 6. Output Power Distribution at Nominal and Worst-Case Conditions



Figure 7. Sideband Suppression vs. LO Frequency, Supply, and Temperature



Figure 8. Sideband Suppression Distribution at Nominal and Worst-Case Conditions



Figure 9. LO Carrier Feedthrough vs. LO Frequency, Attenuation, Supply, and Temperature



Figure 10. LO Carrier Feedthrough Distribution at Nominal and Worst-Case Conditions and Attenuation Setting



Figure 11. 2× LO Carrier Feedthrough vs. LO Frequency, Attenuation, Supply, and Temperature



Figure 12. Output P1dB Compression Point at Worst-Case LO Frequency vs. Supply and Temperature



Figure 13. Output P1dB Compression Point vs. LO Frequency at Nominal Conditions



Figure 14. Output P1dB Compression Point Distribution at Nominal and Worst-Case Conditions



Figure 15. Output IP3 vs. LO Frequency at Nominal Conditions



Figure 16. Output IP3 Distribution at Nominal and Worst-Case Conditions



Figure 17. LO Off Isolation vs. LO Frequency, Attenuation, Supply, and Temperature



Figure 18.2 × LO Off Isolation vs. LO Frequency, Attenuation, Supply, and Temperature



Figure 19. Second-Order and Third-Order Harmonic Distortion vs. LO Frequency, Supply, and Temperature



Figure 20. Noise Floor at 0 dB Attenuation vs. Output Power at Nominal Conditions



Figure 21. Noise Floor at 10 MHz Offset Frequency Distribution at Worst-Case Conditions and Different Attenuation Settings



Figure 22. Normalized I and Q Input Bandwidth



Figure 23. Output Return Loss at Different Attenuation Settings vs. Output Frequency, Supply, and Temperature



Figure 24. RF Output Spectral Plot over a 10 MHz Span



Figure 25. RF Output Spectral Plot over a 100 MHz Span



Figure 26. RF Output Spectral Plot over a Wide Span



Figure 27. Phase Noise Performance vs. LO Frequency, Nominal Conditions



Figure 28. Phase Noise Performance vs. LO Frequency, Supply, and Temperature



Figure 29. Phase Noise Performance Distribution at Worst-Case Conditions



Figure 30. Integrated Phase Noise over an Integration Bandwidth of 1 kHz to 8 MHz vs. LO Frequency at Nominal Conditions



Figure 31. Integrated Phase Noise Distribution over an Integration Bandwidth of 1 kHz to 8 MHz at 1875 MHz and 2310 MHz



Figure 32. Phase Noise Performance vs. LO Frequency, Nominal Conditions with Narrow Loop Bandwidth



Figure 33. Integer Boundary Spur Performance vs. LO Frequency, Supply, and Temperature



Figure 34. Spurs > 10 MHz from Carrier vs. LO Frequency, Supply, and Temperature



Figure 35. PLL Frequency Settling Time at Worst-Case LO Frequency with Lock Detect Shown



Figure 36. Attenuator Gain vs. LO Frequency by Gain Code, All Attenuator Code Steps



Figure 37. Attenuator Relative Step Accuracy over all Attenuation Steps vs. LO Frequency, Nominal Conditions



Figure 38. Attenuator Relative Step Accuracy Distribution at Nominal and Worst-Case Conditions, LO > 300 MHz, All Attenuation Steps



Figure 39. Attenuator Relative Step Accuracy Across Full Output Frequency Range Distribution at Nominal and Worst-Case Conditions, LO > 300 MHz, All Attenuation Steps



Figure 40. Attenuator Absolute Step Accuracy over all Attenuation Steps vs. LO Frequency, Nominal Conditions



Figure 41. Attenuator Absolute Step Accuracy Distribution at Nominal and Worst-Case Conditions, LO > 300 MHz, All Attenuation Steps



Figure 42. Gain Flatness in any 40 MHz for all Attenuation Steps vs. LO Frequency at Nominal Conditions



Figure 43. Attenuator Setting Time to 0.2 dB for Small Steps (1 dB to 6 dB) at Nominal Conditions



Figure 44. Attenuator Settling Time to 0.5 dB for Small Steps (1 dB to 6 dB) at Nominal Conditions



Figure 45. Attenuator Settling Time to 0.2 dB for Large Steps (7 dB to 47 dB) at Nominal Conditions



Figure 46. Attenuator Settling Time to 0.5 dB for Large Steps (7 dB to 47 dB) at Nominal Conditions



Figure 47. Attenuator Settling Time to 0.2 dB and 0.5 dB Distribution at Nominal and Worst-Case Conditions for Typical Small Step



Figure 48. Attenuator Settling Time to 0.2 dB and 0.5 dB Distribution at Nominal and Worst-Case Conditions for Worst-Case Small Step (36 dB to 42 dB)



Figure 49. Attenuator Settling Time to 0.2 dB and 0.5 dB Distribution at Nominal and Worst-Case Conditions for Typical Large Step



Figure 50. Attenuator Settling Time to 0.2 dB and 0.5 dB Distribution at Nominal and Worst-Case Conditions for Worst-Case Large Step (47 dB to 0 dB)



Figure 51. TXDIS Settling Time at Worst-Case Supply and Temperature

# THEORY OF OPERATION

## **OVERVIEW**

The ADRF6755 device can be divided into the following basic building blocks:

- PLL synthesizer and VCO
- Quadrature modulator
- Attenuator
- Voltage regulator
- I<sup>2</sup>C/SPI interface

Each of these building blocks is described in detail in the sections that follow.

## PLL SYNTHESIZER AND VCO

#### Overview

The phase-locked loop (PLL) consists of a fractional-N frequency synthesizer with a 25-bit fixed modulus, allowing a frequency resolution of less than 1 Hz over the entire frequency range. It also has an integrated voltage-controlled oscillator (VCO) with a fundamental output frequency ranging from 2310 MHz to 4800 MHz. An RF divider, controlled by Register CR28, Bits[2:0], extends the lower limit of the local oscillator (LO) frequency range to 100 MHz. See Table 6 for more details on Register CR28.

#### Reference Input Section

The reference input stage is shown Figure 52. SW1 and SW2 are normally closed switches. SW3 is normally open. When powerdown is initiated, SW3 is closed, and SW1 and SW2 are open. This ensures that there is no loading of the REFIN pin at power-down.



Figure 52. Reference Input Stage

#### Reference Input Path

The on-chip reference frequency doubler allows the input reference signal to be doubled. This is useful for increasing the PFD comparison frequency. Making the PFD frequency higher improves the noise performance of the system. Doubling the PFD frequency usually improves the in-band phase noise performance by up to 3 dBc/Hz.

The 5-bit R-divider allows the input reference frequency ( $REF_{IN}$ ) to be divided down to produce the reference clock to the PFD. Division ratios from 1 to 32 are allowed.

An additional divide-by-2 (÷2) function in the reference input path allows for a greater division range.



Figure 53. Reference Input Path

The PFD frequency equation is

$$f_{PFD} = f_{REFIN} \times \left[ (1+D)/(R \times (1+T)) \right] \tag{1}$$

where:

 $f_{REFIN}$  is the reference input frequency.

*D* is the doubler bit.

*R* is the programmed divide ratio of the binary 5-bit programmable reference divider (1 to 32).

*T* is the R/2 divider setting bit (CR10[6] = 0 or 1).

If no division is required, it is recommended that the 5-bit R-divider and the divide-by-2 be disabled by setting CR5[4] = 0. If an even numbered division is required, enable the divide-by-2 by setting CR5[4] = 1 and CR10[6] = 1 and implement the remainder of the division in the 5-bit R-divider. If an odd number division is required, set CR5[4] = 1 and implement all of the division in the 5-bit R-divider.

#### RF Fractional-N Divider

The RF fractional-N divider allows a division ratio in the PLL feedback path that can range from 23 to 4095. The relationship between the fractional-N divider and the LO frequency is described in the INT and FRAC Relationship section.

## INT and FRAC Relationship

The integer (INT) and fractional (FRAC) values make it possible to generate output frequencies that are spaced by fractions of the phase frequency detector (PFD) frequency. See the Example—Changing the LO Frequency section for more information.

The LO frequency equation is

$$LO = f_{PFD} \times (INT + (FRAC/2^{25}))/2^{RFDIV}$$
 (2)

where:

*LO* is the local oscillator frequency.

 $f_{PFD}$  is the PFD frequency.

*INT* is the integer component of the required division factor and is controlled by the CR6 and CR7 registers.

FRAC is the fractional component of the required division factor and is controlled by the CR0 to CR3 registers. RFDIV is set in Register CR28, Bits[2:0], and controls the setting of the divider at the output of the PLL.



Figure 54. RF Fractional-N Divider

## Phase Frequency Detector (PFD) and Charge Pump

The PFD takes inputs from the R-divider and the N-counter and produces an output proportional to the phase and frequency difference between them (see Figure 55 for a simplified schematic). The PFD includes a fixed delay element that sets the width of the antibacklash pulse, ensuring that there is no dead zone in the PFD transfer function.



Figure 55. PFD Simplified Schematic

#### Lock Detect (LDET)

LDET (Pin 44) signals when the PLL has achieved lock to an error frequency of less than 100 Hz. On a write to Register CR0, a new PLL acquisition cycle starts, and the LDET signal goes low. When lock has been achieved, this signal returns high.

## **Voltage-Controlled Oscillator (VCO)**

The VCO core in the ADRF6755 consists of three separate VCOs, each with 16 overlapping bands. This configuration of 48 bands allows the VCO frequency range to extend from 2310 MHz to 4800 MHz. The three VCOs are divided by a programmable divider, RFDIV, controlled by Register CR28, Bits[2:0]. This divider provides divisions of 1, 2, 4, 8, and 16 to ensure that the frequency range is extended from 144.375 MHz (2310 MHz/16) to 4800 MHz (4800 MHz/1). A divide-by-2 quadrature circuit in the path to the modulator then provides the full LO frequency range from 100 MHz to 2400 MHz.

Figure 56 shows a sweep of  $V_{\text{TUNE}}$  vs. LO frequency demonstrating the three VCOs overlapping and the multiple overlapping bands within each VCO at the LO frequency range of 100 MHz to 2400 MHz. Note that Figure 56 includes the RFDIV being incorporated to provide further divisions of the fundamental VCO frequency; thus, each VCO is used on multiple different occasions throughout the full LO frequency range. The choice of three 16-band VCOs and an RFDIV allows the wide frequency range to be covered without large VCO sensitivity ( $K_{\text{VCO}}$ ) or resultant poor phase noise and spurious performance.



Figure 56. V<sub>TUNE</sub> vs. LO Frequency

The VCO displays a variation of  $K_{\text{VCO}}$  as  $V_{\text{TUNE}}$  varies within the band and from band to band. Figure 57 shows how  $K_{\text{VCO}}$  varies across the full frequency range. Figure 57 is useful when calculating the loop filter bandwidth and individual loop filter components using ADISimPLL\*. ADISimPLL is an Analog Devices, Inc., simulator that aids in PLL design, particularly with respect to the loop filter. It reports parameters such as phase noise, integrated phase noise, and acquisition time for a particular set of input conditions. ADISimPLL can be downloaded from www.analog.com/adisimpll.



Figure 57. K<sub>VCO</sub> vs. LO Frequency

## **Autocalibration**

The correct VCO and band are chosen automatically by the VCO and band select circuitry when Register CR0 is updated. This is referred to as autocalibration. The autocalibration time is set by Register CR25.

Autocalibration 
$$Time = (BSCDIV \times 28)/PFD$$
 (3)

where

BSCDIV = Register CR25, Bits[7:0].

*PFD* = PFD frequency.

For a PFD frequency of 40 MHz, set BSCDIV = 100 to set an autocalibration time of 70  $\mu$ s.

Note that BSCDIV must be recalculated if the PFD frequency is changed. The recommended autocalibration setting is 70  $\mu$ s. During this time, the VCO  $V_{TUNE}$  is disconnected from the output of the loop filter and is connected to an internal reference voltage. A typical frequency acquisition is shown in Figure 58.



Figure 58. PLL Acquisition

After autocalibration, normal PLL action resumes, and the correct frequency is acquired to within a frequency error of 100 Hz in 170  $\mu$ s typically. For a maximum cumulative step of 100 kHz/2<sup>RFDIV</sup>, autocalibration can be turned off by setting Register CR24, Bit 0 = 1. This enables cumulative PLL acquisitions of  $\leq$ 100 kHz (for RFDIV =  $\div$ 1, 50 kHz for RFDIV =  $\div$ 2, and so on) to occur without the autocalibration procedure, which improves acquisition times significantly (see Figure 59).



Figure 59. PLL Acquisition Without Autocalibration for a 100 kHz Step

## **Programming the Correct LO Frequency**

There are two steps to programming the correct LO frequency. The user must calculate the RFDIV value based on the required LO frequency and PFD frequency, and the N-divider ratio that is required in the PLL.

 Calculate the value of RFDIV, which is used to program Register CR28, Bits[2:0] and CR27, Bit 4 from the following lookup table, Table 6.

Table 6. RFDIV Lookup Table

| LO Frequency (MHz)        | RFDIVIDER    | CR28[2:0]<br>= RFDIV | CR27[4] |
|---------------------------|--------------|----------------------|---------|
| 1155 < LO < 2400          | Divide-by-1  | 000                  | 1       |
| 577.5 < LO ≤ 1155         | Divide-by-2  | 001                  | 0       |
| 288.75 < LO ≤ 577.5       | Divide-by-4  | 010                  | 0       |
| $144.375 < LO \le 288.75$ | Divide-by-8  | 011                  | 0       |
| 100 < LO ≤ 144.375        | Divide-by-16 | 100                  | 0       |

Using the following equation, calculate the value of the N-divider:

$$N = (2^{RFDIV} \times LO)/f_{PFD} \tag{4}$$

where:

*N* is the N-divider value.

RFDIV is the setting in Register CR28, Bits[2:0].

LO is the local oscillator frequency.

 $f_{PFD}$  is the PFD frequency.

This equation is a different representation of Equation 2.

#### **Example to Program the Correct LO Frequency**

Assume that the PFD frequency is 40 MHz and that the required LO frequency is 1875 MHz.

From Table 6,  $2^{RFDIV} = 1$  (RFDIV = 0)

$$N = (1 \times 1875 \times 10^6)/(40 \times 10^6) = 46.875$$

The N-divider value is composed of integer (INT) and fractional (FRAC) components according to the following equation:

$$N = INT + FRAC/2^{25} \tag{5}$$

INT = 46 and FRAC = 29,360,128

The appropriate registers must then be programmed according to the register map. The order in which the registers are programmed is important. Writing to CR0 initiates a PLL acquisition cycle. If the programmed LO frequency requires a change in the value of CR27[4] (see Table 6), CR27 should be the last register programmed, preceded by CR0. If the programmed LO frequency does not require a change in the value of CR27[4], it is optional to omit the write to CR27 and, in that case, CR0 should be the last register programmed.

#### **OUADRATURE MODULATOR**

#### Overview

A basic block diagram of the ADRF6755 quadrature modulator circuit is shown in Figure 60. The VCO/RFDIVIDER generates a signal at the 2× LO frequency, which is then divided down to give a signal at the LO frequency. This signal is then split into in-phase and quadrature components to provide the LO signals that drive the mixers.



Figure 60. Block Diagram of the Quadrature Modulator

The I and Q baseband input signals are converted to currents by the V-to-I stages, which then drive the two mixers. The outputs of these mixers combine to feed the single-ended output. This single-ended output is then fed to the attenuator and, finally, to the external RFOUT signal pin.

#### **Baseband Inputs**

The baseband inputs, QBB, QBB, IBB, and IBB, must be driven from a differential source. The nominal drive level of 0.9 V p-p differential (450 mV p-p on each pin) should be biased to a common-mode level of 500 mV dc.

To set the dc bias level at the baseband inputs, refer to Figure 61. The average output current on each of the AD9779 outputs is 10 mA. A current of 10 mA flowing through each of the 50  $\Omega$  resistors to ground produces the desired dc bias of 500 mV at each of the baseband inputs.



Figure 61. Establishing DC Bias Level on Baseband Inputs

The differential baseband inputs (QBB,  $\overline{QBB}$ ,  $\overline{IBB}$ , and IBB) consist of the bases of PNP transistors, which present a high impedance of about 30 k $\Omega$  in parallel with approximately 2 pF of capacitance. The impedance is approximately 30 k $\Omega$  below 1 MHz and starts to roll off at higher frequency. A 100  $\Omega$ 

differential termination is recommended at the baseband inputs, and this dominates the input impedance as seen by the input baseband signal. This ensures that the input impedance, as seen by the input circuit, remains flat across the baseband bandwidth. See Figure 62 for a typical configuration.



Figure 62. Typical Baseband Input Configuration

The swing of the AD9779 output currents ranges from 0 mA to 20 mA. The ac voltage swing is 1 V p-p single-ended or 2 V p-p differential with the 50  $\Omega$  resistors in place. The 100  $\Omega$  differential termination resistors at the baseband inputs have the effect of limiting this swing without changing the dc bias condition of 500 mV. The low-pass filter is used to filter the DAC outputs and remove images when driving a modulator.

Another consideration is that the baseband inputs actually source a current of 240  $\mu A$  out of each of the four inputs. This current must be taken into account when setting up the dc bias of 500 mV. In the initial example based on Figure 61, an error of 12 mV occurs due to the 240  $\mu A$  current flowing through the 50  $\Omega$  resistor. Analog Devices recommends that the accuracy of the dc bias should be 500 mV  $\pm$  25 mV. It is also important that this 240  $\mu A$  current have a dc path to ground.

#### **Optimization**

The carrier feedthrough and the sideband suppression performance of the ADRF6755 can be improved over the specifications in Table 1 by using the following optimization techniques.

#### Carrier Feedthrough Nulling

Carrier feedthrough results from dc offsets that occur between the P and N inputs of each of the differential baseband inputs. Normally these inputs are set to a dc bias of approximately 500 mV.

However, if a dc offset is introduced between the P and N inputs of either or both I and Q inputs, the carrier feedthrough is affected in either a positive or a negative fashion. Note that the dc bias level remains at 500 mV (average P and N level). The I channel offset is often held constant while the Q channel offset is varied until a minimum carrier feedthrough level is obtained. Then, while retaining the new Q channel offset, the I channel offset is adjusted until a new minimum is reached. This is usually performed at a single frequency and, thus, is not optimized over the complete frequency range. Multiple optimizations at different