

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG SPI/I²C Compatible, Temperature Sensor, **DEVICES** 4-Channel ADC and Quad Voltage Output DAC

ADT7518

FEATURES

Four 8-bit DACs Buffered voltage output Guaranteed monotonic by design over all codes 10-bit temperature-to-digital converter 10-bit 4-channel ADC DC input bandwidth Input range: 0 V to 2.25 V

Temperature range: -40°C to +120°C Temperature sensor accuracy of typ: ±0.5°C

Supply range: 2.7 V to 5.5 V DAC output range: 0 V to 2 VREF Power-down current: 1 µA Internal 2.25 VREF option **Double-buffered input logic Buffered reference input** Power-on reset to 0 V DAC output Simultaneous update of outputs (LDAC function) On-chip rail-to-rail output buffer amplifier SPI°, I²C°, QSPI™, MICROWIRE™, and DSP-compatible 4-wire serial interface SMBus packet error checking (PEC)-compatible 16-lead QSOP package

GENERAL DESCRIPTION

The ADT7518 combines a 10-bit temperature-to-digital converter, a 10-bit 4-channel ADC, and a quad 8-bit DAC, in a 16-lead QSOP package. The part also includes a band gap temperature sensor and a 10-bit ADC to monitor and digitize the temperature reading to a resolution of 0.25°C.

The ADT7518 operates from a single 2.7 V to 5.5 V supply. The input voltage range on the ADC channels is 0 V to 2.25 V, and the input bandwidth is dc. The reference for the ADC channels is derived internally. The output voltage of the DAC ranges from 0 V to $V_{\rm DD}$, with an output voltage settling time of 7 ms typical.

The ADT7518 provides two serial interface options: a 4-wire serial interface that is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards, and a 2-wire SMBus/I²C interface. It features a standby mode that is controlled through the serial interface.

APPLICATIONS

Portable battery-powered instruments **Personal computers Smart battery chargers Telecommunications systems Electronic text equipment Domestic appliances Process control**

PIN CONFIGURATION

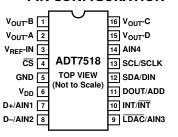


Figure 1.

The reference for the four DACs is derived either internally or from a reference pin. The outputs of all DACs may be updated simultaneously using the software LDAC function or the external LDAC pin. The ADT7518 incorporates a power-on reset circuit, which ensures that the DAC output powers up to 0 V and remains there until a valid write takes place.

The ADT7518's wide supply voltage range, low supply current, and SPI-/I2C-compatible interface make it ideal for a variety of applications, including personal computers, office equipment, and domestic appliances.

It is recommended that new designs use the ADT7519 rather than the ADT7518. The ADT7518's internal and external temperature accuracy spec is only valid when not using the internal reference for the on-chip DAC. The ADT7519 does not have this limitation.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Specifications	3
DAC AC Characteristics	6
Functional Block Diagram	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configuration and Functional Descriptions	9
Terminology 1	0
Typical Performance Characteristics	2
Theory of Operation1	7
Power-Up Calibration1	7

Con	version Speed
Fun	ction Description—Voltage Output18
Fun	ctional Description—Analog Inputs
ADO	C Transfer Function
Fun	ctional Description—Measurement
AD	T7518 Registers
Seria	al Interface
SME	Bus Alert Response
Outlin	e Dimensions
Ord	ering Guide40

REVISION HISTORY

8/04—Data Sheet Changed from Rev. 0 to Rev. A

Updated Format	Universal
Separate ADT7518 from ADT7516/ADT7517/ADT7518 Data Sheet	Universal
Change to Equation	25

7/03—Revision 0: Initial Version

SPECIFICATIONS

Table 1. Temperature range is as follows: A version: -40° C to $+120^{\circ}$ C. $V_{DD} = 2.7$ V to 5.5 V, GND = 0 V, REF_{IN} = 2.25 V, unless otherwise noted.

Parameter ¹	Min	Тур	Max	Unit	Conditions/Comments
DAC DC PERFORMANCE ^{2,3}					
Resolution		8		Bits	
Relative Accuracy		±0.15	±1	LSB	
Differential Nonlinearity		±0.02	±0.25	LSB	Guaranteed monotonic over all codes.
Offset Error		±0.4	±2	% of FSR	
Gain Error		±0.3	±2	% of FSR	
Lower Deadband		20	65	mV	Lower deadband exists only if offset error is negative. See Figure 8.
Upper Deadband		60	100	mV	Upper deadband exists if $V_{REF} = V_{DD}$ and offset plus gain error is positive. See Figure 9.
Offset Error Drift ⁴		-12		ppm of FSR/°C	
Gain Error Drift⁴		-5		ppm of FSR/°C	
DC Power Supply Rejection Ratio⁴		-60		dB	$\Delta V_{DD} = \pm 10\%$.
DC Crosstalk ⁴		200		μV	See Figure 5.
ADC DC ACCURACY					$Max V_{DD} = 5 V.$
Resolution			10	Bits	
Total Unadjusted Error (TUE)		2	3	% of FSR	
Offset Error			±0.5	% of FSR	
Gain Error			±2	% of FSR	
ADC BANDWIDTH			DC	Hz	
ANALOG INPUTS ⁵					
Input Voltage Range	0		2.25	V	AIN1 to AIN4. $C4 = 0$ in Control Configuration 3.
pat tonage nange	0		V _{DD}	V	AIN1 to AIN4. C4 = 0 in Control Configuration 3.
DC Leakage Current			±1	μΑ	7 in the 7 in the Control Configuration 5.
Input Capacitance		5	20	pF	
Input Resistance		10	20	ΜΩ	
THERMAL CHARACTERISTICS ⁶ INTERNAL TEMPERATURE SENSOR					Internal reference used. Averaging on.
Accuracy @ $V_{DD} = 3.3 \text{ V} \pm 10\%$			±1.5	°C	$T_A = 85^{\circ}C.$
7.cca.acy @ 155		±0.5	±3	°C	T _A = 0°C to +85°C.
		±2	±5	℃	$T_A = -40^{\circ}\text{C to } +120^{\circ}\text{C}.$
Accuracy @ $V_{DD} = 5 \text{ V} \pm 5\%$		±2	±3	0 ℃	$T_A = 0$ °C to +85°C.
//ccaracy @ VDD = 3 V ±3/0		±3	±5	0 ℃	$T_A = -40^{\circ}\text{C to } +120^{\circ}\text{C}.$
Resolution			10	Bits	Equivalent to 0.25°C.
Long-Term Drift		0.25	10	°C	Drift over 10 years if part is operated at 55°C.
THERMAL CHARACTERISTICS ⁶		0.23			External transistor = 2N3906.
EXTERNAL TEMPERATURE SENSOR					
Accuracy @ $V_{DD} = 3.3 \text{ V} \pm 10\%$			±1.5	°C	T _A = 85°C.
			±3	°C	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C.$
			±5	°C	$T_A = -40^{\circ}\text{C to} + 120^{\circ}\text{C}.$
Accuracy @ $V_{DD} = 5 V \pm 5\%$		±2	±3	°C	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C.$
		±3	±5	°C	$T_A = -40^{\circ}\text{C to } +120^{\circ}\text{C}.$
Resolution			10	Bits	Equivalent to 0.25°C.
Output Source Current		180 11		μA μA	High Level. Low Level.
				<u>, '</u>	1
THERMAL CHARACTERISTICS ⁶					
THERMAL CHARACTERISTICS ⁶ Thermal Voltage Output					
THERMAL CHARACTERISTICS ⁶ Thermal Voltage Output 8-Bit DAC Output					

Parameter ¹	Min	Тур	Max	Unit	Conditions/Comments
Scale Factor		8.97		mV/°C	0 V to V_{REF} output. $T_A = -40^{\circ}C$ to $+120^{\circ}C$.
		17.58		mV/°C	0 V to 2 V_{REF} output. $T_A = -40^{\circ}C$ to $+120^{\circ}C$.
CONVERSION TIMES					Single channel mode.
Slow ADC					
V _{DD} /AIN		11.4		ms	Averaging (16 samples) on.
		712		μs	Averaging off.
Internal Temperature		11.4		ms	Averaging (16 samples) on.
•		712		μs	Averaging off.
External Temperature		24.22		ms	Averaging (16 samples) on.
·		1.51		ms	Averaging off.
Fast ADC					
V _{DD} /AIN		712		μs	Averaging (16 samples) on.
		44.5		μs	Averaging off.
Internal Temperature		2.14		ms	Averaging (16 samples) on.
•		134		μs	Averaging off.
External Temperature		14.25		ms	Averaging (16 samples) on.
·		890		μs	Averaging off.
ROUND ROBIN UPDATE RATE ⁵					Time to complete one measurement cycle
					through all channels.
Slow ADC @ 25°C					
Averaging On		79.8		ms	AIN1 and AIN2 are selected on Pins 7 and 8.
Averaging Off		4.99		ms	AIN1 and AIN2 are selected on Pins 7 and 8.
Averaging On		94.76		ms	D+ and D- are selected on Pins 7 and 8.
Averaging Off		9.26		ms	D+ and D- are selected on Pins 7 and 8.
Fast ADC @ 25°C					
Averaging On		6.41		ms	AIN1 and AIN2 are selected on Pins 7 and 8.
Averaging Off		400.84		μs	AIN1 and AIN2 are selected on Pins 7 and 8.
Averaging On		21.77		ms	D+ and D- are selected on Pins 7 and 8.
Averaging Off		3.07		ms	D+ and D- are selected on Pins 7 and 8.
DAC EXTERNAL REFERENCE INPUT ⁴					
V _{REF} Input Range	1		V_{DD}	V	Buffered reference.
V _{REF} Input Impedance		>10	100	ΜΩ	Buffered reference and power-down mode.
Reference Feedthrough		-90		dB	Frequency = 10 kHz.
Channel-to-Channel Isolation		-75		dB	Frequency = 10 kHz.
ON-CHIP REFERENCE					Troqueroy To III II
Reference Voltage ⁴		2.25		V	
Temperature Coefficient ⁴		80		ppm/°C	
OUTPUT CHARACTERISTICS ⁴				ррии с	
Output Voltage ⁷	0.001		$V_{\text{DD}}-0.1$	V	This is a measure of the minimum and maximum drive capability of the output amplifier.
DC Output Impedance		0.5		Ω	and the same of th
Short-Circuit Current		25		mA	$V_{DD} = 5 \text{ V}.$
Shore cheare carreine		16		mA	$V_{DD} = 3 \text{ V}.$
Power-Up Time		2.5		μs	Coming out of power-down mode. $V_{DD} = 5 \text{ V}$.
rower op rime		5		μς	Coming out of power-down mode. $V_{DD} = 3.3 \text{ V}$.
DIGITAL INPUTS ⁴				μ->	25g dat 5. power down mode. V _{DD} = 3.5 V.
Input Current			±1	μΑ	$V_{IN} = 0 V to V_{DD.}$
V _{IL} , Input Low Voltage			0.8	V	VIIV — O V CO VDD.
V _{II} , Input Low Voltage V _{IH} , Input High Voltage	1.89		0.0	V	
Pin Capacitance	1.09	3	10	pF	All digital inputs.
SCL, SDA Glitch Rejection		J	50	ns	Input filtering suppresses noise spikes of less than 50 ns.

Parameter ¹	Min	Тур	Max	Unit	Conditions/Comments
DIGITAL OUTPUT					
Digital High Voltage, Vон	2.4			V	$I_{SOURCE} = I_{SINK} = 200 \mu A.$
Output Low Voltage, Vol	0.4		0.4	V	$I_{OL} = 3 \text{ mA}.$
Output High Current, IoH			1	mA	$V_{OH} = 5 V.$
Output Capacitance, Cout			50	рF	
INT/INT Output Saturation Voltage			8.0	V	$I_{OUT} = 4 \text{ mA}.$
I ² C TIMING CHARACTERISTICS ^{8, 9}					
Serial Clock Period, t ₁	2.5			μs	Fast Mode I ² C. See Figure 2.
Data In Setup Time to SCL High, t ₂	50			ns	
Data Out Stable after SCL Low, t₃	0			ns	See Figure 2.
SDA Low Setup Time to SCL	50			ns	See Figure 2.
Low (Start Condition), t_4					
SDA High Hold Time after SCL	50			ns	See Figure 2.
High (Stop Condition), t₅					
SDA and SCL Fall Time, t ₆			90	ns	See Figure 2.
SPI TIMING CHARACTERISTICS ^{4, 10}					
CS to SCLK Setup Time, t ₁	0			ns	See Figure 3.
SCLK High Pulse Width, t ₂	50			ns	See Figure 3.
SCLK Low Pulse Width, t₃	50			ns	See Figure 3.
Data Access Time after SCLK Falling Edge, t ₄ 11			35	ns	
Data Setup Time Prior to SCLK Rising Edge, t₅	20			ns	See Figure 3.
Data Hold Time after SCLK Rising Edge, t_6	0			ns	See Figure 3.
CS to SCLK Hold Time, t ₇	0			μs	See Figure 3.
CS to DOUT High Impedance, t ₈			40	ns	See Figure 3.
POWER REQUIREMENTS					
V_{DD}	2.7		5.5	V	
V _{DD} Settling Time			50	ms	V _{DD} settles to within 10% of its final voltage level.
I _{DD} (Normal Mode) ¹²			3	mA	$V_{DD} = 3.3 \text{ V}, V_{IH} = V_{DD}, \text{ and } V_{IL} = \text{GND}.$
		2.2	3	mA	$V_{DD} = 5 \text{ V}$, $V_{IH} = V_{DD}$, and $V_{IL} = GND$.
I _{DD} (Power-Down Mode)			10	μΑ	$V_{DD} = 3.3 \text{ V}$, $V_{IH} = V_{DD}$, and $V_{IL} = GND$.
			10	μΑ	$V_{DD} = 5 \text{ V}$, $V_{IH} = V_{DD}$, and $V_{IL} = GND$.
Power Dissipation			10	mW	$V_{DD} = 3.3 \text{ V. Normal mode.}$
			33	μW	$V_{DD} = 3.3 \text{ V. Shutdown mode.}$

¹ See the Terminology section.

² DC specifications are tested with the outputs unloaded.

³ Linearity is tested using a reduced code range: ADT7518 (Code 8 to 255).

⁴ Guaranteed by design and characterization, not production tested. ⁵ Round robin is the continuous sequential measurement of the following channels: V_{DD}, internal temperature, external temperature (AIN1, AIN2), AIN3, and AIN4.

⁶ The temperature accuracy specifications are valid when the internal reference is not being used by the on-chip DAC. For new designs, the ADT7519 is recommended as it does not have this limitation.

⁷ For the amplifier output to reach its minimum voltage, the offset error must be negative. For the amplifier output to reach its maximum voltage (V_{REF} = V_{DD}), the offset plus gain error must be positive.

⁸ The SDA and SCL timing is measured with the input filters turned on to meet the fast-mode I²C specification. Switching off the input filters improves the transfer rate but has a negative effect on the EMC behavior of the part.

⁹ Guaranteed by design, not production tested.

 $^{^{10}}$ All input signals are specified with tr = tf = 5 ns (10% to 90% of V_{DD}), and timed from a voltage level of 1.6 V.

¹¹ Measured with the load circuit shown in Figure 4.
¹² The l_{DD} specification is valid for all DAC codes and full-scale analog input voltages. Interface inactive. All DACs and ADCs active. Load currents excluded.

DAC AC CHARACTERISTICS¹

Table 2. V_{DD} = 2.7 V to 5.5 V, R_L = 4.7 k Ω to GND; C_L = 200 pF to GND; 4.7 k Ω to V_{DD} ; all specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Parameter ²		Min Typ ³ Max Unit		Unit	Conditions/Comments	
Output Voltage Settling Time					$V_{REF} = V_{DD} = 5 \text{ V}$	
ADT7518		6	8	μs	1/4 scale to 3/4 scale change (40h to C0h)	
Slew Rate		0.7		V/µs		
Major-Code Change Glitch Energy		12		nV-s	1 LSB change around major carry	
Digital Feedthrough		0.5		nV-s		
Digital Crosstalk		1		nV-s		
Analog Crosstalk		0.5		nV-s		
DAC-to-DAC Crosstalk		3		nV-s		
Multiplying Bandwidth		200		kHz	$V_{REF} = 2 V \pm 0.1 V p-p$	
Total Harmonic Distortion		-70		dB	$V_{REF} = 2.5 \text{ V} \pm 0.1 \text{ V} \text{ p-p. Frequency} = 10 \text{ kHz}.$	

¹ Guaranteed by design and characterization, not production tested. ² See the Terminology section.

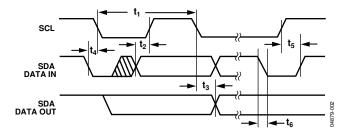


Figure 2. I²C Bus Timing Diagram

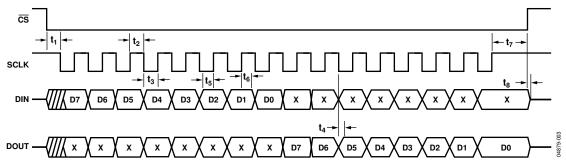


Figure 3. SPI Bus Timing Diagram

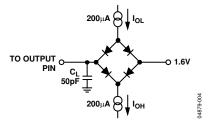


Figure 4. Load Circuit for Access Time and Bus Relinquish Time

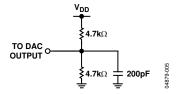
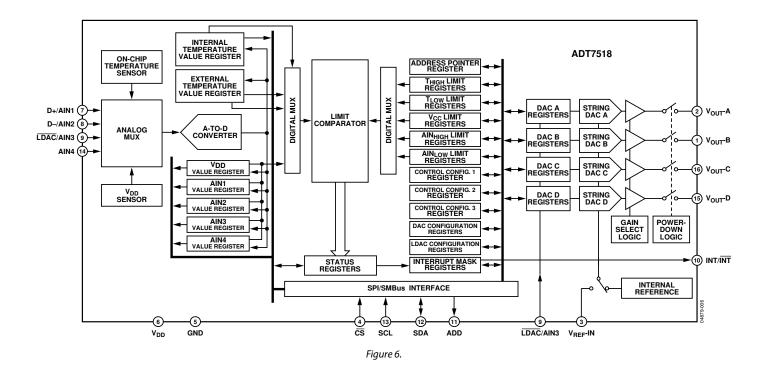



Figure 5. Load Circuit for DAC Outputs

³ @ 25°C.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
V _{DD} to GND	-0.3 V to +7 V
Analog Input Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Digital Input Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Digital Output Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Reference Input Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Operating Temperature Range	-40°C to +120°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
16-Lead QSOP Package	
Power Dissipation ¹	(T _J max – T _A)/θ _{JA}
Thermal Impedance ²	
θ_{JA} Junction-to-Ambient	105.44°C/W
θ_{JC} Junction-to-Case	38.8°C/W
IR Reflow Soldering	
Peak Temperature	220°C (0°C/5°C)
Time at Peak Temperature	10 sec to 20 sec
Ramp-Up Rate	2°C/sec to 3°C/sec
Ramp-Down Rate	−6°C/sec

Table 4. I²C Address Selection

ADD Pin	I ² C Address
Low	1001 000
Float	1001 010
High	1001 011

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Values relate to package being used on a 4-layer board.

² Junction-to-case resistance is applicable to components featuring a preferential flow direction, e.g., components mounted on a heat sink. Junction-to-ambient resistance is more useful for air cooled PCB-mounted components.

PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS

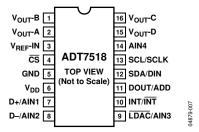


Figure 7. Pin Configuration QSOP

Table 5. Pin Function Descriptions

Pin	1	on Descriptions
No.	Mnemonic	Description
1	V _{оит} -В	Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.
2	V _{OUT} -A	Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.
3	V _{REF} -IN	Reference Input Pin for All Four DACs. This input is buffered and has an input range from 1 V to V_{DD} .
4	टड	SPI Active Low Control Input. This is the frame synchronization signal for the input data. When \overline{CS} goes low, it enables the input register, and data is transferred in on the rising edges and out on the falling edges of the subsequent serial clocks. It is recommended that this pin be tied high to V_{DD} when operating the serial interface in I^2C mode.
5	GND	Ground Reference Point for All Circuitry on the Part. Analog and digital ground.
6	V_{DD}	Positive Supply Voltage, 2.7 V to 5.5 V. The supply should be decoupled to ground.
7	D+/AIN1	D+. Positive Connection to External Temperature Sensor. AIN1. Analog Input. Single-ended analog input channel. Input range is 0 V to 2.25 V or 0 V to V_{DD} .
8	D-/AIN2	D Negative Connection to External Temperature Sensor. AIN2. Analog Input. Single-ended analog input channel. Input range is 0 V to 2.25 V or 0 V to V_{DD} .
9	LDAC/AIN3	LDAC. Active Low Control Input. Transfers the contents of the input registers to their respective DAC registers. A falling edge on this pin forces any or all DAC registers to be updated if the input registers have new data. A minimum pulse width of 20 ns must be applied to the LDAC pin to ensure proper loading of a DAC register. This allows simultaneous update of all DAC outputs. Bit C3 of the Control Configuration 3 register enables the LDAC pin. Default is with the LDAC pin controlling the loading of the DAC registers.
10	INT/INT	AIN3. Analog Input. Single-ended analog input channel. Input range is 0 V to 2.25 V or 0 V to V _{DD} .
10		Over Limit Interrupt. The output polarity of this pin can be set to give an active low or active high interrupt when temperature, V _{DD} , or AIN limits are exceeded. The default is active low. Open-drain output—needs a pull-up resistor.
11	DOUT/ADD	SPI Serial Data Output. Logic output. Data is clocked out of any register at this pin. Data is clocked out on the falling edge of SCLK. Open-drain output—needs a pull-up resistor. ADD. I ² C Serial Bus Address Selection Pin. Logic input. A low on this pin gives the address 1001 000; leaving it floating gives the address 1001 010; and setting it high gives the address 1001 011. The I ² C address set up by the ADD pin is not latched by the device until after this address has been sent twice. On the eighth SCL cycle of the second valid communication, the serial bus address is latched in. Any subsequent changes on this pin will have no effect on the I ² C serial bus address.
12	SDA/DIN	SDA. I ² C Serial Data Input/Output. I ² C serial data to be loaded into the part's registers and read from these registers is provided on this pin. Open-drain configuration—needs a pull-up resistor. DIN. SPI Serial Data Input. Serial data to be loaded into the part's registers is provided on this pin. Data is clocked into a register on the rising edge of SCLK. Open-drain configuration—needs a pull-up resistor.
13	SCL/SCLK	Serial Clock Input. This is the clock input for the serial port. The serial clock is used to clock data out of any register of the ADT7518 and also to clock data into any register that can be written to. Open-drain configuration—needs a pull-up resistor.
14	AIN4	Analog Input. Single-ended analog input channel. Input range is 0 V to 2.25 V or 0 V to V_{DD} .
15	V _{OUT} -D	Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.
16	V _{OUT} -C	Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.

TERMINOLOGY

Relative Accuracy

Relative accuracy or integral nonlinearity (INL) is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the transfer function. Typical INL versus code plots can be seen in Figure 10, Figure 11, and Figure 12.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 0.9 LSB maximum ensures monotonicity. Typical DAC DNL versus code plots can be seen in Figure 13, Figure 14, and Figure 15.

Total Unadjusted Error (TUE)

Total unadjusted error is a comprehensive specification that includes the sum of the relative accuracy error, gain error, and offset error under a specified set of conditions.

Offset Error

This is a measure of the offset error of the DAC and the output amplifier (see Figure 8 and Figure 9). It can be negative or positive, and it is expressed in mV.

Offset Error Match

This is the difference in offset error between any two channels.

Gain Error

This is a measure of the span error of the DAC. It is the deviation in slope of the actual DAC transfer characteristic from the ideal expressed as a percentage of the full-scale range.

Gain Error Match

This is the difference in gain error between any two channels.

Offset Error Drift

This is a measure of the change in offset error with changes in temperature. It is expressed in (ppm of full-scale range)/°C.

Gain Error Drift

This is a measure of the change in gain error with changes in temperature. It is expressed in (ppm of full-scale range)/°C.

Long Term Temperature Drift

This is a measure of the change in temperature error over time. It is expressed in °C. The concept of long-term stability has been used for many years to describe the amount an IC's parameter shifts during its lifetime. This is a concept that has typically been applied to both voltage references and monolithic temperature sensors. Unfortunately, integrated circuits cannot be evaluated at room temperature (25°C) for 10 years or so to determine this shift. Manufacturers perform accelerated lifetime testing of integrated circuits by operating ICs at elevated temperatures (between 125°C and 150°C) over a shorter period (typically between 500 and 1,000 hours). As a result, the lifetime of an integrated circuit is significantly accelerated due to the

increase in rates of reaction within the semiconductor material.

DC Power Supply Rejection Ratio (PSRR)

This indicates how the output of the DAC is affected by changes in the supply voltage. PSRR is the ratio of the change in V_{OUT} to a change in V_{DD} for full-scale output of the DAC. It is measured in dB. V_{REF} is held at 2 V and V_{DD} is varied $\pm 10\%$.

DC Crosstalk

This is the dc change in the output level of one DAC in response to a change in the output of another DAC. It is measured with a full-scale output change on one DAC while monitoring another DAC. It is expressed in μV .

Reference Feedthrough

This is the ratio of the amplitude of the signal at the DAC output to the reference input when the DAC output is not being updated (i.e., LDAC is high). It is expressed in dB.

Channel-to-Channel Isolation

This is the ratio of the amplitude of the signal at the output of one DAC to a sine wave on the reference input of another DAC. It is measured in dB.

Major-Code Transition Glitch Energy

Major-code transition glitch energy is the energy of the impulse injected into the analog output when the code in the DAC register changes state. It is normally specified as the area of the glitch in nV-s and is measured when the digital code is changed by 1 LSB at the major carry transition (011...1 to 100...00 or 100...00 to 011...11).

Digital Feedthrough

Digital feedthrough is a measure of the impulse injected into the analog output of a DAC from the digital input pins of the device but is measured when the DAC is not being written to. It is specified in nV-s and is measured with a full-scale change on the digital input pins, i.e., from all 0s to all 1s or vice versa.

Digital Crosstalk

This is the glitch impulse transferred to the output of one DAC at midscale in response to a full-scale code change (all 0s to all 1s and vice versa) in the input register of another DAC. It is measured in standalone mode and is expressed in nV-s.

Analog Crosstalk

This is the glitch impulse transferred to the output of one DAC due to a change in the output of another DAC. It is measured by loading one of the input registers with a full-scale code change (all 0s to all 1s and vice versa) while keeping \overline{LDAC} high. Then pulse \overline{LDAC} low and monitor the output of the DAC whose digital code was not changed. The area of the glitch is expressed in nV-s.

DAC-to-DAC Crosstalk

This is the glitch impulse transferred to the output of one DAC due to a digital code change and subsequent output change of another DAC. This includes both digital and analog crosstalk. It is measured by loading one of the DACs with a full-scale code change (all 0s to all 1s and vice versa) with $\overline{\text{LDAC}}$ low and monitoring the output of another DAC. The energy of the glitch is expressed in nV-s.

Multiplying Bandwidth

The amplifiers within the DAC have a finite bandwidth. The multiplying bandwidth is a measure of this. A sine wave on the reference (with full-scale code loaded to the DAC) appears on the output. The multiplying bandwidth is the frequency at which the output amplitude falls to 3 dB below the input.

Total Harmonic Distortion

This is the difference between an ideal sine wave and its attenuated version using the DAC. The sine wave is used as the reference for the DAC, and the THD is a measure of the harmonics present on the DAC output, expressed in dB.

Round Robin

This term is used to describe the ADT7518 cycling through the available measurement channels in sequence, taking a measurement on each channel.

DAC Output Settling Time

This is the time required, following a prescribed data change, for the output of a DAC to reach and remain within ± 0.5 LSB of the final value. A typical prescribed change is from 1/4 scale to 3/4 scale.

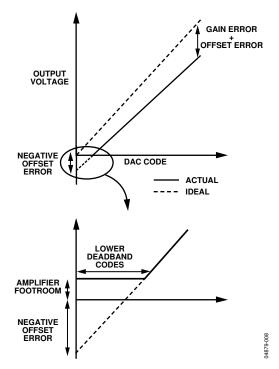


Figure 8. DAC Transfer Function with Negative Offset

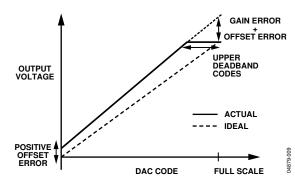


Figure 9. DAC Transfer Function with Positive Offset ($V_{REF} = V_{DD}$)

TYPICAL PERFORMANCE CHARACTERISTICS

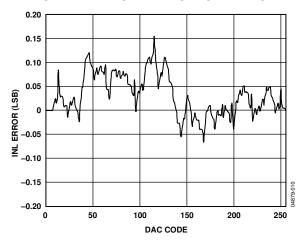


Figure 10. ADT7518 Typical DAC INL Plot

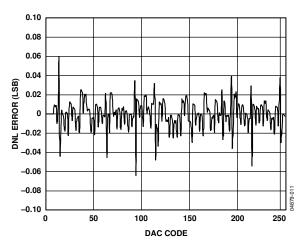


Figure 11. ADT7518 Typical DAC DNL Plot

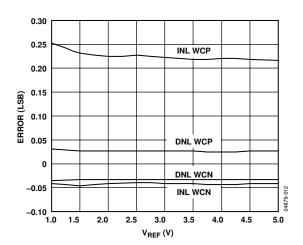


Figure 12. ADT7518 DAC INL and DNL Error vs, VREF

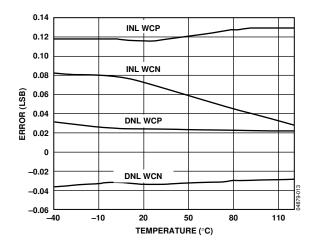


Figure 13. ADT7518 DAC INL Error and DNL Error vs. Temperature

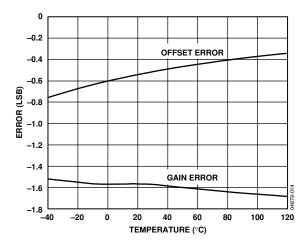


Figure 14. DAC Offset Error and Gain Error vs. Temperature

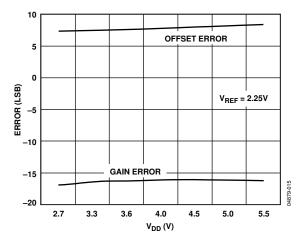


Figure 15. DAC Offset Error and Gain Error vs. V_{DD}

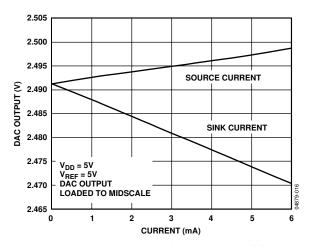


Figure 16. DAC V_{OUT} Source and Sink Current Capability

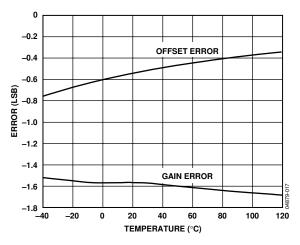


Figure 17. Supply Current vs. DAC Code

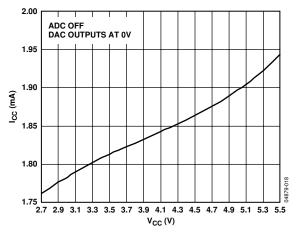


Figure 18. Supply Current vs. Supply Voltage @ 25℃

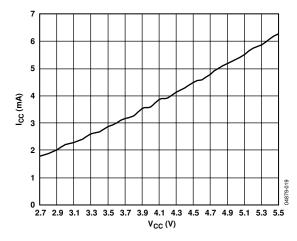


Figure 19. Power-Down Current vs. Supply Voltage @ 25°C

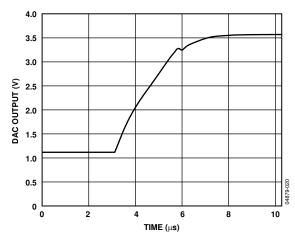


Figure 20. DAC Half-Scale Settling (1/4 to 3/4 Scale Code Change)

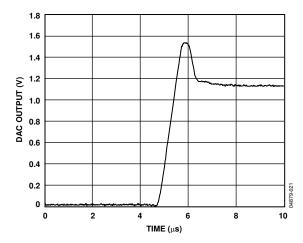


Figure 21. Exiting Power-Down to Midscale

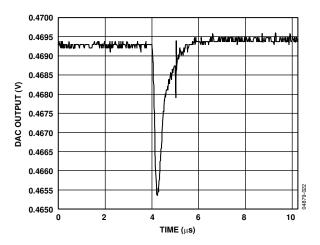


Figure 22. ADT7518 DAC Major Code Transition Glitch Energy; 0...11 to 100...00

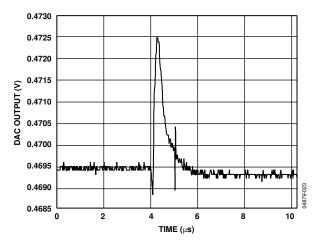


Figure 23. ADT7518 DAC Major Code Transition Glitch Energy; 100...00 to 011...11

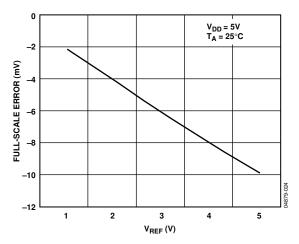


Figure 24. DAC Full-Scale Error vs. V_{REF}

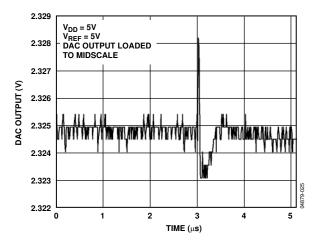


Figure 25. DAC-to-DAC Crosstalk

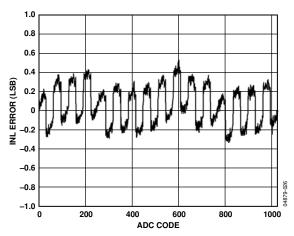


Figure 26. ADC INL with Ref = V_{DD} (3.3 V)

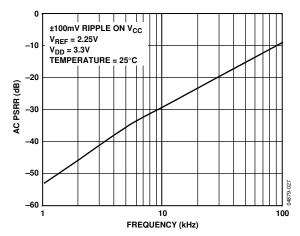


Figure 27. PSRR vs. Supply Ripple Frequency

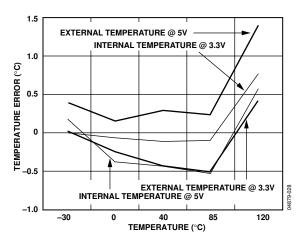


Figure 28. Internal Temperature Error @ 3.3 V and 5 V

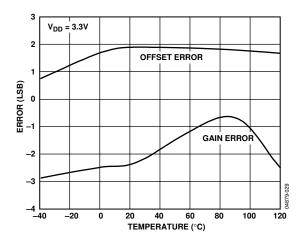


Figure 29. ADC Offset Error and Gain Error vs. Temperature

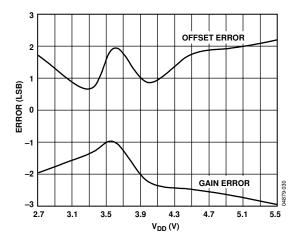


Figure 30. ADC Offset Error and Gain Error vs. V_{DD}

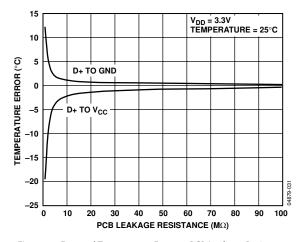


Figure 31. External Temperature Error vs. PCB Leakage Resistance

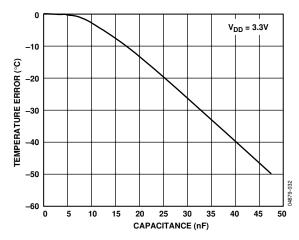


Figure 32. External Temperature Error vs. Capacitance between D+ and D-

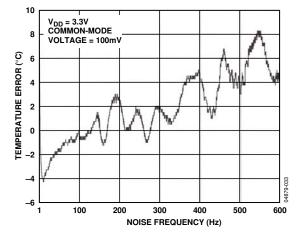


Figure 33. External Temperature Error vs. Common-Mode Noise Frequency

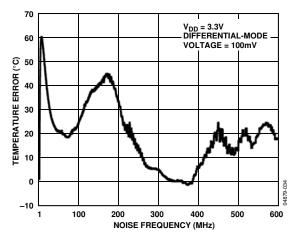


Figure 34. External Temperature Error vs. Differential-Mode Noise Frequency

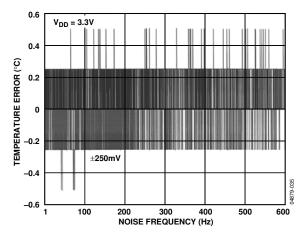


Figure 35. Internal Temperature Error vs. Power Supply Noise Frequency

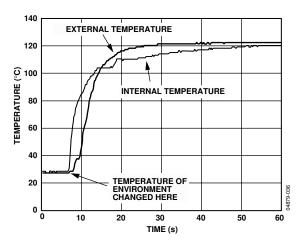


Figure 36. Temperature Sensor Response to Thermal Shock

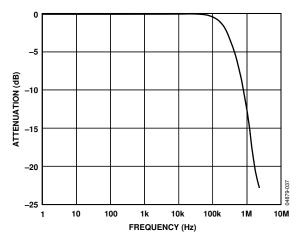


Figure 37. DAC Multiplying Bandwidth (Small Signal Frequency Response)

THEORY OF OPERATION

Directly after the power-up calibration routine, the ADT7518 goes into idle mode. In this mode, the device is not performing any measurements and is fully powered up. All four DAC outputs are at 0 V.

To begin monitoring, write to the Control Configuration 1 register (Address 18h) and set Bit C0 = 1. The ADT7518 goes into its power-up default measurement mode, which is round robin. The device then to take measurements on the $V_{\rm DD}$ channel, internal temperature sensor channel, external temperature sensor channel, or AIN1 and AIN2, AIN3, and finally AIN4.

Once it finishes taking measurements on the AIN4 channel, the device immediately loops back to start taking measurements on the $V_{\rm DD}$ channel and repeats the same cycle as before. This loop continues until the monitoring is stopped by resetting Bit C0 of the Control Configuration 1 register to 0. It is also possible to continue monitoring as well as switching to single-channel mode by writing to the Control Configuration 2 register (Address 19h) and setting Bit C4 = 1. Further explanation of the single-channel and round robin measurement modes is given in later sections.

All measurement channels have averaging enabled on them on power-up. Averaging forces the device to take an average of 16 readings before giving a final measured result. To disable averaging and consequently decrease the conversion time by a factor of 16, set Bit C5 = 1 in the Control Configuration 2 register.

There are four single-ended analog input channels on the ADT7518: AIN1 to AIN4. AIN1 and AIN2 are multiplexed with the external temperature sensor terminals D+ and D−. Bits C1 and C2 of the Control Configuration 1 register (Address 18h) are used to select between AIN1/AIN2 and the external temperature sensor. The input range on the analog input channels is dependent on whether the ADC reference used is the internal V_{REF} or V_{DD} . To meet linearity specifications, it is recommended that the maximum V_{DD} value is 5 V. Bit C4 of the Control Configuration 3 register is used to select between the internal reference or V_{DD} as the analog inputs' ADC reference.

Controlling the DAC outputs can be done by writing to the DACs' MSB and LSB registers (Addresses 10h to 17h). The power-up default setting is to have a low going pulse on the $\overline{\text{LDAC}}$ pin (Pin 9) controlling the updating of the DAC outputs from the DAC registers. Alternatively, one can configure the updating of the DAC outputs to be controlled by means other than the $\overline{\text{LDAC}}$ pin by setting Bit C3 = 1 of the Control Configuration 3 register (Address 1Ah). The DAC Configuration register (Address 1Bh) and the LDAC Configuration register (Address 1Ch) can now be used to control the DAC updating. These two registers also control the output range of the DACs and selecting between the internal or external reference. DAC A

and DAC B outputs can be configured to give a voltage output proportional to the temperature of the internal and external temperature sensors, respectively.

The dual serial interface defaults to the I²C protocol on power-up. To select and lock in the SPI protocol, follow the selection process as described in the Serial Interface Selection section. The I²C protocol cannot be locked in, while the SPI protocol is automatically locked in on selection. The interface can be switched back to be I²C on selection when the device is powered off and on. When using I²C, the CS pin should be tied to either $V_{\rm DD}$ or GND.

There are a number of different operating modes on the ADT7518 devices and all of them can be controlled by the configuration registers. These features consist of enabling and disabling interrupts, polarity of the INT/INT pin, enabling and disabling the averaging on the measurement channels SMBus timeout and software reset.

POWER-UP CALIBRATION

It is recommended that no communication to the part be initiated until approximately 5 ms after $V_{\rm DD}$ has settled to within 10% of its final value. It is generally accepted that most systems take a maximum of 50 ms to power up. Power-up time is directly related to the amount of decoupling on the voltage supply line.

During the 5 ms after $V_{\rm DD}$ has settled, the part is performing a calibration routine. Any communication to the device during calibration will interrupt this routine, and could cause erroneous temperature measurements. If it is not possible to have $V_{\rm DD}$ at its nominal value by the time 50 ms has elapsed or if communication to the device has started prior to $V_{\rm DD}$ settling, it is recommended that a measurement be taken on the $V_{\rm DD}$ channel before a temperature measurement is taken. The $V_{\rm DD}$ measurement is used to calibrate out any temperature measurement error due to different supply voltage values.

CONVERSION SPEED

The internal oscillator circuit used by the ADC has the capability to output two different clock frequencies. This means that the ADC is capable of running at two different speeds when doing a conversion on a measurement channel. Thus, the time taken to perform a conversion on a channel can be reduced by setting Bit C0 of the Control Configuration 3 register (Address 1Ah). This increases the ADC clock speed from 1.4 kHz to 22 kHz. At the higher clock speed, the analog filters on the D+ and D- input pins (external temperature sensor) are switched off. This is why the power-up default setting is to have the ADC working at the slow speed. The typical times for fast and slow ADC speeds are given in the specifications.

The ADT7518 powers up with averaging on. This means every channel is measured 16 times and internally averaged to reduce noise. The conversion time can also be sped up by turning off the averaging. This is done by setting Bit C5 of the Control Configuration 2 register (Address 19h) to 1.

FUNCTION DESCRIPTION—VOLTAGE OUTPUT Digital-to-Analog Converters

The ADT7518 has four resistor string DACs fabricated on a CMOS process with resolutions of 12, 10, and 8 bits, respectively. They contain four output buffer amplifiers and are written to via I²C serial interface or SPI serial interface. See the Serial Interface section for more information.

The ADT7518 operates from a single supply of 2.7 V to 5.5 V, and the output buffer amplifiers provide rail-to-rail output swing with a slew rate of 0.7 V/ μ s. All four DACs share a common reference input, V_{REF}-IN. The reference input is buffered to draw virtually no current from the reference source because it offers the source a high impedance input. The devices have a power-down mode in which all DACs may be turned off completely with a high impedance output.

Each DAC output will not be updated until it receives the LDAC command. Therefore, while the DAC registers would have been written to with a new value, this value will not be represented by a voltage output until the DACs have received the LDAC command. Reading back from any DAC register prior to issuing an LDAC command will result in the digital value that corresponds to the DAC output voltage. Thus, the digital value written to the DAC register cannot be read back until after the LDAC command has been initiated. This LDAC command can be given by either pulling the LDAC pin low (falling edge loads DACs), setting up Bits D4 and D5 of the DAC configuration register (Address 1Bh), or using the LDAC register (Address 1Ch).

When using the LDAC pin to control the DAC register loading, the low going pulse width should be 20 ns minimum. The LDAC pin has to go high and low again before the DAC registers can be reloaded.

Digital-to-Analog Section

The architecture of one DAC channel consists of a resistor string DAC followed by an output buffer amplifier. The voltage at the $V_{\text{REF}}\text{-IN}$ pin or the on-chip reference of 2.25 V provides the reference voltage for the corresponding DAC. Figure 38 shows a block diagram of the DAC architecture. Since the input coding to the DAC is straight binary, the ideal output voltage is given by

$$V_{OUT} = \frac{V_{REF} \times D}{2^N}$$

where:

D = decimal equivalent of the binary code that is loaded to the DAC register:

0 to 255 for ADT7518 (8 bits)

N = DAC resolution

Resistor String

The resistor string section is shown in Figure 39. It is simply a string of resistors, each of approximately 603 Ω . The digital code loaded to the DAC register determines at which node on the string the voltage is tapped off to be fed into the output amplifier. The voltage is tapped off by closing one of the switches connecting the string to the amplifier. Because it is a string of resistors, it is guaranteed monotonic.

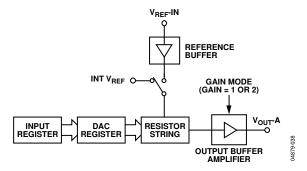


Figure 38. Single DAC Channel Architecture

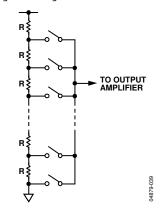


Figure 39. Resistor String

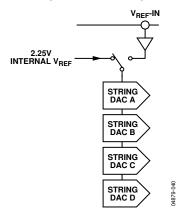


Figure 40. DAC Reference Buffer Circuit

DAC Reference Inputs

There is an input reference pin for the DACs. This reference input is buffered (see Figure 40).

The advantage with the buffered input is the high impedance it presents to the voltage source driving it. The user can have an external reference voltage as low as 1 V and as high as V_{DD}. The restriction of 1 V is due to the footroom of the reference buffer.

The LDAC configuration register controls the option to select between internal and external voltage references. The default setting is for external reference selected.

Output Amplifier

The output buffer amplifier can generate output voltages to within 1 mV of either rail. Its actual range depends on the value of V_{REF} , gain, and offset error.

If a gain of 1 is selected (Bits 0 to 3 of the DAC configuration register = 0), the output range is 0.001 V to V_{REF} .

If a gain of 2 is selected (Bits 0 to 3 of the DAC configuration register = 1), the output range is 0.001 V to 2 $V_{\text{REF}}.$ Because of clamping, however, the maximum output is limited to $V_{\text{DD}}-0.001$ V.

The output amplifier can drive a load of 4.7 k Ω to GND or V_{DD} , in parallel with 200 pF to GND or V_{DD} (see Figure 5). The source and sink capabilities of the output amplifier can be seen in the plot of Figure 16.

The slew rate is 0.7 V/ μ s with a half-scale settling time to ± 0.5 LSB (at 8 bits) of 6 μ s.

Thermal Voltage Output

The ADT7518 can output voltages that are proportional to temperature. DAC A output can be configured to represent the temperature of the internal sensor while DAC B output can be configured to represent the external temperature sensor. Bits C5 and C6 of the Control Configuration 3 register select the temperature proportional output voltage. Each time a temperature measurement is taken, the DAC output is updated. The output resolution for the ADT7518 is 8 bits with a 1°C change corresponding to 1 LSB change. The default output range is 0 V to

 V_{REF} and this can be increased to 0 V to 2 $V_{\text{REF}}.$ Increasing the output voltage span to 2 V_{REF} can be done by setting D0 = 1 for DAC A (internal temperature sensor) and D1 = 1 for DAC B (external temperature sensor) in the DAC configuration register (Address 1Bh).

The output voltage is capable of tracking a maximum temperature range of -128°C to $+127^{\circ}\text{C}$, but the default setting is -40°C to $+127^{\circ}\text{C}$. If the output voltage range is 0 V to $V_{\text{REF}}\text{-IN}$ ($V_{\text{REF}}\text{-IN}=2.25$ V), then this corresponds to 0 V representing -40°C , and 1.48 V representing $+127^{\circ}\text{C}$. This, of course, will give an upper deadband between 1.48 V and V_{REF} .

The internal and external analog temperature offset registers can be used to vary this upper deadband and, consequently, the temperature that 0 V corresponds to. Table 6 and Table 7 give examples of how this is done using a DAC output voltage span of V_{REF} and 2 V_{REF} , respectively. Simply write in the temperature value, in twos complement format, at which 0 V is to start. For example, if using the DAC A output and 0 V to start at -40° C, program D8h into the internal analog temperature offset register (Address 21h). This is an 8-bit register and has a temperature offset resolution of only 1°C for all device models. Use the formulas following the tables to determine the value to program into the offset registers.

Table 6. Thermal Voltage Output (0 V to V_{REF})

O/P Voltage (V)	Default °C	Max °C	Sample °C
0	-40	-128	0
0.5	+17	-71	+56
1	+73	-15	+113
1.12	+87	-1	+127
1.47	+127	+39	UDB*
1.5	UDB*	+42	UDB*
2	UDB*	+99	UDB*
2.25	UDB*	+127	UDB*

^{*} Upper deadband has been reached. DAC output is not capable of increasing. See Figure 9.

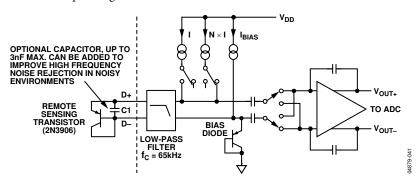


Figure 41. Signal Conditioning for External Diode Temperature Sensor

Figure 42. Top Level Structure of Internal Temperature Sensor

Table 7. Thermal Voltage Output (0 V to 2 V_{REF})

Table 7. Thermal voltage Output (0 v to 2 v REF)							
O/P Voltage (V)	Default °C	Max °C	Sample °C				
0	-40	-128	0				
0.25	-26	-114	+14				
0.5	+12	-100	+28				
0.75	+3	-85	+43				
1	+17	-71	+57				
1.12	+23	-65	+63				
1.47	+43	-45	+83				
1.5	+45	-43	+85				
2	+73	-15	+113				
2.25	+88	0	+127				
2.5	+102	+14	UDB*				
2.75	+116	+28	UDB*				
3	UDB*	+42	UDB*				
3.25	UDB*	+56	UDB*				
3.5	UDB*	+70	UDB*				
3.75	UDB*	+85	UDB*				
4	UDB*	+99	UDB*				
4.25	UDB*	+113	UDB*				
4.5	UDB*	+127	UDB*				

^{*} Upper deadband has been reached. DAC output is not capable of increasing. See Figure 9.

Negative temperatures:

Offset Register Code(d) =
$$(0 V Temp) + 128$$

where:

D7 of Offset Register Code is set to 1 for negative temperatures.

Example:

Offset Register Code(d) =
$$(-40) + 128 = 88d = 58h$$

Since a negative temperature has been inserted into the equation, DB7 (MSB) of the offset register code is set to 1. Therefore 58h becomes D8h.

$$58h + DB7(1) = D8h$$

Positive temperatures:

Offset Register Code
$$(d) = 0 V Temp$$

Example:

Offset Register Code
$$(d) = 10d = 0Ah$$

The following equation is used to work out the various temperatures for the corresponding 8-bit DAC output:

8 - Bit Temp =
$$(DACO/P \div 1LSB) + (0V Temp)$$

For example, if the output is 1.5 V, V_{REF} -IN = 2.25 V, 8-bit DAC has an LSB size = 2.25 V/256 = 8.79 x 10^{-3} , and 0 V temperature is at -128° C, then the resultant temperature is

$$(1.5 \div 8.79 \times 10^{-3}) + (-128) = +43^{\circ}C$$

Figure 43 shows a graph of the DAC output versus temperature for a V_{REF} -IN = 2.25 V.

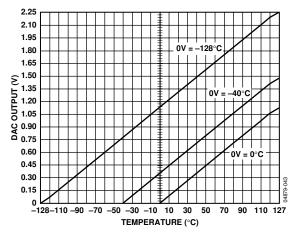


Figure 43. DAC Output vs. Temperature V_{REF} -IN = 2.25 V

FUNCTIONAL DESCRIPTION—ANALOG INPUTS Single-Ended Inputs

The ADT7518 offers four single-ended analog input channels. The analog input range is from 0 V to 2.25 V, or 0 V to $V_{\rm DD}.$ To maintain the linearity specification, it is recommended that the maximum $V_{\rm DD}$ value be set at 5 V. Selection between the two input ranges is done by Bit C4 of the Control Configuration 3 register (Address 1Ah). Setting this bit to 0 sets up the analog input ADC reference to be sourced from the internal voltage reference of 2.25 V. Setting the bit to 1 sets up the ADC reference to be sourced from $V_{\rm DD}.$

The ADC resolution is 10 bits and is mostly suitable for dc input signals. Bits C1:2 of the Control Configuration 1 register (Address 18h) are used to set up Pins 7 and 8 as AIN1 and AIN2. Figure 44 shows the overall view of the 4-channel analog input path.

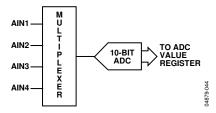


Figure 44. Quad Analog Input Path

Converter Operation

The analog input channels use a successive approximation ADC based on a capacitor DAC. Figure 45 and Figure 46 show simplified schematics of the ADC. Figure 45 shows the ADC during acquisition phase. SW2 is closed and SW1 is in position A. The comparator is held in a balanced condition and the sampling capacitor acquires the signal on AIN.

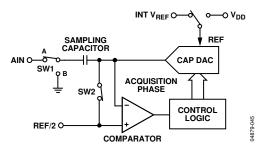


Figure 45. ADC Acquisition Phase

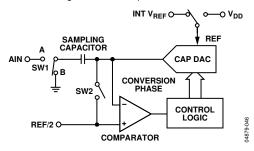


Figure 46. ADC Conversion Phase

When the ADC eventually goes into conversion phase (see Figure 46), SW2 opens and SW1 moves to position B, causing the comparator to become unbalanced. The control logic and the DAC are used to add and subtract fixed amounts of charge from the sampling capacitor to bring the comparator back into a balanced condition. When the comparator is rebalanced, the conversion is complete. The control logic generates the ADC output code. Figure 47 shows the ADC transfer function for the analog inputs.

ADC TRANSFER FUNCTION

The output coding of the ADT7518 analog inputs is straight binary. The designed code transitions occur midway between successive integer LSB values (i.e., 1/2 LSB, 3/2 LSB). The LSB is $V_{\rm DD}/1024$ or internal $V_{\rm REF}/1024$, internal $V_{\rm REF}=2.25$ V. The ideal transfer characteristic is shown in Figure 47.

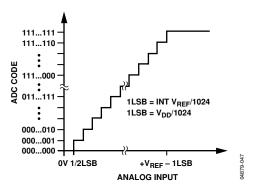


Figure 47. Single-Ended Transfer Function

To work out the voltage on any analog input channel, the following method can be used:

$$1 LSB = reference (v)/1024$$

Convert the value read back from the AIN value register into a decimal format.

$$AIN \ voltage = AIN \ value(d) \times LSB \ size$$

d = decimal

Example:

Internal reference used. Therefore $V_{REF} = 2.25 \text{ V}$.

AIN value = 512d

$$1LSB \, size = 2.25 \, V / 1024 = 2.197 \times 10^{-3}$$

AIN voltage = $512 \times 2.197 \times 10^{-3} = 1.125 \, V$

Analog Input ESD Protection

Figure 48 shows the input structure on any of the analog input pins that provides ESD protection. The diode provides the main ESD protection for the analog inputs. Care must be taken that the analog input signal never drops below the GND rail by more than 200 mV. If this happens, the diode will become forward-biased and start conducting current into the substrate. The 4 pF capacitor is the typical pin capacitance and the resistor is a lumped component made up of the on-resistance of the multiplexer switch.

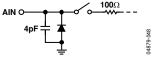


Figure 48. Equivalent Analog Input ESD Circuit

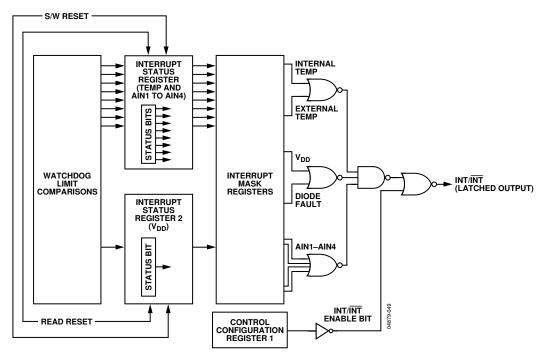


Figure 49. Interrupt Structure

AIN Interrupts

The measured results from the AIN inputs are compared with the AIN $V_{\mbox{\scriptsize HIGH}}$ (greater than comparison) and $V_{\mbox{\scriptsize LOW}}$ (less than or equal to comparison) limits. An interrupt occurs if the AIN inputs exceed or equal the limit registers. These voltage limits are stored in on-chip registers. Note that the limit registers are 8 bits long while the AIN conversion result is 10 bits long. If the voltage limits are not masked out, then any out-of-limit comparisons generate flags that are stored in the Interrupt Status 1 register (Address = 00h) and one or more out-of-limit results will cause the INT/INT output to pull either high or low depending on the output polarity setting. It is good design practice to mask out interrupts for channels that are of no concern to the application. Figure 49 shows the interrupt structure for the ADT7518. It gives a block diagram representation of how the various measurement channels affect the INT/INT pin.

FUNCTIONAL DESCRIPTION—MEASUREMENT Temperature Sensor

The ADT7518 contains an ADC with special input signal conditioning to enable operation with external and on-chip diode temperature sensors. When the ADT7518 is operating in single-channel mode, the ADC continually processes the measurement taken on one channel only. This channel is preselected by Bits C0:C2 in the Control Configuration 2 register (Address 19h). When in round robin mode, the analog input multiplexer sequentially selects the $V_{\rm DD}$ input channel, the on-chip temperature sensor to measure its internal temperature, either the external temperature sensor or AIN1 and AIN2, AIN3, and then AIN4. These signals are digitized by the ADC and the results are stored in the various value registers.

The measured results from the temperature sensors are compared with the internal and external $T_{\rm HIGH}, T_{\rm LOW}$ limits. These temperature limits are stored in on-chip registers. If the temperature limits are not masked, any out-of-limit comparisons generate flags that are stored in the Interrupt Status 1 register. One or more out-of-limit results will cause the INT/INT output to pull either high or low depending on the output polarity setting.

Theoretically, the temperature measuring circuit can measure temperatures from -128°C to $+127^{\circ}\text{C}$ with a resolution of 0.25°C. However, temperatures outside T_A are outside the guaranteed operating temperature range of the device. Temperature measurement from -128°C to $+127^{\circ}\text{C}$ is possible using an external sensor.

Temperature measurement is initiated by three methods. The first method is applicable when the part is in single-channel measurement mode. The temperature is measured 16 times and internally averaged to reduce noise. In single-channel mode, the part is continuously monitoring the selected channel, i.e., as soon as one measurement is taken another one is started on the same channel. The total time to measure a temperature channel with the ADC operating at slow speed is typically 11.4 ms (712 $\mu s \times 16$) for the internal temperature sensor and 24.22 ms (1.51 ms \times 16) for the external temperature sensor. The new temperature value is stored in two 8-bit registers and is ready for reading by the I²C or SPI interface. The user has the option of disabling the averaging by setting Bit 5 in the Control Configuration 2 register (Address 19h). The ADT7518 defaults on power-up with averaging enabled.

The second method is applicable when the part is in round robin measurement mode. The part measures both the internal and external temperature sensors as it cycles through all possible measurement channels. The two temperature channels are measured each time the part runs a round robin sequence. In round robin mode, the part continuously measures all channels.

Temperature measurement is also initiated after every read or write to the part when the part is in either single-channel measurement mode or round robin measurement mode.

Once serial communication has started, any conversion in progress is stopped and the ADC is reset. Conversion starts again immediately after the serial communication has finished. The temperature measurement proceeds normally as described in the preceding section.

V_{DD} Monitoring

The ADT7518 also has the ability to monitor its own power supply. The part measures the voltage on its $V_{\rm DD}$ pin to a resolution of 10 bits. The resulting value is stored in two 8-bit registers; the two LSBs are stored in register address 03h and the eight MSBs are stored in Register Address 06h. This allows the option of doing just a 1-byte read if 10-bit resolution is not important. The measured result is compared with the $V_{\rm HIGH}$ and $V_{\rm LOW}$ limits. If the $V_{\rm DD}$ interrupt is not masked, any out-of-limit comparison generates a flag in the Interrupt Status 2 register and one or more out-of-limit results will cause the $\rm INT/\overline{INT}$ output to pull either high or low, depending on the output polarity setting.

Measuring the voltage on the $V_{\rm DD}$ pin is regarded as monitoring a channel along with the internal, external, and AIN channels. The user can select the $V_{\rm DD}$ channel for single-channel measurement by setting Bit C4 = 1 and setting Bits C0:C2 to all 0s in the Control Configuration 2 register.

When measuring the $V_{\rm DD}$ value, the reference for the ADC is sourced from the internal reference. Table 8 shows the data format. As the maximum $V_{\rm DD}$ voltage measurable is 7 V, internal scaling is performed on the $V_{\rm DD}$ voltage to match the 2.25 V internal reference value. Below is an example of how the transfer function works.

```
V_{DD} = 5 V

ADC Reference = 2.25 V

1 LSB = ADC Reference/2<sup>10</sup>

= 2.25/1024

= 2.226 mV

Scale Factor = Full-Scale V_{CC}/ADC Reference

= 7/2.25

= 3.07

Conversion Result = V_{DD}/(Scale\ Factor \times LSB\ size)

= 5/(3.07 × 2.226 mV)

= 2 DCh
```

Table 8. V_{DD} Data Format ($V_{REF} = 2.25 \text{ V}$)

Digita		Output	
V _{DD} Value (V)	Binary	Hex	
2.7	01 1000 1011	18B	
3	01 1011 0111	1B7	
3.5	10 0000 0000	200	
4	10 0100 1001	249	
4.5	10 1001 0010	292	
5	10 1101 1100	2DC	
5.5	11 0010 0101	325	
6	11 0110 1110	36E	
6.5	11 1011 0111	3B7	
7	11 1111 1111	3FF	

On-Chip Reference

The ADT7518 has an on-chip 1.2 V band gap reference, which is gained up by a switched capacitor amplifier to give an output of 2.25 V. The amplifier is powered up for the duration of the device monitoring phase and is powered down once monitoring is disabled. This saves on current consumption. The internal reference is used as the reference for the ADC. The ADC is used for measuring $V_{\rm DD}$, internal temperature sensor, external temperature sensor, and AIN inputs. The internal reference is always used when measuring $V_{\rm DD}$, and the internal and external temperature sensors. The external reference is the default power-up reference for the DACs.

Round Robin Measurement

On power-up, the ADT7518 goes into round robin mode but monitoring is disabled. Setting Bit C0 of the Configuration Register 1 to 1 enables conversions. It sequences through all the available channels, taking a measurement from each in the following order: VDD, internal temperature sensor, external temperature sensor/(AIN1 and AIN2), AIN3, and AIN4. Pin 7 and Pin 8 can be configured to be either external temperature sensor pins or standalone analog input pins. Once conversion is completed on the AIN4 channel, the device loops around for another measurement cycle. This method of taking a measurement on all the channels in one cycle is called round robin. Setting Bit C4 of Control Configuration 2 (Address 19h) disables the round robin mode and in turn sets up the singlechannel mode. The single-channel mode is where only one channel, e.g., the internal temperature sensor, is measured in each conversion cycle.

The time taken to monitor all channels will normally not be of interest, since the most recently measured value can be read at any time. For applications where the round robin time is important, typical times at 25°C are given in the specifications.

Single-Channel Measurement

Setting C4 of the Control Configuration 2 register enables the single-channel mode and allows the ADT7518 to focus on one channel only. A channel is selected by writing to Bits C0:C2 in the Control Configuration 2 register. For example, to select the $V_{\rm DD}$ channel for monitoring, write to the Control Configuration

2 register and set C4 to 1 (if not done so already), then write all 0s to Bits C0:C2. All subsequent conversions will be done on the $V_{\rm DD}$ channel only. To change the channel selection to the internal temperature channel, write to the Control Configuration 2 register and set C0 = 1. When measuring in single-channel mode, conversions on the channel selected occur directly after each other. Any communication to the ADT7518 stops the conversions, but they are restarted once the read or write operation is completed.

Internal Temperature Measurement

The ADT7518 contains an on-chip band gap temperature sensor whose output is digitized by the on-chip ADC. The temperature data is stored in the Internal Temperature Value register. Because both positive and negative temperatures can be measured, the temperature data is stored in twos complement format, as shown in Table 9. The thermal characteristics of the measurement sensor could change and, therefore, an offset is added to the measured value to enable the transfer function to match the thermal characteristics. This offset is added before the temperature data is stored. The offset value used is stored in the internal temperature offset register.

External Temperature Measurement

The ADT7518 can measure the temperature of one external diode sensor or diode-connected transistor.

The forward voltage of a diode or diode-connected transistor, operated at a constant current, exhibits a negative temperature coefficient of about -2 mV/°C. Unfortunately, because the absolute value of V_{BE} varies from device to device, and individual calibration is required to null this out, the technique is unsuitable for mass production.

The technique used in the ADT7518 is to measure the change in V_{BE} when the device is operated at two different currents. This is given by

$$\Delta V_{BE} = KT / q \times \ln(N)$$

where:

K is Boltzmann's constant.*q* is the charge on the carrier.*T* is the absolute temperature in kelvins.*N* is the ratio of the two currents.

Figure 41 shows the input signal conditioning used to measure the output of an external temperature sensor. This figure shows the external sensor as a substrate transistor, provided for temperature monitoring on some microprocessors, but it could equally well be a discrete transistor.

If a discrete transistor is used, the collector is not grounded and should be linked to the base. If a PNP transistor is used, the base is connected to the D– input and the emitter to the D+ input. If an NPN transistor is used, the emitter is connected to the D– input and the base to the D+ input. A 2N3906 is recommended as the external transistor.

To prevent ground noise interfering with the measurement, the more negative terminal of the sensor is not referenced to ground, but is biased above ground by an internal diode at the D– input. As the sensor is operating in a noisy environment, C1 is provided as a noise filter. See the Layout Considerations section for more information on C1.

To measure ΔV_{BE} , the sensor is switched between operating currents of I and N \times I. The resulting waveform is passed through a low-pass filter to remove noise, then to a chopper-stabilized amplifier that performs the functions of amplification and rectification of the waveform to produce a dc voltage proportional to ΔV_{BE} . This voltage is measured by the ADC to give a temperature output in 10-bit twos complement format. To further reduce the effects of noise, digital filtering is performed by averaging the results of 16 measurement cycles.

Layout Considerations

Digital boards can be electrically noisy environments, and care must be taken to protect the analog inputs from noise, particularly when measuring the very small voltages from a remote diode sensor. The following precautions should be taken:

- 1. Place the ADT7518 as close as possible to the remote sensing diode. Provided that the worst noise sources such as clock generators, data/address buses, and CRTs are avoided, this distance can be 4 inches to 8 inches.
- 2. Route the D+ and D- tracks close together, in parallel, with grounded guard tracks on each side. Provide a ground plane under the tracks, if possible.
- Use wide tracks to minimize inductance and reduce noise pickup. A 10 mil track minimum width and spacing is recommended.

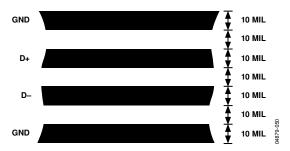


Figure 50. Arrangement of Signal Tracks

4. Try to minimize the number of copper/solder joints, which can cause thermocouple effects. Where copper/solder joints are used, make sure that they are in both the D+ and D- path and at the same temperature. Thermocouple effects should not be a major problem because 1°C corresponds to about 240 μ V, and thermocouple voltages are about 3 μ V/°C of temperature difference. Unless there are two thermocouples with a big temperature differential between them, thermocouple voltages should be much less than 200 mV.

- 5. Place $0.1 \mu F$ bypass and 2,200 pF input filter capacitors close to the ADT7518.
- 6. If the distance to the remote sensor is more than 8 inches, the use of twisted-pair cable is recommended. This will work up to about 6 feet to 12 feet.
- 7. For long distances (up to 100 feet), use shielded twisted-pair cable, such as Belden #8451 microphone cable. Connect the twisted pair to D+ and D- and the shield to GND close to the ADT7518. Leave the remote end of the shield unconnected to avoid ground loops.

Because the measurement technique uses switched current sources, excessive cable and/or filter capacitance can affect the measurement. When using long cables, the filter capacitor may be reduced or removed.

Cable resistance can also introduce errors. Series resistance of $1~\Omega$ introduces about 0.5° C error.

Temperature Value Format

One LSB of the ADC corresponds to 0.25° C. The ADC can theoretically measure a temperature span of 255° C. The internal temperature sensor is guaranteed to a low value limit of -40° C. It is possible to measure the full temperature span using the external temperature sensor. The temperature data format is shown in Table 9.

The result of the internal or external temperature measurements is stored in the temperature value registers, and is compared with limits programmed into the internal or external high and low registers.

Table 9. Temperature Data Format (Internal and External Temperature)

Temperature)		
Temperature	Digital Output	
−40°C	11 0110 0000	
−25°C	11 1001 1100	
−10°C	11 1101 1000	
−0.25°C	11 1111 1111	
0°C	00 0000 0000	
+0.25°C	00 0000 0001	
+10°C	00 0010 1000	
+25°C	00 0110 0100	
+50°C	00 1100 1000	
+75°C	01 0010 1100	
+100°C	01 1001 0000	
+105°C	01 1010 0100	
+125°C	01 1111 0100	

Temperature Conversion Formula:

Positive Temperature = ADC Code/4
Negative Temperature = (ADC Code* - 512)/4
*where DB9 is removed from the ADC code.

Interrupts

The measured results from the internal temperature sensor, external temperature sensor, $V_{\rm DD}$ pin, and AIN inputs are compared with the $T_{\rm HIGH}/V_{\rm HIGH}$ (greater than comparison) and $T_{\rm LOW}/V_{\rm LOW}$ (less than or equal to comparison) limits. An interrupt occurs if the measurement exceeds or equals the limit registers. These limits are stored in on-chip registers. Note that the limit registers are 8 bits long while the conversion results are 10 bits long. If the limits are not masked, any out-of-limit comparisons generate flags that are stored in the Interrupt Status 1 register (Address 00h) and Interrupt Status 2 register (Address 01h). One or more out-of-limit results will cause the INT/ $\overline{\rm INT}$ output to pull either high or low depending on the output polarity setting. It is good design practice to mask out interrupts for channels that are of no concern to the application.

Figure 49 shows the interrupt structure for the ADT7518. It gives a block diagram representation of how the various measurement channels affect the INT/INT pin.

ADT7518 REGISTERS

The ADT7518 contains registers that are used to store the results of external and internal temperature measurements, $V_{\rm DD}$ value measurements, analog input measurements, high and low temperature limits, supply voltage and analog input limits, to set output DAC voltage levels, to configure multipurpose pins, and generally to control the device. A description of these registers follows.

The register map is divided into registers of 8 bits. Each register has its own individual address, but some consist of data that is linked to other registers. These registers hold the 10-bit conversion results of measurements taken on the temperature, $V_{\rm DD}$, and AIN channels. For example, the eight MSBs of the V_{DD} measurement are stored in Register Address 06h, while the two LSBs are stored in Register Address 03h. These types of registers are linked such that when the LSB register is read first, the MSB registers associated with that LSB register are locked to prevent any updates. To unlock these MSB registers, the user has only to read any one of them, which will have the effect of unlocking all previously locked MSB registers. So, for the preceding example, if Register 03h was read first, MSB Registers 06h and 07h would be locked to prevent any updates to them. If Register 06h were read, this register and Register 07h would be subsequently unlocked.

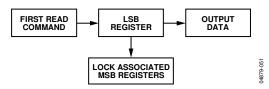


Figure 51. Phase 1 of 10-Bit Read