# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

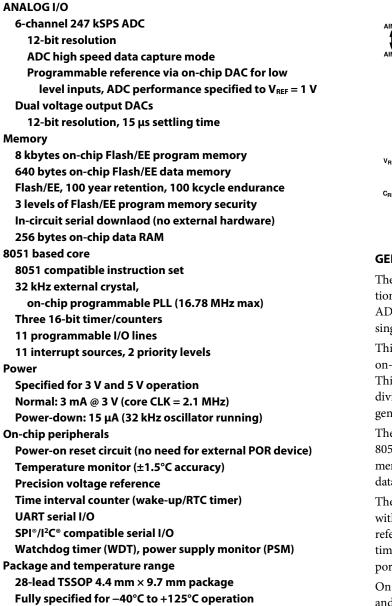
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




# **ANALOG DEVICES**

**FEATURES** 

# MicroConverter<sup>®</sup>, Small Package 12-Bit ADC with Embedded Flash MCU

# ADuC814

#### FUNCTIONAL BLOCK DIAGRAM



#### **APPLICATIONS**

Optical networking—laser power control Base station systems—power amplifier bias control Precision instruments, smart sensors Battery-powered systems, precision system monitors

#### Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

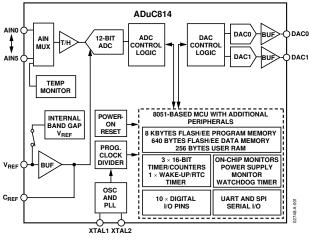



Figure 1.

#### **GENERAL DESCRIPTION**

The ADuC814 is a fully integrated 247 kSPS, 12-bit data acquisition system incorporating a high performance multichannel ADC, an 8-bit MCU, and program/data Flash/EE memory on a single chip.

This low power device operates from a 32 kHz crystal with an on-chip PLL generating a high frequency clock of 16.78 MHz. This clock is, in turn, routed through a programmable clock divider from which the MCU core clock operating frequency is generated.

The microcontroller core is an 8052 and is compatible with an 8051 instruction. 8 kBytes of nonvolatile Flash/EE program memory are provided on-chip. 640 bytes of nonvolatile Flash/EE data memory and 256 bytes RAM are also integrated on-chip.

The ADuC814 also incorporates additional analog functionality with dual 12-bit DACs, a power supply monitor, and a band gap reference. On-chip digital peripherals include a watchdog timer, time interval counter, three timer/counters, and two serial I/O ports (SPI and UART).

On-chip factory firmware supports in-circuit serial download and debug modes (via UART), as well as single-pin emulation mode via the DLOAD pin. The ADuC814 is supported by a QuickStart<sup>™</sup> Development System.

The part operates from a single 3 V or 5 V supply over the extended temperature range  $-40^{\circ}$ C to  $+125^{\circ}$ C. When operating from 3 V supplies, the power dissipation for the part is below 10 mW. The ADuC814 is housed in a 28-lead TSSOP package.

# **ADUC814\* PRODUCT PAGE QUICK LINKS**

Last Content Update: 02/23/2017

### COMPARABLE PARTS

View a parametric search of comparable parts.

### EVALUATION KITS

ADuC814 QuickStart Development System

### **DOCUMENTATION**

#### **Application Notes**

- AN-1074: Understanding the Serial Download Protocol (Formerly uC004)
- AN-282: Fundamentals of Sampled Data Systems
- AN-660: XY-Matrix Keypad Interface to MicroConverter<sup>®</sup>
- AN-661: ADuC814 to ADM1032 via I<sup>2</sup>C<sup>®</sup> Interface
- AN-709: RTD Interfacing and Linearization Using an ADuC8xx MicroConverter<sup>®</sup>
- AN-759: Expanding the Number of DAC Outputs on the ADuC8xx and ADuC702x Families (uC012)
- UC-001: MicroConverter® I2C® Compatible Interface
- UC-006: A 4-wire UART-to-PC Interface
- UC-009: Addressing 16MB of External Data Memory
- UC-018: Uses of the Time Interval Counter

#### Data Sheet

- ADuC814: MicroConverter<sup>®</sup>, Small Package, 12-Bit ADC with Embedded Flash MCU Data Sheet
- ADuC814: Errata Sheet

#### **User Guides**

- ADuC814 Quick Reference Guide
- UG-041: ADuC8xx Evaluation Kit Getting Started User Guide

### REFERENCE MATERIALS

#### **Technical Articles**

· Integrated Route Taken to Pulse Oximetry

### DESIGN RESOURCES

- ADUC814 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

### DISCUSSIONS

View all ADUC814 EngineerZone Discussions.

### SAMPLE AND BUY

Visit the product page to see pricing options.

### TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

### DOCUMENT FEEDBACK

Submit feedback for this data sheet.

### **TABLE OF CONTENTS**

| Specifications                               |
|----------------------------------------------|
| Absolute Maximum Ratings                     |
| ESD Caution                                  |
| Pin Configuration and Function Description10 |
| Terminology12                                |
| ADC Specifications                           |
| DAC Specifications                           |
| Typical Performance Curves                   |
| ADuC814 Architecture, Main Features          |
| Memory Organization17                        |
| Overview of MCU-Related SFRs18               |
| Accumulator SFR                              |
| B SFR                                        |
| Stack Pointer SFR 18                         |
| Data Pointer                                 |
| Program Status Word SFR18                    |
| Power Control SFR 19                         |
| Special Function Registers                   |
| ADC Circuit Information                      |
| General Overview                             |
| ADC Transfer Function                        |
| ADC Data Output Format                       |
| SFR Interface to ADC Block                   |
| ADCCON1 (ADC Control SFR 1) 22               |
| ADCCON2 (ADC Control SFR 2)                  |
| ADCCON3 (ADC Control SFR 3)                  |
| Driving the ADC25                            |
| Voltage Reference Connections                |
| Configuring the ADC                          |
| Initiating ADC Conversions                   |
| ADC High Speed Data Capture Mode             |

| ADC Offset and Gain Calibration Overview            | 28 |
|-----------------------------------------------------|----|
| ADC Offset and Gain Calibration Coefficients        | 28 |
| Calibrating the ADC                                 | 29 |
| Initiating Calibration in Code                      | 29 |
| Nonvolitile Flash/EE Memory                         | 30 |
| Flash/EE Memory Overview                            | 30 |
| Flash/EE Memory and the ADuC814                     | 30 |
| ADuC814 Flash/EE Memory Reliability                 | 30 |
| Using Flash/EE Program Memory                       | 31 |
| Serial Downloading (In-Circuit Programming)         | 31 |
| Parallel Programming                                | 31 |
| Flash/EE Program Memory Security                    | 31 |
| Lock Mode                                           | 31 |
| Secure Mode                                         | 31 |
| Serial Safe Mode                                    | 31 |
| Using Flash/EE Data Memory                          | 32 |
| ECON—Flash/EE Memory Control SFR                    | 32 |
| Flash/EE Memory Timing                              | 33 |
| Using the Flash/EE Memory Interface                 | 33 |
| Programming a Byte                                  | 33 |
| User Interface to Other On-Chip ADuC814 Peripherals | 34 |
| DACs                                                | 34 |
| Using the DACs                                      | 35 |
| On-Chip PLL                                         | 37 |
| Time Interval Counter (TIC)                         | 38 |
| Watchdog Timer                                      | 41 |
| Power Supply Monitor                                | 42 |
| ADuC814 Configuration Register (CFG814)             | 43 |
| Serial Peripheral Interface                         | 43 |
| External Clock                                      | 43 |
|                                                     |    |

| Serial Peripheral Interface44                  |
|------------------------------------------------|
| MISO (Master In, Slave Out Data I/O Pin)44     |
| MOSI (Master Out, Slave In Pin)44              |
| SCLOCK (Serial Clock I/O Pin)44                |
| SS (Slave Select Input Pin)44                  |
| Using the SPI Interface45                      |
| SPI Interface—Master Mode45                    |
| SPI Interface—Slave Mode45                     |
| I <sup>2</sup> C Compatible Interface46        |
| 8051 Compatible On-Chip Peripherals47          |
| Parallel I/O Ports 1 and 347                   |
| Additional Digital Outputs Pins47              |
| Timers/Counters                                |
| Timer/Counter 0 and 1 Data Registers49         |
| Timer/Counter 0 and 1 Operating Modes50        |
| Mode 0 (13-Bit Timer/Counter)50                |
| Mode 1 (16-Bit Timer/Counter)50                |
| Mode 2 (8-Bit Timer/Counter with Autoreload)50 |
| Mode 3 (Two 8-Bit Timer/Counters)50            |
| Timer/Counter 2 Data Registers51               |
| Timer/Counter 2 Operating Modes                |
| 16-Bit Autoreload Mode52                       |
| 16-Bit Capture Mode52                          |
| UART Serial Interface53                        |

#### **REVISION HISTORY**

| 12/03 – Data Sheet Changed from REV. 0 to REV. A |        |
|--------------------------------------------------|--------|
| Added detailed description of productUni         | versal |
| Changes to Specifications                        | 4      |
| Updated Outline Dimensions                       | 70     |
| Changes to Ordering Guide                        | 71     |

| SBUF                                       | 53 |
|--------------------------------------------|----|
| Mode 0: 8-Bit Shift Register Mode          | 54 |
| Mode 1: 8-Bit UART, Variable Baud Rate     | 54 |
| Mode 2: 9-Bit UART with Fixed Baud Rate    | 55 |
| Mode 3: 9-Bit UART with Variable Baud Rate | 55 |
| UART Serial Port Baud Rate Generation      | 55 |
| Timer 2 Generated Baud Rates               | 56 |
| Interrupt System                           | 57 |
| Interrupt Priority                         | 59 |
| Interrupt Vectors                          | 59 |
| ADuC814 Hardware Design Considerations     | 60 |
| Clock Oscillator                           | 60 |
| Power Supplies                             | 60 |
| Power Consumption                          | 60 |
| Power-Saving Modes                         | 61 |
| Power-On Reset                             | 61 |
| Grounding and Board Layout Recommendations | 61 |
| Other Hardware Considerations              | 62 |
| In-Circuit Serial Download Access          | 62 |
| Embedded Serial Port Debugger              | 62 |
| Single-Pin Emulation Mode                  | 63 |
| Timing Specifications                      | 64 |
| Outline Dimensions                         | 70 |
| Ordering Guide                             | 71 |

## **SPECIFICATIONS**

Table 1.  $AV_{DD} = DV_{DD} = 2.7$  V to 3.3 V or 4.5 V to 5.5 V,  $V_{REF} = 2.5$  V internal reference, XTAL1/XTAL2 = 32.768 kHz crystal. All specifications  $T_{MIN}$  to  $T_{MAX}$ , unless otherwise specified<sup>1</sup>

| Parameter                                  | $V_{DD} = 5 V$        | $V_{DD} = 3 V$                 | Unit    | Test Conditions                        |
|--------------------------------------------|-----------------------|--------------------------------|---------|----------------------------------------|
| ADC CHANNEL SPECIFICATIONS                 |                       |                                |         |                                        |
| A GRADE                                    |                       |                                |         |                                        |
| DC ACCURACY <sup>2,3</sup>                 |                       |                                |         | f <sub>SAMPLE</sub> = 147 kHz          |
| Resolution                                 | 12                    | 12                             | Bits    |                                        |
| Integral Nonlinearity                      | 2                     | 2                              | LSB max | 2.5 V internal reference               |
|                                            | 1                     | 1                              | LSB typ |                                        |
|                                            | 2.5                   | 2.5                            | LSB typ | 1.0 V external reference               |
| Differential Nonlinearity                  | 4                     | 4                              | LSB max | 2.5 V internal reference               |
|                                            | 2                     | 2                              | LSB typ |                                        |
|                                            | 5                     | 5                              | LSB typ | 1.0 V external reference               |
| CALIBRATED ENDPOINT ERRORS <sup>4, 5</sup> |                       |                                |         |                                        |
| Offset Error                               | 5                     | 5                              | LSB max |                                        |
| Offset Error Match                         | 1                     | 1                              | LSB typ |                                        |
| Gain Error                                 | 5                     | 5                              | LSB max |                                        |
| Gain Error Match                           | 1                     | 1                              | LSB typ |                                        |
| DYNAMIC PERFORMANCE <sup>6</sup>           |                       |                                |         | $f_{IN} = 10 \text{ kHz}$ sine wave    |
|                                            |                       |                                |         | $f_{SAMPLE} = 147 \text{ kHz}$         |
| Signal to Noise Ratio (SNR) <sup>7</sup>   | 62.5                  | 62.5                           | dB typ  |                                        |
| Total Harmonic Distortion (THD)            | -65                   | -65                            | dB typ  |                                        |
| Peak Harmonic or Spurious Noise            | -65                   | -65                            | dB typ  |                                        |
| Channel-to-Channel Crosstalk <sup>8</sup>  | -80                   | -80                            | dB typ  |                                        |
| B GRADE                                    |                       |                                |         |                                        |
| DC ACCURACY <sup>2, 3</sup>                |                       |                                |         | f <sub>SAMPLE</sub> = 147 kHz          |
| Resolution                                 | 12                    | 12                             | Bits    |                                        |
| Integral Nonlinearity                      | 1                     | 1                              | LSB max | 2.5 V internal reference               |
|                                            | 0.3                   | 0.3                            | LSB typ |                                        |
|                                            | 1.5                   | 1.5                            | LSB max | 1.0 V external reference <sup>11</sup> |
| Differential Nonlinearity                  | 0.9                   | 0.9                            | LSB max | 2.5 V internal reference               |
|                                            | 0.25                  | 0.25                           | LSB typ |                                        |
|                                            | +1.5/-0.9             | 1.5/-0.9                       | LSB max | 1.0 V external reference <sup>11</sup> |
| Code Distribution                          | 1                     | 1                              | LSB typ | ADC input is a dc voltage              |
| CALIBRATED ENDPOINT ERRORS <sup>4, 5</sup> |                       |                                |         |                                        |
| Offset Error                               | 2                     | 3                              | LSB max |                                        |
| Offset Error Match                         | 1                     | 1                              | LSB typ |                                        |
| Gain Error                                 | 2                     | 3                              | LSB max |                                        |
| Gain Error Match                           | 1                     | 1                              | LSB typ |                                        |
| DYNAMIC PERFORMANCE <sup>6</sup>           |                       |                                |         | $f_{IN} = 10 \text{ kHz}$ sine wave    |
|                                            |                       |                                |         | $f_{SAMPLE} = 147 \text{ kHz}$         |
| Signal to Noise Ratio (SNR) <sup>7</sup>   | 71                    | 71                             | dB typ  |                                        |
| Total Harmonic Distortion (THD)            | -85                   | -85                            | dB typ  |                                        |
| Peak Harmonic or Spurious Noise            | -85                   | -85                            | dB typ  |                                        |
| Channel-to-Channel Crosstalk <sup>8</sup>  | -80                   | -80                            | dB typ  |                                        |
| ANALOG INPUT                               |                       |                                |         |                                        |
| Input Voltage Ranges                       | 0 to $V_{\text{REF}}$ | $0 \text{ to } V_{\text{REF}}$ | V       |                                        |
| Leakage Current                            | 1                     | 1                              | μA max  |                                        |
| Input Capacitance                          | 32                    | 32                             | pF typ  |                                        |

| Parameter                                             | $V_{DD} = 5 V$        | $V_{DD} = 3 V$  | Unit       | Test Conditions                                          |
|-------------------------------------------------------|-----------------------|-----------------|------------|----------------------------------------------------------|
| TEMPERATURE MONITOR <sup>9</sup>                      |                       |                 |            |                                                          |
| Voltage Output at 25°C                                | 650                   | 650             | mV typ     |                                                          |
| Voltage TC                                            | -2                    | -2              | mV/°C typ  |                                                          |
| Accuracy                                              | 3                     | 3               | °C typ     | 2.5 V internal reference                                 |
| Accuracy                                              | 1.5                   | 1.5             | °C typ     | 2.5 V external reference                                 |
| DAC CHANNEL SPECIFICATIONS                            |                       |                 | 0.00       | DAC Load to AGND RL = 10 k $\Omega$ , CL = 100 pF        |
| DC ACCURACY <sup>10</sup>                             |                       |                 |            |                                                          |
| Resolution                                            | 12                    | 12              | Bits       |                                                          |
| Relative Accuracy                                     | +3                    | +3              | LSB typ    |                                                          |
| Differential Nonlinearity <sup>11</sup>               | -1                    | -1              | LSB max    | Guaranteed montonic                                      |
| ,                                                     | 1/2                   | 1/2             | LSB typ    |                                                          |
| Offset Error                                          | 50                    | 50              | mV max     | V <sub>REF</sub> range                                   |
| Gain Error                                            | 1                     | 1               | % max      | V <sub>REF</sub> range                                   |
|                                                       | 1                     | 1               | % typ      | AV <sub>DD</sub> range                                   |
| Gain Error Mismatch                                   | 0.5                   | 0.5             | % typ      | Of full scale on DAC1                                    |
| ANALOG OUTPUTS                                        |                       |                 |            |                                                          |
| Voltage Range_0                                       | 0 to V <sub>REF</sub> |                 | Volts      | $DACV_{REF} = 2.5 V$                                     |
| Voltage Range_1                                       | 0 to V <sub>DD</sub>  |                 | Volts      | $DAC V_{REF} = V_{DD}$                                   |
| Output Impedance                                      | 0.5                   | 0.5             | Ωtyp       |                                                          |
| l <sub>sink</sub>                                     | 50                    | 50              | μA typ     |                                                          |
| DAC AC Specifications                                 |                       |                 | T: JF      |                                                          |
| Voltage Output Settling Time                          | 15                    | 15              | μs typ     | Full-scale settling time to within ½ LSB of final value  |
| Digital-to-Analog Glitch Energy                       | 10                    | 10              | nVs typ    | 1 LSB change at major carry                              |
| REFERENCE INPUT/OUTPUT                                |                       |                 |            |                                                          |
| REFERENCE OUTPUT                                      |                       |                 |            |                                                          |
| Output Voltage (V <sub>REF</sub> )                    | 2.5                   | 2.5             | V          |                                                          |
| Accuracy                                              | 2.5                   | 2.5             | % max      | Of V <sub>REF</sub> measured at the C <sub>REF</sub> pin |
| Power Supply Rejection                                | 47                    | 57              | dB typ     |                                                          |
| Reference Tempco                                      | 100                   | 100             | ppm/ºC typ |                                                          |
| Internal V <sub>REF</sub> Power-On Time <sup>12</sup> | 80                    | 80              | ms typ     |                                                          |
| EXTERNAL REFERENCE INPUT <sup>13</sup>                |                       |                 |            | Internal band gap reference deselected via<br>ADCCON2.6  |
| Voltage Range (V <sub>REF</sub> ) <sup>14</sup>       | 1.0                   | 1.0             | V min      |                                                          |
|                                                       | V <sub>DD</sub>       | V <sub>DD</sub> | V max      |                                                          |
| Input Impedance                                       | 20                    | 20              | kΩ typ     |                                                          |
| Input Leakage                                         | 10                    | 10              | μA max     |                                                          |
| POWER SUPPLY MONITOR (PSM)                            |                       |                 |            |                                                          |
| V <sub>DD</sub> Trip Point Selection Range            | 2.63                  | 2.63            | V          |                                                          |
|                                                       | 2.93                  | 2.93            | V          | Four trip points selectable in this range                |
|                                                       | 3.08                  | 3.08            | V          | programmed via TP1–0 in PSMCON                           |
|                                                       | 4.63                  |                 | V          |                                                          |
| V <sub>DD</sub> Power Supply Trip Point Accuracy      | 3.5                   | 3.5             | % max      |                                                          |
| WATCH DOG TIMER (WDT) <sup>14</sup>                   |                       |                 |            |                                                          |
| Timeout Period                                        | 0                     | 0               | ms min     | Nine time-out periods selectable in this range           |
|                                                       | 2000                  | 2000            | ms max     | programmed via PRE3–0 in WDCON                           |
| LOGIC INPUTS                                          |                       |                 |            |                                                          |
| INPUT VOLTAGES <sup>14</sup>                          |                       |                 |            |                                                          |
| All Inputs except SCLOCK, RESET, and<br>XTAL1         |                       |                 |            |                                                          |
| V <sub>INL</sub> , Input Low Voltage                  | 0.8                   | 0.4             | V max      |                                                          |
| V <sub>INH</sub> , Input High Voltage                 | 2.0                   | 2.0             | V min      |                                                          |

| Parameter                                        | $V_{DD} = 5 V$ | $V_{DD} = 3 V$ | Unit             | Test Conditions                                              |
|--------------------------------------------------|----------------|----------------|------------------|--------------------------------------------------------------|
| SCLOCK and RESET Only <sup>14</sup>              |                |                |                  |                                                              |
| (Schmitt-Triggered Inputs)                       |                |                |                  |                                                              |
| V <sub>T+</sub>                                  | 1.3            | 0.95           | V min            |                                                              |
|                                                  | 3.0            | 2.5            | V max            |                                                              |
| V <sub>T</sub> -                                 | 0.8            | 0.4            | V min            |                                                              |
|                                                  | 1.4            | 1.1            | V max            |                                                              |
| $V_{T+}-V_{T-}$                                  | 0.3            | 0.3            | V min            |                                                              |
|                                                  | 0.85           | 0.85           | V max            |                                                              |
| INPUT CURRENTS                                   |                |                |                  |                                                              |
| P1.2–P1.7, DLOAD                                 | ±10            | ±10            | μA max           | $V_{IN} = 0 V \text{ or } V_{DD}$                            |
| SCLOCK <sup>15</sup>                             | -10            | -3             | μA min           | $V_{IN} = 0 V$ , internal pull-up                            |
|                                                  | -40            | –15            | μA max           | $V_{IN} = 0 V$ , internal pull-up                            |
|                                                  | ±10            | ±10            | μA max           | $V_{IN} = V_{DD}$                                            |
| RESET                                            | ±10            | ±10            | μA max           | $V_{IN} = 0 V$                                               |
|                                                  | 20             | 10             | μA min           | $V_{IN} = 5 V$ , 3 V internal pull-down                      |
|                                                  | 105            | 35             | μA max           | $V_{IN} = 5 V$ , 3 V internal pull-down                      |
| P1.0, P1.1, Port 3 <sup>15</sup>                 | ±10            | ±10            | µA max           | V <sub>IN</sub> = 5 V, 3 V                                   |
| (includes MISO, MOSI/SDATA and $\overline{SS}$ ) | 1              | 1              | μA typ           |                                                              |
|                                                  | -180           | -70            | μA min           | $V_{IN} = 2 V, V_{DD} = 5 V, 3 V$                            |
|                                                  | -660           | -200           | μA max           |                                                              |
|                                                  | -360           | -100           | μA typ           |                                                              |
|                                                  | -20            | -5             | μA min           | $V_{IN} = 450 \text{ mV}, V_{DD} = 5 \text{ V}, 3 \text{ V}$ |
|                                                  | -75            | -25            | μA max           |                                                              |
|                                                  | -38            | -12            | μA typ           |                                                              |
| NPUT CAPACITANCE                                 | 5              | 5              | pF typ           | All digital inputs                                           |
| CRYSTAL OSCILLATOR<br>(XTAL1 AND XTAL2)          |                |                | T 7F             |                                                              |
| Logic Inputs, XTAL1 Only                         |                |                |                  |                                                              |
| V <sub>INL</sub> , Input Low Voltage             | 0.8            | 0.4            | V typ            |                                                              |
| V <sub>INH</sub> , Input High Voltage            | 3.5            | 2.5            | V typ            |                                                              |
| XTAL1 Input Capacitance                          | 18             | 18             | pF typ           |                                                              |
| XTAL2 Output Capacitance                         | 18             | 18             | pF typ           |                                                              |
| DIGITAL OUTPUTS                                  |                |                | P. 9P            |                                                              |
| Output High Voltage (Vон)                        | 2.4            | 2.4            | V min            | I <sub>SOURCE</sub> = 80 mA                                  |
| Output Low Voltage (VOR)                         |                |                |                  | Source of the                                                |
| Port 1.0 and Port 1.1                            | 0.4            | 0.4            | V max            | I <sub>SINK</sub> = 10 mA, T <sub>MAX</sub> = 85°C           |
| Port 1.0 and Port 1.1                            | 0.4            | 0.4            | V max            | $I_{SINK} = 10 \text{ mA}, T_{MAX} = 0.5 \text{ C}$          |
| SCLOCK, MISO/MOSI                                | 0.4            | 0.4            | V max            | $I_{SINK} = 4 \text{ mA}$                                    |
| All Other Outputs                                | 0.4            | 0.4            | V max            | $I_{SINK} = 1.6 \text{ mA}$                                  |
| MCU CORE CLOCK                                   | 0.1            |                | VIIIGA           |                                                              |
| MCU Clock Rate                                   | 131.1          | 131.1          | kHz min          | Clock rate generated via on-chip PLL,                        |
| MCO CIOCK NALE                                   | 1.1.1          | 1.1.1          |                  | programmable via CD2-0 in PLLCON                             |
|                                                  | 16.78          | 16.78          | MHz max          |                                                              |
| START UP TIME                                    |                |                |                  |                                                              |
| At Power-On                                      | 500            | 500            | ms typ           |                                                              |
| From Idle Mode                                   | 100            | 100            | μs typ           |                                                              |
| From Power-Down Mode                             |                |                | F7 F             |                                                              |
| Oscillator Running                               |                |                |                  | OSC_PD = 0 in PLLCON SFR                                     |
| Wake-Up with INTO Interrupt                      | 100            | 100            | μs typ           |                                                              |
| Wake-Up with SPI/I <sup>2</sup> C Interrupt      | 100            | 100            |                  |                                                              |
| Wake-Up with TIC Interrupt                       | 100            | 100            | μs typ           |                                                              |
| Wake-Up with External RESET                      | 3              | 3              | μs typ<br>ms typ |                                                              |
| wake-up with external Reser                      | 3              | 2              | ms typ           |                                                              |

| Parameter                                   | $V_{DD} = 5 V$ | $V_{DD} = 3 V$ | Unit             | Test Conditions                                                      |
|---------------------------------------------|----------------|----------------|------------------|----------------------------------------------------------------------|
| Oscillator Powered Down <sup>16</sup>       |                |                |                  | OSC_PD = 1 in PLLCON SFR                                             |
| Wake-Up with INTO Interrupt                 | 150            | 400            | ms typ           |                                                                      |
| Wake-Up with SPI/I <sup>2</sup> C Interrupt | 150            | 400            | ms typ           |                                                                      |
| Wake-Up with External RESET                 | 150            | 400            | ms typ           |                                                                      |
| After External RESET in Normal Mode         | 3              | 3              | ms typ           |                                                                      |
| After WDT Reset in Normal Mode              | 3              | 3              | ms typ           | Controlled via WDCON SFR                                             |
| ELASH/EE MEMORY RELIABILITY                 |                |                |                  |                                                                      |
| Endurance <sup>18</sup>                     | 100,000        | 100,000        | Cycles min       |                                                                      |
| Data Retention <sup>19</sup>                | 100            | 100            | Years min        |                                                                      |
| POWER REQUIREMENTS <sup>20, 21</sup>        |                |                |                  |                                                                      |
| Power Supply Voltages                       |                |                |                  |                                                                      |
| $AV_{DD}/DV_{DD} - AGND$                    |                | 2.7            | V min            | $AV_{DD}/DV_{DD} = 3 V nom$                                          |
|                                             |                | 3.3            | V max            |                                                                      |
|                                             | 4.5            | 2.5            | Vmin             | $AV_{DD}/DV_{DD} = 5 V nom$                                          |
|                                             | 5.5            |                | V max            |                                                                      |
| Power Supply Currents, Normal Mode          | 5.5            |                | VIIIdx           |                                                                      |
| D <sub>VDD</sub> Current <sup>14</sup>      | 5              | 2.5            | mA max           | Core CLK = 2.097 MHz                                                 |
| Dwbb Current                                | 4              | 2.5            | mA typ           | (CD bits in PLLCON = 3)                                              |
| Avdd Current <sup>14</sup>                  | 1.7            | 1.7            | mA typ<br>mA max | (CD DIts III FEECON = 3)                                             |
|                                             |                | -              | -                | Core (IK - 16.79 MHz (max))                                          |
| D <sub>VDD</sub> Current                    | 20             | 10             | mA max           | Core CLK = 16.78MHz (max)                                            |
| A Comment                                   | 16             | 8              | mA typ           | (CD bits in PLLCON = 0)                                              |
| Avdd Current                                | 1.7            | 1.7            | mA max           |                                                                      |
| D <sub>VDD</sub> Current <sup>14</sup>      | 3.5            | 1.5            | mA max           | Core CLK = $131.2$ kHz (min)                                         |
|                                             | 2.8            | 1.2            | mA typ           | (CD bits in PLLCON $=$ 7)                                            |
| Avdd Current                                | 1.7            | 1.7            | mA max           |                                                                      |
| Power Supply Currents, Idle Mode            |                |                |                  |                                                                      |
| D <sub>VDD</sub> Current <sup>14</sup>      | 1.7            | 1.2            | mA max           | Core CLK = 2.097 MHz                                                 |
|                                             | 1.5            | 1              | mA typ           | (CD Bits in PLLCON $=$ 3)                                            |
| AV <sub>DD</sub> Current <sup>14</sup>      | 0.15           | 0.15           | mA max           |                                                                      |
| DV <sub>DD</sub> Current <sup>14</sup>      | 6              | 3              | mA max           | Core CLK = 16.78 MHz (max)                                           |
|                                             | 4              | 2.5            | mA typ           | (CD bits in PLLCON $= 0$ )                                           |
| AV <sub>DD</sub> Current <sup>14</sup>      | 0.15           | 0.15           | mA max           |                                                                      |
| DV <sub>DD</sub> Current <sup>14</sup>      | 1.25           | 1              | mA max           | Core CLK = 131 kHz (min)                                             |
|                                             | 1.1            | 0.7            | mA typ           | (CD bits in PLLCON $=$ 7)                                            |
| AV <sub>DD</sub> Current <sup>14</sup>      | 0.15           | 0.15           | mA max           |                                                                      |
| Power Supply Currents, Power-Down<br>Mode   |                |                |                  | Core CLK = 2.097 MHz or 16.78 MHz (CD bits<br>PLLCON = 3 or 0)       |
| DV <sub>DD</sub> Current <sup>14</sup>      | 1              | 20             | μA max           | Oscillator on                                                        |
|                                             | 40             | 14             | μA typ           |                                                                      |
| AV <sub>DD</sub> Current                    | 1              | 1              | μA typ           |                                                                      |
| DV <sub>DD</sub> Current                    | 1              | 15             | μA max           | Oscillator off                                                       |
|                                             | 20             | 10             | μA typ           |                                                                      |
| AV <sub>DD</sub> Current                    | 1              | 1              | μA typ           |                                                                      |
| Typical Additional Power Supply<br>Currents |                |                |                  | Core CLK = 2.097 MHz, (CD bits in PLLCON = $AV_{DD} = DV_{DD} = 5 V$ |
| PSM Peripheral                              | 50             |                | μA typ           |                                                                      |
| ADC                                         | 1.5            |                | mA typ           |                                                                      |
| DAC                                         | 150            |                | μA typ           |                                                                      |

<sup>1</sup>Temperature range –40°C to +125°C.

<sup>2</sup>ADC linearity is guaranteed when operating in nonpipelined mode, i.e., ADC conversion followed sequentially by a read of the ADC result. ADC linearity is also guaranteed during normal MicroConverter core operation.

<sup>3</sup>ADC LSB size =  $V_{REF}$  /2<sup>12</sup>, i.e., for internal  $V_{REF}$  = 2.5 V, 1 LSB = 610  $\mu$ V, and for external  $V_{REF}$  = 1 V, 1 LSB = 244  $\mu$ V.

<sup>4</sup>Offset and gain error and offset and gain error match are measured after factory calibration.

<sup>5</sup>Based on external ADC system components the user may need to execute a system calibration to remove additional external channel errors

and achieve these specifications.

<sup>6</sup>Measured with coherent sampling system using external 16.77 MHz clock via P3.5 (Pin 22).

<sup>7</sup>SNR calculation includes distortion and noise components.

<sup>8</sup>Channel-to-channel crosstalk is measured on adjacent channels.

 $^{
m ?}$ The temperature monitor gives a measure of the die temperature directly; air temperature can be inferred from this result.

<sup>10</sup>DAC linearity is calculated using a reduced code range of 48 to 4095, 0 V to V<sub>REF</sub> range; a reduced code range of 48 to 3950, 0 V to V<sub>DD</sub> range. DAC output load = 10 kΩ and 100 pF.

 $^{11}\text{DAC}$  differential nonlinearity specified on 0 V to  $V_{\text{REF}}$  and 0 to  $V_{\text{DD}}$  ranges.

<sup>12</sup>Measured with V<sub>REF</sub> and C<sub>REF</sub> pins decoupled with 0.1 µF capacitors to ground. Power-up time for the internal reference is determined by the value of the decoupling capacitor chosen for both the V<sub>REF</sub> and C<sub>REF</sub> pins.

<sup>13</sup>When using an external reference device, the internal band gap reference input can be bypassed by setting the ADCCON1.6 bit. In this mode, the V<sub>REF</sub> and C<sub>REF</sub> pins need to be shorted together for correct operation.

<sup>14</sup>These numbers are not production tested but are guaranteed by design and/or characterization data on production release.

<sup>15</sup>Pins configured in I<sup>2</sup>C compatible mode or SPI mode; pins configured as digital inputs during this test.

<sup>16</sup>These typical specifications assume no loading on the XTAL2 pin. Any additional loading on the XTAL2 pin increases the power-on times.

<sup>17</sup>Flash/EE memory reliability characteristics apply to both the Flash/EE program memory and the Flash/EE data memory.

<sup>18</sup>Endurance is qualified to 100 kcycles as per JEDEC Std. 22, Method A117 and measured at –40°C, +25°C, and +125°C; typical endurance at +25°C is 700 kcycles.

<sup>19</sup>Retention lifetime equivalent at junction temperature (T<sub>J</sub>) = 55°C as per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6 eV derates with junction temperature as shown in Figure 33 in the Flash/EE memory description section.

<sup>20</sup>Power supply current consumption is measured in normal, idle, and power-down modes under the following conditions:

Normal Mode: Reset and all digital I/O pins = open circuit, core Clk changed via CD bits in PLLCON, core executing internal software loop.

Idle Mode: Reset and all digital I/O pins = open circuit, core Clk changed via CD bits in PLLCON, PCON.0 = 1, core execution suspended in idle mode. Power-Down Mode: Reset and all P1.2–P1.7 pins = 0.4 V; all other digital I/O pins are open circuit, Core Clk changed via CD bits in PLLCON, PCON.1 = 1,

Core execution suspended in power-down mode, OSC turned on or off via OSC\_PD bit (PLLCON.7) in PLLCON SFR.

<sup>21</sup>DV<sub>DD</sub> power supply current increases typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle.

### **ABSOLUTE MAXIMUM RATINGS**

Table 2. Temperature = 25°C, unless otherwise noted

| 1 wolt 20 1 timp that all 20 0, and 50                  | 00000                              |
|---------------------------------------------------------|------------------------------------|
| Parameter                                               | Rating                             |
| AV <sub>DD</sub> to AGND                                | –0.3 V to +7 V                     |
| DV <sub>DD</sub> to AGND                                | –0.3 V to +7 V                     |
| AV <sub>DD</sub> to DV <sub>DD</sub>                    | –0.3 V to +0.3 V                   |
| AGND to DGND <sup>1</sup>                               | –0.3 V to +0.3 V                   |
| Analog Input Voltage to AGND <sup>2</sup>               | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| Reference Input Voltage to AGND                         | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| Analog Input Current (Indefinite)                       | 30 mA                              |
| Reference Input Current (Indefinite)                    | 30 mA                              |
| Digital Input Voltage to DGND                           | -0.3 V to DV <sub>DD</sub> + 0.3 V |
| Digital Output Voltage to DGND                          | -0.3 V to DV <sub>DD</sub> + 0.3 V |
| Operating Temperature Range                             | -40°C to +125°C                    |
| Storage Temperature Range                               | -65°C to +150°C                    |
| Junction Temperature                                    | 150°C                              |
| θ <sub>JA</sub> Thermal Impedance                       | 97.9°C/W                           |
| Lead Temperature, Soldering                             |                                    |
| Vapor Phase (60 sec)                                    | 215°C                              |
| Infrared (15 sec)                                       | 220°C                              |
| <sup>1</sup> AGND and DGND are shorted internally on th |                                    |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

<sup>2</sup> Applies to Pins P1.2 to P1.7 operating in analog or digital input mode.

#### **ESD CAUTION**

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



### **PIN CONFIGURATION AND FUNCTION DESCRIPTION**

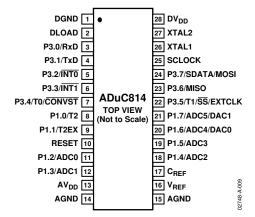



Figure 2. Pin Configuration

#### Table 3. Pin Descriptions

| Pin No. | Mnemonic           | Туре | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | DGND               | S    | Digital Ground. Ground reference point for the digital circuitry.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2       | DLOAD              | I    | Debug/Serial Download Mode. Enables when pulled high through a resistor on power-on or RESET. I this mode, DLOAD may also be used as an external emulation I/O pin, therefore the voltage level at this pin must not be changed during this mode of operation because it may cause an emulation interrupt that halts code execution. User code is executed when this pin is pulled low on power-on o RESET.                                                                                                        |
| 3–7     | P3.0 – P3.4        | I/O  | Bidirectional Port Pins with Internal Pull-Up Resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state they can be used as inputs. As inputs, with Port 3 pins being pulled low externally, they source current because of the internal pull-up resistors. When driving a 0-to-1 output transition, a strong pull-up is active during S1 of the instruction cycle. Port 3 pins also have various secondary functions which are described next.     |
| 3       | P3.0/RxD           | I/O  | Receiver Data Input (asynchronous) or Data Input/Output (synchronous) in Serial (UART) Mode.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4       | P3.1/TxD           | I/O  | Transmitter Data Output (asynchronous) or Clock Output (synchronous) in Serial (UART) Mode.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5       | P3.2/INT0          | I/O  | Interrupt 0, programmable edge or level-triggered interrupt input, which can be programmed to one of two priority levels. This pin can also be used as agate control input to Timer 0.                                                                                                                                                                                                                                                                                                                             |
| 6       | P3.3/INT1          | I/O  | Interrupt 1, programmable edge or level-triggered interrupt input, which can be programmed to one of two priority levels. This pin can also be used as agate control input to Timer 1.                                                                                                                                                                                                                                                                                                                             |
| 7       | P3.4/T0/<br>CONVST | I/O  | Timer/Counter 0 Input and External Trigger Input for ADC Conversion Start.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8–9     | P1.0-P1.1          | I/O  | Bidirectional Port Pins with Internal Pull-Up Resistors. Port 1 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state they can be used as inputs. As inputs ,with Port 1 pins being pulled low externally, they source current because of the internal pull-up resistors When driving a 0-to-1 output transition a strong pull-up is active during S1 of the instruction cycle. Port 1 pins also have various secondary functions which are described as follows. |
| 8       | P1.0/T2            | I/O  | Timer 2 Digital Input. Input to Timer/Counter 2. When enabled, Counter 2 is incremented in response to a 1 to 0 transition of the T2 input.                                                                                                                                                                                                                                                                                                                                                                        |
| 9       | P1.1/T2EX          | I/O  | Digital Input. Capture/Reload trigger for Counter 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10      | RESET              | I    | Reset Input. A high level on this pin while the oscillator is running resets the device. There is an internal weak pull-down and a Schmitt-trigger input stage on this pin.                                                                                                                                                                                                                                                                                                                                        |
| 11–12   | P1.2–P1.3          | I    | Port 1.2 to P1.3. These pins have no digital output drivers, i.e., they can only function as digital inputs for which 0 must be written to the port bit. These port pins also have the following analog functionality                                                                                                                                                                                                                                                                                              |
| 11      | P1.2/ADC0          | 1    | ADC Input Channel 0. Selected via ADCCON2 SFR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12      | P1.3/ADC1          | 1    | ADC Input Channel 1. Selected via ADCCON2 SFR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13      | AV <sub>DD</sub>   | S    | Analog Positive Supply Voltage, 3 V or 5 V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14–15   | AGND               | G    | Analog Ground. Ground reference point for the analog circuitry.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16      | V <sub>REF</sub>   | I/O  | Reference Input/Output. This pin is connected to the internal reference through a switch and is the reference source for the analog to digital converter. The nominal internal reference voltage is 2.5 V and this appears at the pin. This pin can be used to connect an external reference to the analog to digital converter by setting ADCCON1.6 to 1. Connect 0.1 $\mu$ F between this pin and AGND.                                                                                                          |

| Pin No. | Mnemonic            | Туре | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|---------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17      | CREF                | 1    | Decoupling Input for On-Chip Reference. Connect 0.1 µF between this pin and AGND.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18–21   | P1.4–P1.7           | 1    | Port 1.4 to P1.7. These pins have no digital output drivers, i.e., they can only function as digital inputs, for which 0 must be written to the port bit. These port pins also have the following analog functionality:                                                                                                                                                                                                                                                                                             |
| 18      | P1.4/ADC2           | I    | ADC Input Channel 2. Selected via ADCCON2 SFR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19      | P1.5/ADC3           | 1    | ADC Input Channel 2. Selected via ADCCON2 SFR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20      | P1.6/ADC4/<br>DAC0  | I/O  | ADC Input Channel 4. Selected via ADCCON2 SFR. The voltage DAC Channel 0 can also be configured to appear on P1.6.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21      | P1.7/<br>ADC5/DAC1  | I/O  | ADC Input Channel 5, selected via ADCCON2 SFR. The voltage DAC Channel 1 can also be configured to appear on P1.7.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22–24   | P3.5-P3.7           | 1/0  | Bidirectional Port Pins with Internal Pull-Up Resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state they can be used as inputs. As inputs ,with Port 3 pins being pulled low externally, they source current because of the internal pull-up resistors. When driving a 0-to-1 output transition a strong pull-up is active during S1 of the instruction cycle. Port 3 pins also have various secondary functions which are described as follows. |
| 22      | P3.5/T1             |      | I/O Timer/Counter 1 Input. P3.5–P3.7 pins also have SPI interface functions. To enable these functions, Bit 0 of the CFG814 SFR must be set to 1.                                                                                                                                                                                                                                                                                                                                                                   |
| 22      | P3.5/SS<br>/EXTCLK  | I/O  | This pin also functions as the Slave Select input for the SPI interface when the device is operated in slave mode. P3.5 can also function as an input for an external clock. This clock effectively bypasses the PLL. This function is enabled by setting Bit 1 of the CFG814 SFR.                                                                                                                                                                                                                                  |
| 23      | P3.6/MISO           | I/O  | SPI Master Input/Slave Output Data Input/Output Pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24      | P3.7/SDATA/<br>MOSI | I/O  | SPI Master Output/Slave Input Data Input/Output Pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25      | SCLOCK              | I/O  | Serial Clock Pin for SPI Serial Interface Clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26      | XTAL1               | I    | Input to the Crystal Oscillator Inverter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27      | XTAL2               | 0    | Output from the Crystal Oscillator Inverter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28      | DVDD                | S    | Analog Positive Supply Voltage, 3 V or 5 V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

I = Input, O = Output, S = Supply, G - Ground.

The following notes apply to the entire data sheet:

- In bit designation tables, *set* implies a Logic 1 state, and *cleared* implies a Logic 0 state, unless otherwise stated.
- *Set* and *cleared* also imply that the bit is set or cleared by the ADuC814 hardware, unless otherwise stated.
- User software should not write to reserved or unimplemented bits as they may be used in future products.

### TERMINOLOGY ADC SPECIFICATIONS

#### **Integral Nonlinearity**

This is the maximum deviation of any code from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point1/2 LSB below the first code transition and full scale, a point 1/2 LSB above the last code transition.

#### **Differential Nonlinearity**

This is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

#### **Offset Error**

This is the deviation of the first code transition (0000 ... 000) to (0000 ... 001) from the ideal, i.e., +1/2 LSB.

#### **Full-Scale Error**

This is the deviation of the last code transition from the ideal AIN voltage (full-scale error has been adjusted out).

#### Signal-to-(Noise + Distortion) Ratio

This is the measured ratio of signal-to-(noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the rms sum of all nonfundamental signals up to half the sampling frequency ( $f_s/2$ ), excluding dc. The ratio is dependent upon the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. The theoretical signal-to-(noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by

Signal-to = -(Noise + Distortion) = (6.02N + 1.76)

Thus, for a 12-bit converter, this is 74 dB.

#### **Total Harmonic Distortion (THD)**

Total harmonic distortion is the ratio of the rms sum of the harmonics to the fundamental.

#### Peak Harmonic or Spurious Noise

Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum (up to  $f_s/2$  and including dc) to the rms value of the fundamental. Normally, the value of this specification is determined by the largest harmonic in the spectrum, but for ADCs where the harmonics are buried in the noise floor, it is the noise peak.

#### **DAC SPECIFICATIONS**

#### **Relative Accuracy**

Relative accuracy or endpoint linearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero-scale error and full-scale error.

#### Voltage Output Settling Time

This is the amount of time it takes for the output to settle to a specified level for a full-scale input change.

#### Digital-to-Analog Glitch Impulse

This is the amount of charge injected into the analog output when the inputs change state. It is specified as the area of the glitch in nV-sec.

### **TYPICAL PERFORMANCE CURVES**

The typical performance plots presented in this section illustrate typical performance of the ADuC814 under various operating conditions. Note that all typical plots in this section were generated using the ADuC814BRU, i.e., the B-grade part.

Figure 3 and Figure 4 show typical ADC integral nonlinearity (INL) errors from ADC Code 0 to Code 4095 at 5 V and 3 V supplies, respectively. The ADC is using its internal reference (2.5 V) and operating at a sampling rate of 152 kHz. The typical worst-case errors in both plots are just less than 0.3 LSBs.

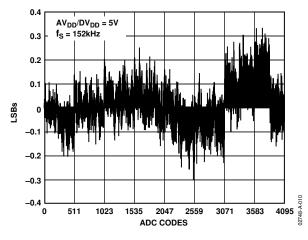



Figure 3. Typical INL Error,  $V_{DD} = 5 V$ 




Figure 4. Typical INL Error,  $V_{DD} = 3 V$ 

Figure 5 and Figure 6 show the variation in worst-case positive (WCP) INL and worst-case negative (WCN) INL versus external reference input voltage.

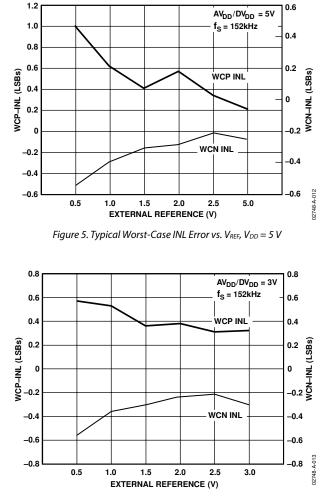
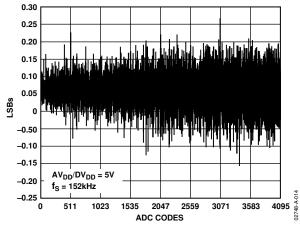
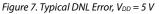





Figure 6. Typical Worst-Case INL Error vs.  $V_{REF}$ ,  $V_{DD} = 3 V$ 

Figure 7 and Figure 8 show typical ADC differential nonlinearity (DNL) errors from ADC Code 0 to Code 4095 at 5 V and 3 V supplies, respectively. The ADC is using its internal reference (2.5 V) and operating at a sampling rate of 152 kHz. The typical worst-case errors in both plots are just less than 0.2 LSBs.





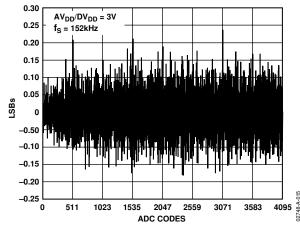
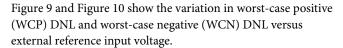




Figure 8. Typical DNL Error,  $V_{DD} = 3 V$ 



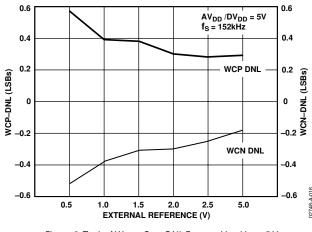



Figure 9. Typical Worst-Case DNL Error vs.  $V_{REF}$ ,  $V_{DD} = 5 V$ 

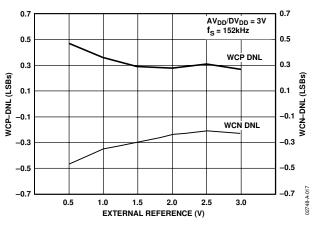
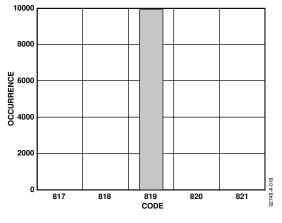




Figure 10. Typical Worst-Case DNL Error vs.  $V_{REF}$ ,  $V_{DD} = 3 V$ 

Figure 11 shows a histogram plot of 10,000 ADC conversion results on a dc input with  $V_{DD} = 5$  V. The plot illustrates an excellent code distribution pointing to the low noise performance of the on-chip precision ADC.



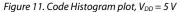



Figure 12 shows a histogram plot of 10,000 ADC conversion results on a dc input for  $V_{DD}$  = 3 V. The plot again illustrates a very tight code distribution of 1 LSB with the majority of codes appearing in one output bin.

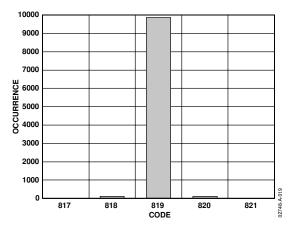



Figure 12. Code Histogram Plot,  $V_{DD} = 3 V$ 

Figure 13 and Figure 14 show typical FFT plots for the ADuC814. These plots were generated using an external clock input via P3.5 to achieve coherent sampling. The ADC is using its internal reference (2.5 V) sampling a full-scale, 10 kHz sine wave test tone input at a sampling rate of 149.79 kHz. The resultant FFTs shown at 5 V and 3 V supplies illustrate an excellent 100 dB noise floor, a 71 dB signal-to-noise ratio (SNR), and a THD greater than -80 dB.

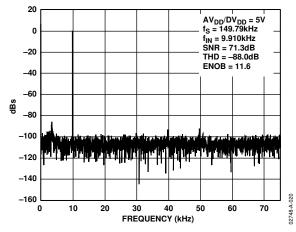



Figure 13. ADuC814 Dynamic Performance at  $V_{DD} = 5 V$ 

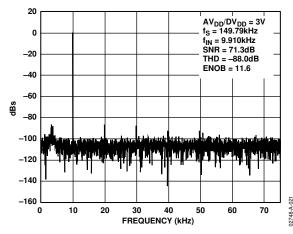



Figure 14. ADuC814 Dynamic Performance at  $V_{DD} = 3 V$ 

Figure 15 and Figure 16 show typical dynamic performance versus external reference voltages. Again excellent ac performance can be observed in both plots with some roll-off being observed as  $V_{\text{REF}}$  falls below 1 V.

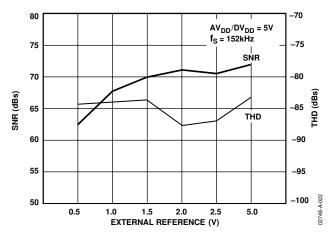



Figure 15. Typical Dynamic Performance vs.  $V_{REF}$ ,  $V_{DD} = 5 V$ 

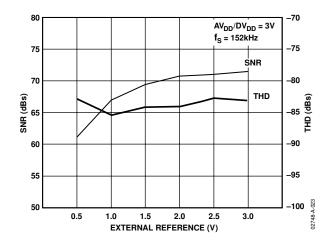



Figure 16. Typical Dynamic Performance vs.  $V_{REF}$ ,  $V_{DD} = 3 V$ 

### ADuC814 ARCHITECTURE, MAIN FEATURES

The ADuC814 is a fully integrated 247 kSPS 12-bit data acquisition system incorporating a high performance multichannel ADC, an 8-bit MCU, and program/data Flash/EE memory on a single chip.

This low power device operates from a 32 kHz crystal with an on-chip PLL generating a high frequency clock of 16.78 MHz. This clock is, in turn, routed through a programmable clock divider from which the MCU core clock operating frequency is generated.

The microcontroller core is an 8052, and therefore 8051, instruction set compatible. The microcontroller core machine cycle consists of 12 core clock periods of the selected core operating frequency. Eight kbytes of nonvolatile Flash/EE program memory are provided on-chip. 640 bytes of nonvolatile Flash/EE data memory and 256 bytes RAM are also integrated on-chip.

The ADuC814 also incorporates additional analog functionality with dual 12-bit DACs, a power supply monitor, and a band gap

reference. On-chip digital peripherals include a watchdog timer, time interval counter, three timer/counters, and three serial I/O ports (SPI, UART, I<sup>2</sup>C).

On-chip factory firmware supports in-circuit serial download and debug modes (via UART), as well as single-pin emulation mode via the DLOAD pin. A detailed functional block diagram of the ADuC814 is shown in Figure 17.

The ADuC814 is supported by a QuickStart Development System. This is a full-featured, low cost system, consisting of PC-based (Windows compatible) hardware and software development tools.

The part operates from a single 3 V or 5 V supply. When operating from 3 V supplies, the power dissipation for the part is below 10 mW. The ADuC814 is housed in a 28-lead TSSOP package and is specified for operation over an extended temperature range  $-40^{\circ}$ C to  $+125^{\circ}$ C.

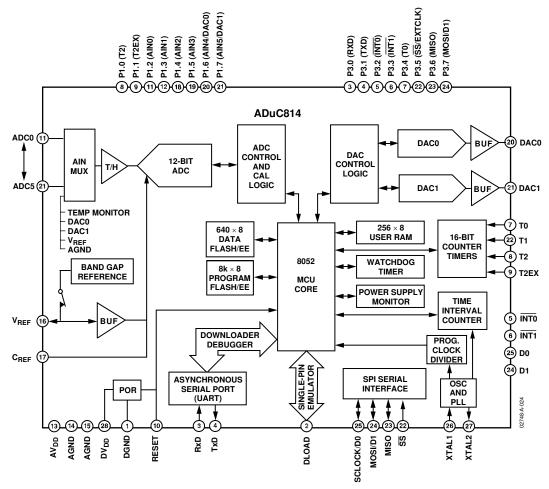



Figure 17. ADuC814 Block Diagram

#### **MEMORY ORGANIZATION**

The ADuC814 does not have Port 0 and Port 2 pins and therefore does not support external program or data memory interfaces. The device executes code from the internal 8-kByte Flash/EE program memory. This internal code space can be programmed via the UART serial port interface while the device is in-circuit. The program memory space of the ADuC814 is shown in Figure 18.

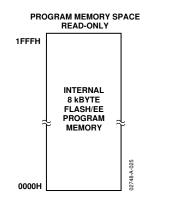



Figure 18. Program Memory Map

The data memory address space consists of internal memory only. The internal memory space is divided into four physically separate and distinct blocks, namely the lower 128 bytes of RAM, the upper 128 bytes of RAM, the 128 bytes of special function register (SFR) area, and a 640-byte Flash/EE data memory. While the upper 128 bytes of RAM and the SFR area share the same address locations, they are accessed through different addressing modes.

The lower 128 bytes of data memory can be accessed through direct or indirect addressing, the upper 128 bytes of RAM can be accessed through indirect addressing, and the SFR area is accessed through direct addressing.

Also, as shown in Figure 19, an additional 640 bytes of Flash/EE data memory are available to the user and can be accessed indirectly via a group of control registers mapped into the SFR area. Access to the Flash/EE data memory is discussed in detail later as part of the Flash/EE Memory section.

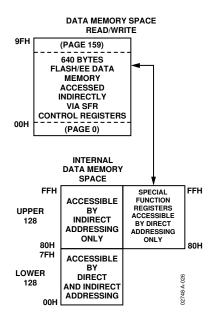



Figure 19. Data Memory Map

The lower 128 bytes of internal data memory are mapped as shown in Figure 20. The lowest 32 bytes are grouped into four banks of eight registers addressed as R0 to R7. The next 16 bytes (128 bits), locations 20H to 2FH above the register banks, form a block of directly addressable bit locations at bit addresses 00H through 7FH. The stack can be located anywhere in the internal memory address space, and the stack depth can be expanded up to 256 bytes.

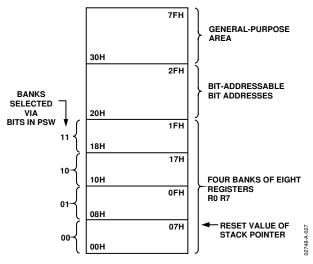



Figure 20. Lower 128 Bytes of Internal Data Memory

RESET initializes the stack pointer to location 07H and increments it once to start from location 08H, which is also the first register (R0) of Register Bank 1. If more than one register bank is being used, the stack pointer should be initialized to an area of RAM not used for data storage.

The SFR space is mapped to the upper 128 bytes of internal data memory space and is accessed by direct addressing only. It provides an interface between the CPU and all on-chip peripherals. A block diagram showing the programming model of the ADuC814 via the SFR area is shown in Figure 21. A complete SFR map is shown in Figure 22.

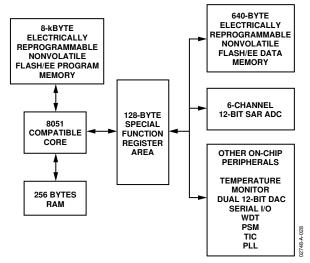



Figure 21. Programming Model

#### **OVERVIEW OF MCU-RELATED SFRS** *Accumulator SFR*

ACC is the accumulator register and is used for math operations including addition, subtraction, integer multiplication and division, and Boolean bit manipulations. The mnemonics for accumulator-specific instructions refer to the accumulator as A.

#### B SFR

The B register is used with the ACC for multiplication and division operations. For other instructions it can be treated as a general-purpose scratchpad register.

#### **Stack Pointer SFR**

The SP register is the stack pointer and is used to hold an internal RAM address called the *top of the stack*. The SP register is incremented before data is stored during PUSH and CALL executions. While the stack may reside anywhere in on-chip RAM, the SP register is initialized to 07H after a reset. This causes the stack to begin at location 08H.

#### Data Pointer

The data pointer is made up of two 8-bit registers, named DPH (high byte) and DPL (low byte). These registers provide memory addresses for internal code access. The pointer may be manipulated as a 16-bit register (DPTR = DPH, DPL), or as two independent 8-bit registers (DPH, DPL).

#### Program Status Word SFR

The program status word (PSW) register is the program status word that contains several bits reflecting the current status of the CPU as detailed in Table 4.

| SFR Address      | D0H |
|------------------|-----|
| Power-On Default | 00H |
| Bit Addressable  | Yes |

| CY | AC | FO | RS1 | RS0 | OV | F1 | Р |
|----|----|----|-----|-----|----|----|---|

#### Table 4. PSW SFR Bit Designations

| Bit No. | Name | Name Description |                       |               |  |  |  |
|---------|------|------------------|-----------------------|---------------|--|--|--|
| 7       | CY   | Carry F          | Carry Flag.           |               |  |  |  |
| 6       | AC   | Auxilia          | uxiliary Carry Flag.  |               |  |  |  |
| 5       | F0   | Genera           | ieneral-Purpose Flag. |               |  |  |  |
| 4       | RS1  | Regist           | er Bank Se            | elect Bits.   |  |  |  |
| 3       | RS0  | RS1              | RS0                   | Selected Bank |  |  |  |
|         |      | 0                | 0                     | 0             |  |  |  |
|         |      | 0                | 0 1 1                 |               |  |  |  |
|         |      | 1                | 0                     | 2             |  |  |  |
|         |      | 1                | 1 1 3                 |               |  |  |  |
| 2       | OV   | Overflo          | Overflow Flag.        |               |  |  |  |
| 1       | F1   | Genera           | al-Purpose            | e Flag.       |  |  |  |
| 0       | Р    | Parity           | Bit.                  |               |  |  |  |

#### **Power Control SFR**

The power control (PCON) register contains bits for power-saving options and general-purpose status flags as shown in Table 5.

| SFR Address      | 87H |
|------------------|-----|
| Power-On Default | 00H |
| Bit Addressable  | No  |

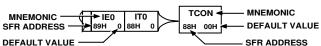
| SMOD | SERIPD | INTOPD | <br>GF1 | GF0 | PD | IDL |
|------|--------|--------|---------|-----|----|-----|

#### Table 5. PCON SFR Bit Designations

| Bit No. | Name   | Description                             |  |  |
|---------|--------|-----------------------------------------|--|--|
| 7       | SMOD   | Double UART Baud Rate.                  |  |  |
| 6       | SERIPD | SERIPD SPI Power-Down Interrupt Enable. |  |  |
| 5       | INTOPD | INTO Power-Down Interrupt Enable.       |  |  |
| 4       | RSVD   | Reserved.                               |  |  |
| 3       | GF1    | General-Purpose Flag Bit.               |  |  |
| 2       | GF0    | General-Purpose Flag Bit.               |  |  |
| 1       | PD     | Power-Down Mode Enable.                 |  |  |
| 0       | IDL    | Idle Mode Enable.                       |  |  |

#### SPECIAL FUNCTION REGISTERS

All registers, except the program counter and the four generalpurpose register banks, reside in the SFR area. The SFR registers include control, configuration, and data registers that provide an interface between the CPU and all on-chip peripherals.


Figure 22 shows a full SFR memory map and SFR contents on RESET; NOT USED indicates unoccupied SFR locations.

Unoccupied locations in the SFR address space are not implemented, i.e., no register exists at this location. If an unoccupied location is read, an unspecified value is returned. SFR locations reserved for future use are shaded (RESERVED) and should not be accessed by the user software.

| ISPI WCOL SPE SPIM CPOL CPHA SPR1 SPR05<br>FFH 0 FEH 0 FDH 0 FCH 0 FBH 0 FAH 1 F9H 0 F8H 0 | SPICON <sup>1</sup> | DACOL    | DAC0H    | DAC1L    | DAC1H    | DACCON   | RESERVED  | RESERVED |
|--------------------------------------------------------------------------------------------|---------------------|----------|----------|----------|----------|----------|-----------|----------|
| FFH 0 FEH 0 FDH 0 FCH 0 FBH 0 FAH 1 F9H 0 F8H 0                                            | F8H 04H             | F9H 00H  | FAH 00H  | FBH 00H  | FCH 00H  | FDH 04H  |           |          |
|                                                                                            | B1                  | ADCOFSL  | ADCOFSH  | ADCGAINL | ADCGAINH | ADCCON3  | RESERVED  | SPIDAT   |
| F7H 0 F6H 0 F5H 0 F4H 0 F3H 0 F2H 0 F1H 0 F0H 0                                            | F0H 00H             | F1H 00H  | F2H 20H  | F3H 00H  | F4H 00H  | F5H 00H  |           | F7H 00H  |
|                                                                                            | DCON <sup>1</sup>   |          |          |          |          |          |           | ADCCON1  |
| EFH 0 EEH 0 ECH 0 EBH 0 EAH 0 E9H 0 E8H 0                                                  | E8H 00H             | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED  | EFH 00H  |
|                                                                                            | ACC1                |          |          |          |          |          |           |          |
|                                                                                            | ЕОН ООН             | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED  | RESERVED |
| ADCI ADCSPI CCONV SCONV CS3 CS2 CS1 CS0                                                    | ADCCON21            | ADCDATAL | ADCDATAH |          |          |          |           | PSMCON   |
| DFH 0 DEH 0 DDH 0 DCH 0 DBH 0 DAH 0 D9H 0 D8H 0 BITS                                       | -<br>D8H 00H        | D9H 00H  | DAH 00H  | RESERVED | RESERVED | RESERVED | RESERVED  | DFH DEH  |
|                                                                                            |                     | D9H 00H  | DAN UUN  |          |          |          |           |          |
| CY AC F0 RS1 RS0 OV FI P BITS                                                              | PSW <sup>1</sup>    | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED  | PLLCON   |
| D7H 0 D6H 0 D5H 0 D4H 0 D3H 0 D2H 0 D1H 0 D0H 0                                            | DOH 00H             |          |          |          |          |          |           | D7H 53H  |
| TF2 EXF2 RCLK TCLK EXEN2 TR2 CNT2 CAP2 BITS                                                | T2CON1              | RESERVED | RCAP2L   | RCAP2H   | TL2      | TH2      | RESERVED  | DEOEDVED |
| CFH 0 CEH 0 CDH 0 CCH 0 CBH 0 CAH 0 C9H 0 C8H 0                                            | сан оон             | RESERVED | CAH 00H  | СВН 00Н  | CCH 00H  | CDH 00H  | RESERVED  | RESERVED |
|                                                                                            | WDCON1              |          | CHIPID   |          |          |          | EDARL     |          |
| PRE3 PRE2 PRE1 PRE0 WDIR WDS WD WDWR BITS                                                  | -                   | RESERVED | -        | RESERVED | NOT USED | RESERVED |           | RESERVED |
| C7H 0 C6H 0 C5H 0 C4H 1 C3H 0 C2H 0 C1H 0 C0H 0                                            | COH 10H             |          | C2H 0XH  |          |          |          | C6H 00H   |          |
| PSI PADC PT2 PS PT1 PX1 PT0 PX0 BITS                                                       | IP1                 | ECON     | ETIM1    | ETIM2    | EDATA1   | EDATA2   | EDATA3    | EDATA4   |
| BFH 0 BEH 0 BDH 0 BCH 0 BBH 0 BAH 0 B9H 0 B8H 0                                            | B8H 00H             | вэн оон  | BAH 00H  | ввн оон  | BCH 00H  | BDH 00H  | BEH 00H   | BFH 00H  |
| RD WR T1 T0 INT1 INT0 TxD RxD DITC                                                         | P31                 |          |          |          |          |          |           |          |
| B7H 1 B6H 1 B5H 1 B4H 1 B3H 1 B2H 1 B1H 1 B0H 1                                            | BOH FFH             | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED  | NOT USED |
|                                                                                            |                     | IEIP2    |          |          |          |          |           |          |
| AFH 0 AEH 0 ADH 0 ACH 0 ABH 0 AAH 0 A9H 0 A8H 0 BITS                                       | -                   |          | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED  | RESERVED |
|                                                                                            | A8H 00H             | A9H A0H  |          |          |          |          | 101771/01 |          |
|                                                                                            | NOT USED            | TIMECON  | HTHSEC   | SEC      | MIN      | HOUR     | INTVAL    | NOT USED |
|                                                                                            |                     | A1H 00H  | A2H 00H  | A3H 00H  | A4H 00H  | A5H 00H  | A6H 00H   |          |
| SM0 SM1 SM2 REN TB8 RB8 TI RI BITS                                                         | SCON <sup>1</sup>   | SBUF     | I2CDAT   | I2CADD   | CFG814   | NOT USED | NOT USED  | NOT USED |
| 9FH 0 9EH 0 9DH 0 9CH 0 9BH 0 9AH 0 99H 0 98H 0                                            | 98H 00H             | 99Н 00Н  | 9AH 00H  | 9BH 55H  | 9CH 04H  | NOT USED | NOT USED  | NOT USED |
|                                                                                            | P1 <sup>1,2</sup>   |          |          |          |          |          |           |          |
| 97H 1 96H 1 95H 1 94H 1 93H 1 92H 1 91H 1 90H 1 BITS                                       | -                   | NOT USED  | NOT USED |
|                                                                                            | 90H FFH             |          |          |          |          |          |           |          |
| TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 BITS                                                       | TCON1               | TMOD     | TL0      | TL1      | TH0      | TH1      | RESERVED  | RESERVED |
| 8FH 0 8EH 0 8DH 0 8CH 0 8BH 0 8AH 0 89H 0 88H 0                                            | 88H 00H             | 89H 00H  | 8AH 00H  | 8BH 00H  | 8CH 00H  | 8DH 00H  |           |          |
|                                                                                            |                     | SP       | DPL      | DPH      | DEOEDVED | DEOEDVER | DEOEDVED  | PCON     |
|                                                                                            | NOT USED            | 81H 07H  | 82H 00H  | 83H 00H  | RESERVED | RESERVED | RESERVED  | 87H 00H  |
|                                                                                            |                     |          | 0.0011   |          |          |          |           |          |

SFR MAP KEY:

THESE BITS ARE CONTAINED IN THIS BYTE.



02748-0-029

Figure 22. Special Function Register Locations and Reset Values

Note the following about SFRs:

- SFRs whose address ends in 0H or 8H are bit addressable.
- Only P1.0 and P1.1 can operate as digital I/O pins. P1.2-P1.7 can be configured as analog inputs (ADC inputs) or as digital inputs.
- The CHIPID SFR contains the silicon revision ID byte and may change for future silicon revisions.
- These registers are reconfigured at power-on with factory calculated calibration coefficients that can be overwritten by user code. See the calibration options in ADCCON3 SFR.
- When the SPIM bit in the SPICON SFR is cleared, the SPR0 bit reflects the level on the  $\overline{SS}$  pin (Pin 22).

# ADC CIRCUIT INFORMATION GENERAL OVERVIEW

The ADC block incorporates a 4.05 msec, 6-channel, 12-bit resolution, single-supply ADC. This block provides the user with a multichannel multiplexer, track-and-hold amplifier, on-chip reference, offset calibration features and ADC. All components in this block are easily configured via a 3-register SFR interface.

The ADC consists of a conventional successive-approximation converter based around a capacitor DAC. The converter accepts an analog input range of 0 V to V<sub>REF</sub>. A precision, factory calibrated 2.5 V reference is provided on-chip. An external reference may also be used via the external V<sub>REF</sub> pin. This external reference can be in the range 1.0 V to AV<sub>DD</sub>.

Single or continuous conversion modes can be initiated in software. In hardware, a convert signal can be applied to an external pin (CONVST), or alternatively Timer 2 can be configured to generate a repetitive trigger for ADC conversions.

The ADuC814 has a high speed ADC to SPI interface data capture logic implemented on-chip. Once configured, this logic transfers the ADC data to the SPI interface without the need for CPU intervention.

The ADC has six external input channels. Two of the ADC channels are multiplexed with the DAC outputs, ADC4 with DAC0, and ADC5 with DAC1. When the DAC outputs are in use, any ADC conversion on these channels represents the DAC output voltage. Due care must be taken to ensure that no external signal is trying to drive these ADC/DAC channels while the DAC outputs are enabled.

In addition to the six external channels of the ADC, five internal signals are also routed through the front end multiplexer. These signals include a temperature monitor, DAC0, DAC1,  $V_{REF}$ , and AGND. The temperature monitor is a voltage output from an on-chip band gap reference, which is proportional to absolute temperature. These internal channels can be selected similarly to the external channels via CS3–CS0 bits in the ADCCON2 SFR.

The ADuC814 is shipped with factory programmed offset and gain calibration coefficients that are automatically downloaded to the ADC on a power-on or RESET event, ensuring optimum ADC performance. The ADC core contains automatic endpoint self-calibration and system calibration options that allow the user to overwrite the factory programmed coefficients if desired and tailor the ADC transfer function to the system in which it is being used.

### ADC TRANSFER FUNCTION

The analog input range for the ADC is 0 V to  $V_{REF}$ . For this range, the designed code transitions occur midway between successive integer LSB values, i.e., 1/2 LSB, 3/2 LSBs, 5/2 LSBs ... FS –3/2 LSBs. The output coding is straight binary with 1 LSB = FS/4096 or 2.5 V/4096 = 0.61 mV when  $V_{REF}$  = 2.5 V. The ideal input/output transfer characteristic for the 0 V to  $V_{REF}$  range is shown in Figure 23.

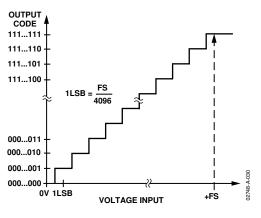



Figure 23. ADuC814 ADC Transfer Function

#### ADC Data Output Format

Once configured via the ADCCON1–3 SFRs, the ADC converts the analog input and provides an ADC 12-bit result word in the ADCDATAH/L SFRs. The ADCDATAL SFR contains the bottom 8 bits of the 12-bit result. The bottom nibble of the ADCDATAH SFR contains the top 4 bits of the result, while the top nibble contains the channel ID of the ADC channel which has been converted on. This ID corresponds to the channel selection bits CD3–CD0 in the ADCCON2 SFR. The format of the ADC 12-bit result word is shown in Figure 24.

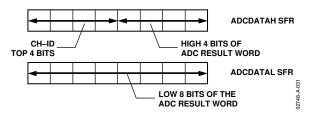



Figure 24. ADC Result Format

#### SFR INTERFACE TO ADC BLOCK

The ADC operation is fully controlled via three SFRs: ADCCON1, ADCCON2, and ADCCON3. These three registers control the mode of operation.

#### ADCCON1 (ADC CONTROL SFR 1)

The ADCCON1 register controls conversion and acquisition times, hardware conversion modes, and power-down modes as detailed below.

| SFR Address          | EFH |
|----------------------|-----|
| SFR Power-on Default | 00H |
| Bit Addressable      | No  |

| _ |      |         |     |     |     |     |     |     |
|---|------|---------|-----|-----|-----|-----|-----|-----|
|   | MODE | EXT_REF | CK1 | CK0 | AQ1 | AQ0 | T2C | EXC |

### Table 6. ADCCON1 SFR Bit Designations

| Bit No. | Name    | Description                                                                                                                                                                                                                                                       |
|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | MODE    | Mode Bit.                                                                                                                                                                                                                                                         |
|         |         | This bit selects the operating mode of the ADC.                                                                                                                                                                                                                   |
|         |         | Set to 1 by the user to power on the ADC.                                                                                                                                                                                                                         |
|         |         | Set to 0 by the user to power down the ADC.                                                                                                                                                                                                                       |
| 6       | EXT_REF | External Reference Select Bit.                                                                                                                                                                                                                                    |
|         |         | This bit selects which reference the ADC uses when performing a conversion.                                                                                                                                                                                       |
|         |         | Set to 1 by the user to switch in an external reference.                                                                                                                                                                                                          |
|         |         | Set to 0 by the user to switch in the on-chip band gap reference.                                                                                                                                                                                                 |
| 5       | CK1     | ADC Clock Divide Bits.                                                                                                                                                                                                                                            |
| 4       | СКО     | CK1 and CK0 combine to select the divide ratio for the PLL master clock used to generate the ADC clock. To ensure correct ADC operation, the divider ratio must be chosen to reduce the ADC clock to 4.5 MHz and below. The divider ratio is selected as follows: |
|         |         | CK1 CK0 PLL Divider                                                                                                                                                                                                                                               |
|         |         |                                                                                                                                                                                                                                                                   |
|         |         | $\begin{vmatrix} 0 & 1 & 4 \\ 1 & 0 & 16 \end{vmatrix}$                                                                                                                                                                                                           |
|         |         |                                                                                                                                                                                                                                                                   |
| 3       | AQ1     | The ADC Acquisition Time Select Bits.                                                                                                                                                                                                                             |
| 2       | AQ0     | AQ1 and AQ0 combine to select the number of ADC clocks required for the input track-and-hold amplifier to acquire the input signal. The acquisition time is selected as follows:                                                                                  |
|         |         | AQ1 AQ0 No. ADC Clks                                                                                                                                                                                                                                              |
|         |         | 0 0 1                                                                                                                                                                                                                                                             |
|         |         |                                                                                                                                                                                                                                                                   |
|         |         |                                                                                                                                                                                                                                                                   |
| 1       | T2C     | The Timer2 Conversion Bit.                                                                                                                                                                                                                                        |
| 1       | 120     | T2C is set to enable the Timer2 overflow bit to be used as the ADC convert start trigger input.                                                                                                                                                                   |
| 0       | EXC     | The External Trigger Enable Bit.                                                                                                                                                                                                                                  |
| 0       | LAC     | EXC is set to allow the external CONVST pin be used as the active low convert start trigger input. When enabled, a                                                                                                                                                |
|         |         | rising edge on this input pin trigger a conversion. This pin should remain low for a minimum pulse width of 100 nsec at the required sample rate.                                                                                                                 |

#### ADCCON2 (ADC CONTROL SFR 2)

The ADCCON2 (byte addressable) register controls ADC channel selection and conversion modes as detailed below.

| SFR Address          | D8H |
|----------------------|-----|
| SFR Power-On Default | 00H |
| Bit Addressable      | Yes |

| ADCI ADCSPI CCONV SCOVC CS3 CS2 CS1 CS0 |      |        |       |       |     |     |     |     |
|-----------------------------------------|------|--------|-------|-------|-----|-----|-----|-----|
|                                         | ADCI | ADCSPI | CCONV | SCOVC | CS3 | CS2 | CS1 | CS0 |

| Bit No. | Name   | Descri                                                                                                                 | ption                                                                                                                                            |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|---------|--------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7       | ADCI   | ADC Interrupt Bit.                                                                                                     |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | ADCI is set at the end of a single ADC conversion cycle. If the ADC interrupt is enabled, the ADCI bit is cleared when |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        |                                                                                                                        |                                                                                                                                                  |                                      | ADC interr                            | upt routin                           | e. Otherwise the ADCI bit should be cleared by the user code.                                                                                                                                                                                                                                                         |  |  |  |
| 6       | ADCSPI |                                                                                                                        |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        |                                                                                                                        | ADCSPI is set to enable the ADC conversion results to be transferred directly to the SPI data buffer (SPIDAT) without intervention from the CPU. |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 5       | CCONV  | Continuous Conversion Bit.                                                                                             |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | based<br>anothe<br>supplie                                                                                             | on the tin<br>er convers<br>es, the AD                                                                                                           | ning and o<br>sion once<br>OC should | channel co<br>a previou:<br>be config | onfigurations conversions ured for A | uous mode of conversion. In this mode the ADC starts converting<br>on already set up in the ADCCON SFRs. The ADC automatically starts<br>on cycle has completed. When operating in this mode from 3 V<br>DC clock divide of 16 using CK1 and CK0 bits in ADCCON1, and ADC<br>ocks using AQ1, AQ0 bits in ADCCON1 SFR. |  |  |  |
| 4       | SCONV  | Single                                                                                                                 | Conversio                                                                                                                                        | on Bit.                              |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | single                                                                                                                 |                                                                                                                                                  | n cycle. W                           |                                       |                                      | rcle. The SCONV bit is automatically reset to 0 on completion of the<br>his mode from 3 V supplies, the maximum ADC sampling rate should                                                                                                                                                                              |  |  |  |
| 3       | CS3    | Channel Selection Bits.                                                                                                |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 2       | CS2    | CS3–CS0 allow the user to program the ADC channel selection under software control. Once a conversion is               |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 1       | CS1    | initiated, the channel converted is pointed to by these channel selection bits.                                        |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 0       | CS0    | The Channel Select bits operate as follows:                                                                            |                                                                                                                                                  |                                      |                                       |                                      |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | CS3                                                                                                                    | CS2                                                                                                                                              | CS1                                  | CS0                                   | CHAN                                 | NEL                                                                                                                                                                                                                                                                                                                   |  |  |  |
|         |        | 0                                                                                                                      | 0                                                                                                                                                | 0                                    | 0                                     | 0                                    |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 0                                                                                                                      | 0                                                                                                                                                | 0                                    | 1                                     | 1                                    |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 0                                                                                                                      | 0                                                                                                                                                | 1                                    | 0                                     | 2                                    |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 0                                                                                                                      | 0                                                                                                                                                | 1                                    | 1                                     | 3                                    |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 0                                                                                                                      | 1                                                                                                                                                | 0                                    | 0                                     | 4                                    |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 0                                                                                                                      | 1                                                                                                                                                | 0                                    | 1                                     | 5                                    |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 0                                                                                                                      | 1                                                                                                                                                | 1                                    | 0                                     | X                                    | Not a vaild selection. No ADC channel selected.                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 0                                                                                                                      | 1                                                                                                                                                | 1                                    | 1                                     | X                                    | Not a valid selection. No ADC channel selected.                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 1                                                                                                                      | 0                                                                                                                                                | 0                                    | 0                                     | -                                    | erature Sensor                                                                                                                                                                                                                                                                                                        |  |  |  |
|         |        | 1                                                                                                                      | 0                                                                                                                                                | 0                                    | 1                                     | DAC0                                 |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 1                                                                                                                      | 0                                                                                                                                                | 1                                    | 0                                     | DAC1                                 |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        | 1                                                                                                                      | 0<br>1                                                                                                                                           | 1<br>0                               | 1<br>0                                | AGND                                 |                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         |        |                                                                                                                        | I                                                                                                                                                | U                                    | U                                     | VREF                                 |                                                                                                                                                                                                                                                                                                                       |  |  |  |

# Table 7. ADCCON2 SFR Bit DesignationsBit No.NameDescription

### ADCCON3 (ADC CONTROL SFR 3)

The ADCCON3 register controls the operation of various calibration modes as well as giving an indication of ADC busy status.

| SFR Address          | F5H |
|----------------------|-----|
| SFR Power-On Default | 00H |

| _ |      |       |       |       |       |        |         |      |
|---|------|-------|-------|-------|-------|--------|---------|------|
|   | BUSY | GNCLD | AVGS1 | AVGS0 | OFCLD | MODCAL | TYPECAL | SCAL |

| Bit No. | Name    | Description                                                                                                                              |  |  |  |  |  |
|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 7       | BUSY    | ADC Busy Status Bit.                                                                                                                     |  |  |  |  |  |
|         |         | BUSY is a read-only status bit that is set during a valid ADC conversion or calibration cycle.                                           |  |  |  |  |  |
|         |         | Busy is automatically cleared by the core at the end of a conversion or calibration cycle.                                               |  |  |  |  |  |
| 6       | GNCLD   | Gain Calibration Disable Bit.                                                                                                            |  |  |  |  |  |
|         |         | This bit enables/disables the gain calibration coefficients from affecting the ADC results.                                              |  |  |  |  |  |
|         |         | Set to 0 to enable gain calibration coefficient                                                                                          |  |  |  |  |  |
|         |         | Set to 1 to disable gain calibration coefficient.                                                                                        |  |  |  |  |  |
| 5       | AVGS1   | Number of Averages Selection Bits.                                                                                                       |  |  |  |  |  |
| 4       | AVGS0   | This bit selects the number of ADC readings averaged for each bit decision during a calibration cycle.<br>AVGS1 AVGS0 Number of Averages |  |  |  |  |  |
|         |         | 0 0 15                                                                                                                                   |  |  |  |  |  |
|         |         | 0 1 1<br>1 0 31                                                                                                                          |  |  |  |  |  |
|         |         | 1 1 63                                                                                                                                   |  |  |  |  |  |
| 3       | OFCLD   | Offset Calibration Disable Bit.                                                                                                          |  |  |  |  |  |
|         |         | This bit enables/disables the offset calibration coefficients from affecting the ADC results.                                            |  |  |  |  |  |
|         |         | Set to 0 to enable offset calibration coefficient.                                                                                       |  |  |  |  |  |
|         |         | Set to 1 to disable the offset calibration coefficient                                                                                   |  |  |  |  |  |
| 2       | MODCAL  | Calibration Mode Select Bit.                                                                                                             |  |  |  |  |  |
|         |         | This bit should be set to 1 for all calibration cycles.                                                                                  |  |  |  |  |  |
| 1       | TYPECAL | Calibration Type Select Bit.                                                                                                             |  |  |  |  |  |
|         |         | This bit selects between offset (zero-scale) and gain (full-scale) calibration.                                                          |  |  |  |  |  |
|         |         | Set to 0 for offset calibration.                                                                                                         |  |  |  |  |  |
|         |         | Set to 1 for gain calibration.                                                                                                           |  |  |  |  |  |
| 0       | SCAL    | Start Calibration Cycle Bit.                                                                                                             |  |  |  |  |  |
|         |         | When set, this bit starts the selected calibration cycle.                                                                                |  |  |  |  |  |
|         |         | It is automatically cleared when the calibration cycle is completed.                                                                     |  |  |  |  |  |

#### Table 8. ADCCON3 SFR Bit Designations