imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

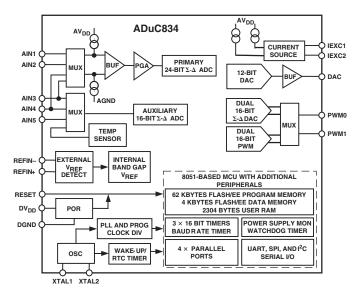
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG DEVICES

MicroConverter®, Dual 16-Bit/24-Bit Σ - Δ ADCs with Embedded 62 kB Flash MCU

ADuC834

FEATURES


High Resolution Σ - Δ ADCs 2 Independent ADCs (16-Bit and 24-Bit Resolution) 24-Bit No Missing Codes, Primary ADC 21-Bit rms (18.5-Bit p-p) Effective Resolution @ 20 Hz Offset Drift 10 nV/°C, Gain Drift 0.5 ppm/°C Memory 62 Kbytes On-Chip Flash/EE Program Memory 4 Kbytes On-Chip Flash/EE Data Memory Flash/EE, 100 Year Retention, 100 Kcycles Endurance 3 Levels of Flash/EE Program Memory Security In-Circuit Serial Download (No External Hardware) High Speed User Download (5 Seconds) 2304 Bytes On-Chip Data RAM 8051-Based Core 8051 Compatible Instruction Set 32 kHz External Crystal **On-Chip Programmable PLL (12.58 MHz Max)** 3 × 16-Bit Timer/Counter 26 Programmable I/O Lines 11 Interrupt Sources, Two Priority Levels **Dual Data Pointer, Extended 11-Bit Stack Pointer On-Chip Peripherals Internal Power on Reset Circuit** 12-Bit Voltage Output DAC Dual 16-Bit Σ - Δ DACs/PWMs **On-Chip Temperature Sensor Dual Excitation Current Sources** Time Interval Counter (Wake-Up/RTC Timer) UART, SPI[®], and I²C[®] Serial I/O High Speed Baud Rate Generator (Including 115,200) Watchdog Timer (WDT) **Power Supply Monitor (PSM)** Power Normal: 2.3 mA Max @ 3.6 V (Core CLK = 1.57 MHz) Power-Down: 20 µA Max with Wake-Up Timer Running Specified for 3 V and 5 V Operation Package and Temperature Range 52-Lead MQFP (14 mm × 14 mm), -40°C to +125°C 56-Lead LFCSP (8 mm \times 8 mm), -40°C to +85°C **APPLICATIONS Intelligent Sensors** Weigh Scales **Portable Instrumentation, Battery-Powered Systems** 4–20 mA Transmitters **Data Logging Precision System Monitoring**

REV. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADuC834 is a complete smart transducer front end, integrating two high resolution Σ - Δ ADCs, an 8-bit MCU, and program/data Flash/EE memory on a single chip.

The two independent ADCs (primary and auxiliary) include a temperature sensor and a PGA (allowing direct measurement of low level signals). The ADCs with on-chip digital filtering and programmable output data rates are intended for the measurement of wide dynamic range, low frequency signals, such as those in weigh scale, strain-gage, pressure transducer, or temperature measurement applications.

The device operates from a 32 kHz crystal with an on-chip PLL generating a high frequency clock of 12.58 MHz. This clock is routed through a programmable clock divider from which the MCU core clock operating frequency is generated. The microcontroller core is an 8052 and therefore 8051 instruction set compatible with 12 core clock periods per machine cycle.

62 Kbytes of nonvolatile Flash/EE program memory, 4 Kbytes of nonvolatile Flash/EE data memory, and 2304 bytes of data RAM are provided on-chip. The program memory can be configured as data memory to give up to 60 Kbytes of NV data memory in data logging applications.

On-chip factory firmware supports in-circuit serial download and debug modes (via UART), as well as single-pin emulation mode via the EA pin. The ADuC834 is supported by a QuickStart[™] development system featuring low cost software and hardware development tools.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2003-2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

ADUC834* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

ADuC834 QuickStart Development System

DOCUMENTATION

Application Notes

- AN-1074: Understanding the Serial Download Protocol (Formerly uC004)
- AN-1139: Understanding the Parallel Programming Protocol
- AN-282: Fundamentals of Sampled Data Systems
- AN-644: Frequency Measurement Using Timer 2 on a MicroConverter [®] (uC013)
- AN-645: Interfacing an HD44780 Character LCD to a MicroConverter [®] (uC014)
- AN-660: XY-Matrix Keypad Interface to MicroConverter[®]
- AN-709: RTD Interfacing and Linearization Using an ADuC8xx MicroConverter[®]
- AN-759: Expanding the Number of DAC Outputs on the ADuC8xx and ADuC702x Families (uC012)
- UC-001: MicroConverter® I2C® Compatible Interface
- UC-002: Developing in C with the Keil uVision2 IDE
- UC-006: A 4-wire UART-to-PC Interface
- UC-007: User Download (ULOAD) Mode
- UC-008: Using the ADuC834 C-library
- UC-009: Addressing 16MB of External Data Memory
- UC-018: Uses of the Time Interval Counter

Data Sheet

- ADuC834: MicroConverter[®] Dual 16-/24- Bit SIgma-Delta ADCs with Embedded 62KB Flash MCU Data Sheet
- ADuC834: Silicon Errata Sheet

User Guides

- ADuC834 Quick Reference Guide
- UG-041: ADuC8xx Evaluation Kit Getting Started User Guide

TOOLS AND SIMULATIONS \Box

• Sigma-Delta ADC Tutorial

REFERENCE MATERIALS

Technical Articles

· Integrated Route Taken to Pulse Oximetry

DESIGN RESOURCES

- ADUC834 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADUC834 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS	
FEATURES	. 1
APPLICATIONS	. 1
FUNCTIONAL BLOCK DIAGRAM	. 1
GENERAL DESCRIPTION	. 1
SPECIFICATIONS	. 3
ABSOLUTE MAXIMUM RATINGS	. 9
PIN CONFIGURATIONS	. 9
DETAILED BLOCK DIAGRAM	10
PIN FUNCTION DESCRIPTIONS	10
MEMORY ORGANIZATION	13
SPECIAL FUNCTION REGISTERS (SFRS)Accumulator (ACC)B SFR (B)Data Pointer (DPTR)Data Pointer (SP and SPH)Program Status Word (PSW)Power Control SFR (PCON)ADuC834 Configuration SFR (CFG834)Complete SFR Map	14 14 15 15 15 15
ADC SFR INTERFACE ADCSTAT ADCMODE ADC0CON ADC1CON ADC0H/ADC0M/ADC0L/ADC1H/ADC1L OF0H/OF0M/OF0L/OF1H/OF1L GN0H/GN0M/GN0L/GN1H/GN1L SF ICON	18 19 20 20 20 21
PRIMARY AND AUXILIARY ADC NOISE PERFORMANCE	22
PRIMARY AND AUXILIARY ADC CIRCUIT DESCRIPTION	
OverviewPrimary ADCAuxiliary ADCAnalog Input ChannelsPrimary and Auxiliary ADC InputsAnalog Input RangesProgrammable Gain AmplifierBipolar/Unipolar InputsReference InputBurnout CurrentsExcitation CurrentsReference Detect Σ - Δ ModulatorDigital FilterADC Chopping	23 24 25 25 25 25 26 26 26 26 26 26 27
Calibration	

NONVOLATILE FLASH/EE MEMORY	
Flash/EE Memory Overview	
Flash/EE Memory and the ADuC834	28
ADuC834 Flash/EE Memory Reliability	
Flash/EE Program Memory	
Serial Downloading	
Parallel Programming User Download Mode (ULOAD)	
Flash/EE Program Memory Security	
Lock, Secure, and Serial Safe Modes	31
Using the Flash/EE Data Memory	32
ECON	32
Programming the Flash/EE Data Memory	
Flash/EE Memory Timing	33
OTHER ON-CHIP PERIPHERALS	
DAC	
Pulsewidth Modulator (PWM)	
On-Chip PLL	
Time Interval Counter (Wake-Up/RTC Timer)	
Watchdog Timer	
Power Supply Monitor	
Serial Peripheral Interface (SPI) I ² C Serial Interface	
Dual Data Pointer	
	40
8052 COMPATIBLE ON-CHIP PERIPHERALS	
Parallel I/O Ports 0–3	
Timers/Counters	
UART Serial Interface	
Baud Rate Generation Using Timer 1 and Timer 2	
Baud Rate Generation Using Timer 3	
Interrupt System	
HARDWARE DESIGN CONSIDERATIONS	
External Memory Interface	63
Power Supplies	
Power-On Reset (POR) Operation	
Power Consumption	
Power Saving Modes	
Wake-Up from Power-Down Latency	
Grounding and Board Layout Recommendations	
ADuC834 System Self-Identification	
Clock Oscillator	66
OTHER HARDWARE CONSIDERATIONS	
In-Circuit Serial Download Access	
Embedded Serial Port Debugger	
Single-Pin Emulation Mode	
Typical System Configuration	
QUICKSTART DEVELOPMENT SYSTEM	69
TIMING SPECIFICATIONS	70
OUTLINE DIMENSIONS	80
ORDERING GUIDE	80
REVISION HISTORY	81

$\label{eq:spectral_states} \textbf{SPECIFICATIONS}^{(AV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 3.6\ V\ or\ 4.75\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 2.7\ V\ to\ 5.25\ V,\ DV_{DD}\ =\ 5.25$

Parameter	ADuC834	Test Conditions/Comments	Unit
ADC SPECIFICATIONS			
Conversion Rate	5.4	On Both Channels	Hz min
	105	Programmable in 0.732 ms Increments	Hz max
Primary ADC			
No Missing Codes ²	24	20 Hz Update Rate	Bits min
Resolution	13.5	Range = ± 20 mV, 20 Hz Update Rate	Bits p-p typ
	18.5	Range = ± 2.56 V, 20 Hz Update Rate	Bits p-p typ
Output Noise	See Tables X and XI		
	in ADuC834 ADC	Update Rate and Gain Range	
	Description		
Integral Nonlinearity	±15	1 LSB_{16}	ppm of FSR max
Offset Error ³	±3		μV typ
Offset Error Drift	±10		nV/°C typ
Full-Scale Error ⁴	±10		μV typ
Gain Error $Drift^5$	±0.5	ADI = 10 M	ppm/°C typ
ADC Range Matching	±2	AIN = 18 mV	μV typ
Power Supply Rejection (PSR)	113 80	AIN = 7.8 mV , Range = $\pm 20 \text{ mV}$ AIN = 1 V , Range = $\pm 2.56 \text{ V}$	dBs typ dBs min
Common-Mode DC Rejection	00	far = 1 v, Range = ±2.00 V	
On AIN	95	At DC, AIN = 7.8 mV , Range = $\pm 20 \text{ mV}$	dBs min
Oli Alin	113	At DC, AIN = 1 V , Range = $\pm 2.56 \text{ V}$	dBs typ
On REFIN	125	At DC, AIN = 1 V, Range = ± 2.56 V	dBs typ
Common-Mode 50 Hz/60 Hz Rejection ²	125	20 Hz Update Rate	ubs typ
On AIN	95	$50 \text{ Hz}/60 \text{ Hz} \pm 1 \text{ Hz}$, AIN = 7.8 mV,	dBs min
		Range = $\pm 20 \text{ mV}$	
	90	$50 \text{ Hz}/60 \text{ Hz} \pm 1 \text{ Hz}, \text{AIN} = 1 \text{ V},$	dBs min
		Range = ± 2.56 V	
On REFIN	90	$50 \text{ Hz}/60 \text{ Hz} \pm 1 \text{ Hz}, \text{AIN} = 1 \text{ V},$	dBs min
		Range = ± 2.56 V	
Normal Mode 50 Hz/60 Hz Rejection ²			
On AIN	60	50 Hz/60 Hz ± 1 Hz, 20 Hz Update Rate	dBs min
On REFIN	60	50 Hz/60 Hz ± 1 Hz, 20 Hz Update Rate	dBs min
Auxiliary ADC			
No Missing Codes ²	16		Bits min
Resolution	16	Range = ± 2.5 V, 20 Hz Update Rate	Bits p-p typ
Output Noise	See Table XII in	Output Noise Varies with Selected	
	ADuC834 ADC	Update Rate	
· · · ·	Description		(FOR
Integral Nonlinearity	±15		ppm of FSR max
Offset Error ³	-2		LSB typ
Offset Error Drift Full-Scale Error ⁶	1		μV/°C typ
Gain Error Drift ⁵	-2.5 ± 0.5		LSB typ ppm/°C typ
Power Supply Rejection (PSR)	±0.5 80	AIN = 1 V, 20 Hz Update Rate	dBs min
Normal Mode 50 Hz/60 Hz Rejection ²	80	AIN – 1 V, 20 IIZ Opuale Rate	
On AIN	60	50 Hz/60 Hz ±1 Hz	dBs min
On REFIN	60	$50 \text{ Hz}/60 \text{ Hz} \pm 1 \text{ Hz}$, 20 Hz Update Rate	dBs min
DAC PERFORMANCE			
DC Specifications ⁷	10		D '
Resolution Relative Accuracy	12		Bits
Relative Accuracy	±3	Currentiand 12 Bit Manataria	LSB typ
Differential Nonlinearity	-1 ± 50	Guaranteed 12-Bit Monotonic	LSB max mV max
Offset Error Gain Error ⁸		AV Panga	mV max % max
Gaill EITOT	±1	AV _{DD} Range	
AC Specifications ^{2, 7}	±1	V _{REF} Range	% typ
Voltage Output Settling Time	15	Settling Time to 1 LSB of Final Value	ustyp
Digital-to-Analog Glitch Energy	10	1 LSB Change at Major Carry	μs typ nVs typ
Digital-to-mailog Onten Energy	10	I LOD Change at major Carry	шүзсур

ADuC834 SPECIFICATIONS (continued)

Parameter	ADuC834	Test Conditions/Comments	Unit
INTERNAL REFERENCE			
ADC Reference			
Reference Voltage	$1.25 \pm 1\%$	Initial Tolerance @ 25° C, V _{DD} = 5 V	V min/max
Power Supply Rejection	45		dBs typ
Reference Tempco	100		ppm/°C typ
DAC Reference	0.5 10/		TT • 1
Reference Voltage	$2.5 \pm 1\%$	Initial Tolerance @ 25° C, V _{DD} = 5 V	V min/max
Power Supply Rejection Reference Tempco	50 ±100		dBs typ ppm/°C typ
L			ppin/ C typ
ANALOG INPUTS/REFERENCE INPUTS			
Primary ADC			
Differential Input Voltage Ranges9, 10		External Reference Voltage = 2.5 V RN2, RN1, RN0 of ADC0CON Set to	
Bipolar Mode (ADC0CON3 = 0)	±20	0 0 0 (Unipolar Mode 0 mV to 20 mV)	mV
Dipolai Mode (IDE0E0IN) = 0)	± 40	0 0 1 (Unipolar Mode 0 mV to 20 mV)	mV
	± 80	0 1 0 (Unipolar Mode 0 mV to 40 mV)	mV
	± 160	0 1 1 (Unipolar Mode 0 mV to 160 mV)	mV
	± 320	1 0 0 (Unipolar Mode 0 mV to 320 mV)	mV
	± 640	1 0 1 (Unipolar Mode 0 mV to 640 mV)	mV
	±1.28	1 1 0 (Unipolar Mode 0 V to 1.28 V)	V
	±2.56	1 1 1 (Unipolar Mode 0 V to 2.56 V)	V
Analog Input Current ²	±1	$T_{MAX} = 85^{\circ}C$	nA max
	±5	$T_{MAX} = 125^{\circ}C$	nA max
Analog Input Current Drift	±5	$T_{MAX} = 85^{\circ}C$	pA/°C typ
	±15	$T_{MAX} = 125^{\circ}C$	pA/°C typ
Absolute AIN Voltage Limits ²	AGND + 100 mV		V min
	$AV_{DD} - 100 \text{ mV}$		V max
Auxiliary ADC			
Input Voltage Range ^{9, 10}	0 to V _{REF}	Unipolar Mode, for Bipolar Mode	V
	105	See Note 11	A /T T
Average Analog Input Current	125	Input Current Will Vary with Input	nA/V typ
Average Analog Input Current Drift ²	± 2	Voltage on the Unbuffered Auxiliary ADC	pA/V/°C typ
Absolute AIN Voltage Limits ^{2, 11}	$\begin{array}{l} \text{AGND} - 30 \text{ mV} \\ \text{AV}_{\text{DD}} + 30 \text{ mV} \end{array}$		V min V max
External Reference Inputs	$Av_{DD} + 30 mv$		v max
REFIN(+) to REFIN($-$) Range ²	1		V min
KEITIN(+) to KEITIN(-) Kange	AV _{DD}		V max
Average Reference Input Current	1	Both ADCs Enabled	μA/V typ
Average Reference Input Current Drift	±0.1		nA/V/°C typ
'NO Ext. REF' Trigger Voltage	0.3	NOXREF Bit Active if $V_{REF} < 0.3 V$	V min
	0.65	NOXREF Bit Inactive if $V_{REF} > 0.65 V$	V max
ADC SYSTEM CALIBRATION			
Full-Scale Calibration Limit	$+1.05 \times FS$		V max
Zero-Scale Calibration Limit	$-1.05 \times FS$		V min
Input Span	0.8 imes FS		V min
	$2.1 \times FS$		V max
ANALOG (DAC) OUTPUT			
Voltage Range	0 to V _{REF}	DACRN = 0 in $DACCON SFR$	V typ
	0 to AV_{DD}	DACRN = 1 in $DACCON SFR$	V typ
Resistive Load	10	From DAC Output to AGND	$k\Omega$ typ
Capacitive Load	100	From DAC Output to AGND	pF typ
Output Impedance	0.5	1	Ω typ
I _{SINK}	50		μA typ
TEMPERATURE SENSOR			
Accuracy	±2		°C typ
Thermal Impedance (θ_{IA})	90	MQFP Package	°C/W typ
I	52	CSP Package (Base Floating) ¹²	°C/W typ

Parameter	ADuC834	Test Conditions/Comments	Unit
TRANSDUCER BURNOUT CURRENT S	OURCES		
AIN+ Current	-100	AIN+ Is the Selected Positive Input to	nA typ
AIN- Current	+100	the Primary ADC AIN– Is the Selected Negative Input to	nA typ
Initial Tolerance @ 25°C	±10	the Auxiliary ADC	% typ
Drift	0.03		%/°C typ
EXCITATION CURRENT SOURCES			
Output Current	-200	Available from Each Current Source	μA typ
Initial Tolerance @ 25°C	±10		% typ
Drift	200		ppm/°C typ
Initial Current Matching @ 25°C	±1	Matching between Both Current Sources	% typ
Drift Matching	20		ppm/°C typ
Line Regulation (AV _{DD})	1	$AV_{DD} = 5 V + 5\%$	μA/V typ
Load Regulation	0.1		μA/V typ
Output Compliance ²	$AV_{DD} - 0.6$		V max
	AGND		min
LOGIC INPUTS			
All Inputs Except SCLOCK, RESET, and XTAL1 ²			
V _{INL} , Input Low Voltage	0.8	$DV_{DD} = 5 V$	V max
	0.4	$DV_{DD} = 3 V$	V max
V _{INH} , Input High Voltage	2.0		V min
SCLOCK and RESET Only			
(Schmitt-Triggered Inputs) ²			
V_{T+}	1.3/3	$DV_{DD} = 5 V$	V min/V max
	0.95/2.5	$DV_{DD} = 3 V$	V min/V max
V _{T-}	0.8/1.4	$DV_{DD} = 5 V$	V min/V max
	0.4/1.1	$DV_{DD} = 3 V$	V min/V max
$V_{T^+} - V_{T^-}$	0.3/0.85	$DV_{DD} = 5 V$	V min/V max
	0.3/0.85	$DV_{DD} = 3 V$	V min/V max
Input Currents			
Port 0, P1.2–P1.7, EA	±10	$V_{IN} = 0 V \text{ or } V_{DD}$	μA max
SCLOCK, MOSI, MISO, \overline{SS}^{13}	–10 min, –40 max	$V_{IN} = 0 V, DV_{DD} = 5 V,$ Internal Pull-Up	$\mu A \min/\mu A \max$
	±10	$V_{IN} = V_{DD}, DV_{DD} = 5 V$	μA max
RESET	±10	$V_{IN} = 0 V, DV_{DD} = 5 V$	μA max
	35 min, 105 max	$V_{IN} = V_{DD}$, $DV_{DD} = 5 V$, Internal Pull-Down	
P1.0, P1.1, Ports 2 and 3	±10	$V_{IN} = V_{DD}, DV_{DD} = 5 V$	μA max
	-180	$V_{IN} = 2 V, DV_{DD} = 5 V$	μA min
	-660		μA max
	-20	V_{IN} = 450 mV, DV_{DD} = 5 V	μA min
	-75		μA max
Input Capacitance	5	All Digital Inputs	pF typ
CRYSTAL OSCILLATOR (XTAL1 AND X Logic Inputs, XTAL1 Only ²	KTAL2)		
V _{INL} , Input Low Voltage	0.8	$DV_{DD} = 5 V$	V max
	0.4	$DV_{DD} = 3 V$	V max
V _{INH} , Input High Voltage	3.5	$DV_{DD} = 5 V$	V min
	2.5	$DV_{DD} = 3 V$	V min
XTAL1 Input Capacitance	18		pF typ
	18		pF typ

ADuC834 SPECIFICATIONS (continued)

Parameter	ADuC834	Test Conditions/Comments	Unit
LOGIC OUTPUTS (Not Including XTAL2) ²			
V _{OH} , Output High Voltage	2.4	$V_{DD} = 5 V$, $I_{SOURCE} = 80 \mu A$	V min
	2.4	$V_{DD} = 3 \text{ V}, \text{ I}_{\text{SOURCE}} = 20 \ \mu\text{A}$	V min
V _{OL} , Output Low Voltage ¹⁴	0.4	$I_{SINK} = 8 \text{ mA}, \text{SCLOCK},$	V max
VOL, Output Low Voltage	0.1	MOSI/SDATA	V IIIux
	0.4	$I_{SINK} = 10 \text{ mA}, P1.0 \text{ and } P1.1$	V max
	0.4	I_{SINK} = 1.6 mA, All Other Outputs	V max
Floating State Leakage Current ²	±10	ISINK – 1.0 mm, rm Other Outputs	$\mu A \max$
Floating State Output Capacitance	5		pF typ
	,		prityp
POWER SUPPLY MONITOR (PSM)			
AV _{DD} Trip Point Selection Range	2.63	Four Trip Points Selectable in This Range	V min
	4.63	Programmed via TPA1-0 in PSMCON	V max
AV _{DD} Power Supply Trip Point Accuracy	±3.0	$T_{MAX} = 85^{\circ}C$	% max
	±4.0	$T_{MAX} = 125^{\circ}C$	% max
DV _{DD} Trip Point Selection Range	2.63	Four Trip Points Selectable in This Range	V min
-	4.63	Programmed via TPD1-0 in PSMCON	V max
DV _{DD} Power Supply Trip Point Accuracy	±3.0	$T_{MAX} = 85^{\circ}C$	% max
•	±4.0	$T_{MAX} = 125^{\circ}C$	% max
WATCHDOG TIMER (WDT)			
Timeout Period	0	Nine Timesout David de in This Dance	
Timeout Period		Nine Timeout Periods in This Range Programmed via PRE3–0 in WDCON	ms min
	2000	Programmed via PRE3–0 in WDCON	ms max
MCU CORE CLOCK RATE		Clock Rate Generated via On-Chip PLL	
MCU Clock Rate ²	98.3	Programmable via CD2–0 Bits in	kHz min
		PLLCON SFR	
	12.58		MHz max
START-UP TIME			
At Power-On	300		ms typ
After External RESET in Normal Mode	3		ms typ
After WDT Reset in Normal Mode	3	Controlled via WDCON SFR	
From Idle Mode	10		ms typ
From Idle Mode From Power-Down Mode	10		μs typ
		OSC PD Bit = 0 in PLLCON SFR	
Oscillator Running	20	030_{PD} Bit = 0 in PLLCON SFR	
Wake-Up with INTO Interrupt	20		μs typ
Wake-Up with SPI Interrupt	20		μs typ
Wake-Up with TIC Interrupt	20		μs typ
Wake-Up with External RESET	3		ms typ
Oscillator Powered Down		OSC_PD Bit = 1 in PLLCON SFR	
Wake-Up with INT0 Interrupt	20		μs typ
Wake-Up with SPI Interrupt	20		μs typ
Wake-Up with External RESET	5		ms typ
FLASH/EE MEMORY RELIABILITY CHA	RACTERISTICS	5	
Endurance ¹⁶	100,000		Cycles min
Data Retention ¹⁷	100		Years min

Parameter	ADuC834	Test Conditions/Comments	Unit
POWER REQUIREMENTS		DV _{DD} and AV _{DD} Can Be Set Independently	
Power Supply Voltages			
AV _{DD} , 3 V Nominal Operation	2.7		V min
	3.6		V max
AV _{DD} , 5 V Nominal Operation	4.75		V min
	5.25		V max
DV _{DD} , 3 V Nominal Operation	2.7		V min
	3.6		V max
DV _{DD} , 5 V Nominal Operation	4.75		V min
	5.25		V max
5 V POWER CONSUMPTION		$DV_{DD} = 4.75 \text{ V}$ to 5.25 V, $AV_{DD} = 5.25 \text{ V}$	
Power Supply Currents Normal Mode ^{18, 19}			
DV _{DD} Current	4	Core CLK = 1.57 MHz	mA max
DV _{DD} Current	13	Core CLK = 12.58 MHz	mA typ
	16	Core CLK = 12.58 MHz	mA max
AV _{DD} Current	180	Core CLK = 1.57 MHz or 12.58 MHz	μA max
Typical Additional Power Supply Currents	100	Core CLK = 1.57 MHz	
$(AI_{DD} \text{ and } DI_{DD})$			
PSM Peripheral	50		μA typ
Primary ADC	1		mA typ
Auxiliary ADC	500		μA typ
DAC	150		μA typ
Dual Current Sources	400		μA typ
3 V POWER CONSUMPTION		$DV_{DD} = 2.7 V \text{ to } 3.6 V$	
Power Supply Currents Normal Mode ^{18, 19}			
DV _{DD} Current	2.3	Core CLK = 1.57 MHz	mA max
DV _{DD} Current	8	Core CLK = 12.58 MHz	mA typ
	10	Core CLK = 12.58 MHz	mA max
AV _{DD} Current	180	$AV_{DD} = 5.25 \text{ V}$, Core CLK = 1.57 MHz	
	100	or 12.58 MHz	μA max
Power Supply Currents Power-Down Mode ¹⁸	, 19	Core CLK = 1.57 MHz or 12.58 MHz	pur l'inters
DV _{DD} Current	20	$T_{MAX} = 85^{\circ}C; Osc. On, TIC On$	μA max
	40	$T_{MAX} = 0.5$ °C; Osc. On, TIC On $T_{MAX} = 125$ °C; Osc. On, TIC On	$\mu A \max$
DV _{DD} Current	10	$O_{\text{MAX}} = 125$ C, Osc. OII, THE OII	μA typ
AV _{DD} Current	1	$AV_{DD} = 5.25 \text{ V}; T_{MAX} = 85^{\circ}\text{C}; \text{ Osc.}$	Prod & U.P.
	1	$n_{VDD} = 9.29$ v, $n_{MAX} = 69$ C, Osc. On or Osc. Off	μA max
	3	$AV_{DD} = 5.25 \text{ V}; T_{MAX} = 125^{\circ}\text{C}; \text{ Osc.}$	mr i max
		$nv_{DD} = 9.29$ v, $n_{MAX} = 129$ C, Osc. On or Osc. Off	μA max
			M1 1 1110A

NOTES

- ¹Temperature Range for ADuC834BS (MQFP package) is -40°C to +125°C.
- Temperature Range for ADuC834BCP (CSP package) is -40 °C to +85 °C.
- ² These numbers are not production tested but are guaranteed by design and/or characterization data on production release.

³ System Zero-Scale Calibration can remove this error.

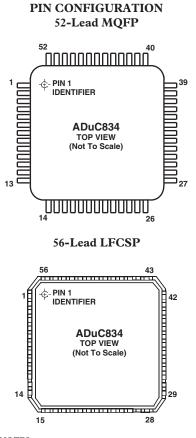
- ⁴ The primary ADC is factory calibrated at 25°C with $AV_{DD} = DV_{DD} = 5$ V yielding this full-scale error of 10 μ V. If user power supply or temperature conditions are significantly different from these, an Internal Full-Scale Calibration will restore this error to 10 μ V. A system zero-scale and full-scale calibration will remove this error altogether.
- ⁵ Gain Error Drift is a span drift. To calculate Full-Scale Error Drift, add the Offset Error Drift to the Gain Error Drift times the full-scale input.
- 6 The auxiliary ADC is factory calibrated at 25 °C with AV_{DD} = DV_{DD} = 5 V yielding this full-scale error of -2.5 LSB. A system zero-scale and full-scale calibration will remove this error altogether.
- ⁷ DAC linearity and ac specifications are calculated using: reduced code range of 48 to 4095, 0 to V_{REF}; reduced code range of 100 to 3950, 0 to V_{DD}.
- ⁸ Gain Error is a measure of the span error of the DAC.
- ⁹ In general terms, the bipolar input voltage range to the primary ADC is given by RangeADC = $\pm (V_{REF} 2^{RN})/125$, where: $V_{REF} = REFIN(+)$ to REFIN(-) voltage and $V_{REF} = 1.25$ V when internal ADC V_{REF} is selected. RN = decimal equivalent of RN2, RN1, RN0, e.g., $V_{REF} = 2.5$ V and RN2, RN1, RN0 = 1, 1, 0 the Range_{ADC} = ± 1.28 V. In unipolar mode, the effective range is 0 V to 1.28 V in our example.
- ¹⁰ 1.25 V is used as the reference voltage to the ADC when internal V_{RFF} is selected via XREF0 and XREF1 bits in ADC0CON and ADC1CON, respectively.
- ¹¹ In bipolar mode, the Auxiliary ADC can only be driven to a minimum of AGND 30 mV as indicated by the Auxiliary ADC absolute AIN voltage limits. The bipolar range is still $-V_{REF}$ to $+V_{REF}$; however, the negative voltage is limited to -30 mV.
- ¹² The ADuC834BCP (CSP Package) has been qualified and tested with the base of the CSP Package floating.
- ¹³ Pins configured in SPI Mode, pins configured as digital inputs during this test.

¹⁴ Pins configured in I²C Mode only.

- ¹⁵ Flash/EE Memory Reliability Characteristics apply to both the Flash/EE program memory and Flash/EE data memory.
- ¹⁶ Endurance is qualified to 100 Kcycles as per JEDEC Std. 22 method A117 and measured at -40 °C, +25°C, +85°C, and +125°C. Typical endurance at 25°C is 700 Kcycles.
- ¹⁷ Retention lifetime equivalent at junction temperature (T_J) = 55°C as per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6eV will derate with junction temperature as shown in Figure 16 in the Flash/EE Memory section of this data sheet.
- ¹⁸ Power Supply current consumption is measured in Normal, Idle, and Power-Down modes under the following conditions: Normal mode: Reset = 0.4 V, Digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON, Core Executing internal software loop. Idle mode: Reset = 0.4 V, Digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON, PCON.0 = 1, Core Execution suspended in idle mode. Power-Down mode: Reset = 0.4 V, All P0 pins and P1.2–P1.7 Pins = 0.4 V, All other digital I/O pins are open circuit, Core Clk changed via CD bits in PLLCON, PCON.1 = 1, Core Execution suspended in power-down mode, OSC turned ON or OFF via OSC_PD bit (PLLCON.7) in PLLCON SFR.

¹⁹ DV_{DD} power supply current will increase typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle. Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

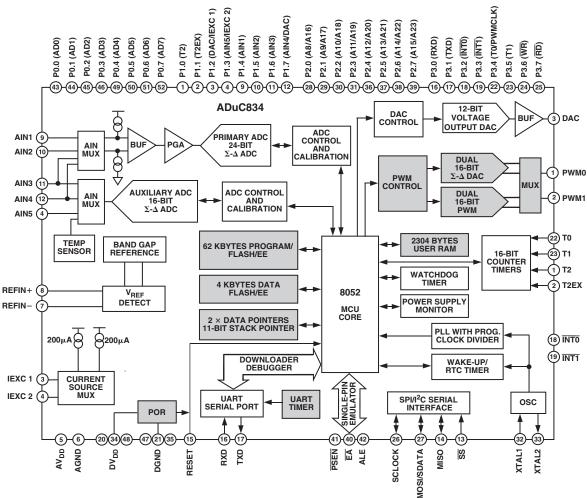

 $(T_A = 25^{\circ}C, \text{ unless otherwise noted.})$

AV_{DD} to AGND $\hfill \ldots \hfill -0.3$ V to +7 V
AV _{DD} to DGND $\dots \dots \dots$
DV_{DD} to AGND $\hfill \ldots \hfill -0.3$ V to +7 V
DV_{DD} to DGND $\hfill 0.000$
AGND to DGND ² $\dots \dots \dots$
AV_{DD} to DV_{DD}
Analog Input Voltage to AGND ³ -0.3 V to AV _{DD} + 0.3 V
Reference Input Voltage to AGND $\dots -0.3$ V to AV _{DD} + 0.3 V
AIN/REFIN Current (Indefinite)
Digital Input Voltage to DGND \dots -0.3 V to DV _{DD} + 0.3 V
Digital Output Voltage to DGND \dots -0.3 V to DV _{DD} + 0.3 V
Operating Temperature Range40°C to +125°C
Storage Temperature Range
Junction Temperature 150°C
θ_{IA} Thermal Impedance (MQFP)
θ_{IA} Thermal Impedance (LFCSP Base Floating) 52°C/W
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec) 220°C
NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²AGND and DGND are shorted internally on the ADuC834.

³Applies to P1.2 to P1.7 pins operating in analog or digital input modes.



NOTES 1. EXPOSED PAD. THE LFCSP HAS AN EXPOSED PAD THAT MUST BE SOLDERED TO THE METAL PLATE ON THE PCB AND TO DGND.

CAUTION _

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADuC834 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

*PIN NUMBERS REFER TO THE 52-LEAD MQFP PACKAGE SHADED AREAS REPRESENT THE NEW FEATURES OF THE ADuC834 OVER THE ADuC824

Figure 1. Detailed Block Diagram

PIN FUNCTION DESCRIPTIONS

Pin No. 52-Lead MQFP	Pin No. 56-Lead CSP	Mnemonic	Type*	Description
1, 2	56, 1	P1.0/P1.1 P1.0/T2/PWM0 P1.1/T2EX/PWM1	I/O I/O I/O	 P1.0 and P1.1 can function as a digital inputs or digital outputs and have a pull-up configuration as described below for Port 3. P1.0 and P1.1 have an increased current drive sink capability of 10 mA. P1.0 and P1.1 also have various secondary functions as described below. P1.0 can also be used to provide a clock input to Timer 2. When enabled, counter 2 is incremented in response to a negative transition on the T2 input pin. If the PWM is enabled, the PWM0 output will appear at this pin. P1.1 can also be used to provide a control input to Timer 2. When enabled, a
				negative transition on the T2EX input pin will cause a Timer 2 capture or reload event. If the PWM is enabled, the PWM1 output will appear at this pin.

PIN FUNCTION DESCRIPTIONS (continued)

Pin No.	Pin No.			
52-Lead MQFP	56-Lead CSP	Mnemonic	Type*	Description
3–4, 9–12	2–3, 11–14	P1.2-P1.7	I	Port 1.2 to Port 1.7 have no digital output driver; they can function as a digital input for which '0' must be written to the port bit. As a digital input, these pins must be driven high or low externally. These pins also have the following analog functionality:
		P1.2/DAC/IEXC1	I/O	The voltage output from the DAC or one or both current sources (200 μ A or 2 × 200 μ A) can be configured to appear at this pin.
		P1.3/AIN5/IEXC2 P1.4/AIN1 P1.5/AIN2 P1.6/AIN3 P1.7/AIN4/DAC	I/O I I I I/O	Auxiliary ADC Input or one or both current sources can be configured at this pin. Primary ADC, Positive Analog Input Primary ADC, Negative Analog Input Auxiliary ADC Input or Muxed Primary ADC, Positive Analog Input Auxiliary ADC Input or Muxed Primary ADC, Negative Analog Input Auxiliary ADC Input or Muxed Primary ADC, Negative Analog Input. The voltage output from the DAC can also be configured to appear at this pin.
5	4, 5	AV _{DD}	S	Analog Supply Voltage, 3 V or 5 V
6	6, 7, 8	AGND	S	Analog Ground. Ground reference pin for the analog circuitry.
7	9	REFIN(-)	Ι	Reference Input, Negative Terminal
8	10	REFIN(+)	Ι	Reference Input, Positive Terminal
13	15	SS	Ι	Slave Select Input for the SPI Interface. A weak pull-up is present on this pin.
14	16	MISO	I/O	Master Input/Slave Output for the SPI Interface. There is a weak pull-up on this input pin.
15	17	RESET	Ι	Reset Input. A high level on this pin for 16 core clock cycles while the oscillator is running resets the device. There is an internal weak pull-down and a Schmitt trigger input stage on this pin.
16–19, 22–25	18–21, 24–27	P3.0–P3.7	I/O	Bidirectional port pins with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low will source current because of the internal pull-up resistors. When driving a 0-to-1 output transition, a strong pull-up is active for two core clock periods of the instruction cycle. Port 3 pins also have various secondary functions including:
		P3.0/RXD	I/O	Receiver Data for UART Serial Port
		P3.1/TXD P3.2/INT0	I/O I/O	Transmitter Data for UART Serial Port External Interrupt 0. This pin can also be used as a gate control input to Timer 0.
		P3.3/INT1	I/O	External Interrupt 0. This pin can also be used as a gate control input to Timer 0. External Interrupt 1. This pin can also be used as a gate control input to Timer 1.
		P3.4/T0/ PWMCLK	I/O	Timer/Counter 0 External Input. If the PWM is enabled, an external clock may be input at this pin.
		P3.5/T1 P3.6/WR	I/O I/O	Timer/Counter 1 External Input External Data Memory Write Strobe. Latches the data byte from Port 0 into an external data memory.
		P3.7/RD	I/O	External Data Memory Read Strobe. Enables the data from an external data memory to Port 0.
20, 34, 48	22, 36, 51	DV _{DD}	S	Digital Supply, 3 V or 5 V.
21, 35, 47	23, 37, 38, 50	DGND	S	Digital Ground. Ground reference point for the digital circuitry.
26		SCLOCK	I/O	Serial Interface Clock for Either the I^2C or SPI Interface. As an input, this pin is a Schmitt-triggered input and a weak internal pull-up is present on this pin unless it is outputting logic low. This pin can also be directly controlled in software as a digital output pin.
27		MOSI/SDATA	I/O	Serial Data I/O for the I ² C Interface or Master Output/Slave Input for the SPI Interface. A weak internal pull-up is present on this pin unless it is outputting logic low. This pin can also be directly controlled in software as a digital output pin.

Pin No. 52-Lead MQFP	Pin No. 56-Lead CSP	Mnemonic	Type*	Description
28–31 36–39	30–33 39–42	P2.0–P2.7 (A8–A15) (A16–A23)	I/O	Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low will source current because of the internal pull-up resistors. Port 2 emits the high order address bytes during fetches from external program memory and middle and high order address bytes during accesses to the 24-bit external data memory space.
32	34	XTAL1	Ι	Input to the Crystal Oscillator Inverter
33	35	XTAL2	0	Output from the Crystal Oscillator Inverter. (See "Hardware Design Considerations" for description.)
40	43	ĒĀ	I/O	External Access Enable, Logic Input. When held high, this input enables the device to fetch code from internal program memory locations 0000h to F7FFh. When held low, this input enables the device to fetch all instructions from external program memory. To determine the mode of code execution, i.e., internal or external, the \overline{EA} pin is sampled at the end of an external RESET assertion or as part of a device power cycle. \overline{EA} may also be used as an external emulation I/O pin, and therefore the voltage level at this pin must not be changed during normal mode operation as it may cause an emulation interrupt that will halt code execution.
41	44	PSEN	0	Program Store Enable, Logic Output. This output is a control signal that enables the external program memory to the bus during external fetch operations. It is active every six oscillator periods except during external data memory accesses. <u>This pin remains high during internal program execution.</u> <u>PSEN can also be used to enable serial download mode when pulled low through a resistor at the end of an external RESET assertion or as part of a device power cycle.</u>
42	45	ALE	0	Address Latch Enable, Logic Output. This output is used to latch the low byte (and page byte for 24-bit data address space accesses) of the address to external memory during external code or data memory access cycles. It is activated every six oscillator periods except during an external data memory access. It can be disabled by setting the PCON.4 bit in the PCON SFR.
43–46 49–52	46–49 52–55	P0.0–P0.7 (AD0–AD3) (AD4–AD7)	I/O	P0.0–P0.7, these pins are part of Port0, which is an 8-bit, open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and in that state can be used as high impedance inputs. An external pull-up resistor will be required on P0 outputs to force a valid logic high level externally. Port 0 is also the multiplexed low-order address and databus during accesses to external program or data memory. In this application, it uses strong internal pull-ups when emitting 1s.
		EPAD		Exposed Pad. The LFCSP has an exposed pad that must be soldered to the metal plate on the PCB and to DGND.

PIN FUNCTION DESCRIPTIONS (continued)

*I = Input, O = Output, S = Supply.

MEMORY ORGANIZATION

The ADuC834 contains four different memory blocks, namely:

- 62 Kbytes of On-Chip Flash/EE Program Memory
- 4 Kbytes of On-Chip Flash/EE Data Memory
- 256 bytes of General-Purpose RAM
- 2 Kbytes of Internal XRAM

(1) Flash/EE Program Memory

The ADuC834 provides 62 Kbytes of Flash/EE program memory to run user code. The user can choose to run code from this internal memory or run code from an external program memory.

If the user applies power or resets the device while the $\overline{\text{EA}}$ pin is pulled low externally, the part will execute code from the external program space; otherwise, if $\overline{\text{EA}}$ is pulled high externally, the part defaults to code execution from its internal 62 Kbytes of Flash/EE program memory.

Unlike the ADuC824, where code execution can overflow from the internal code space to external code space once the PC becomes greater than 1FFFH, the ADuC834 does not support the rollover from F7FFH in internal code space to F800H in external code space. Instead, the 2048 bytes between F800H and FFFFH will appear as NOP instructions to user code.

Permanently embedded firmware allows code to be serially downloaded to the 62 Kbytes of internal code space via the UART serial port while the device is in-circuit. No external hardware is required.

56 Kbytes of the program memory can be reprogrammed during runtime; thus the code space can be upgraded in the field using a user defined protocol or it can be used as a data memory. This will be discussed in more detail in the Flash/EE Memory section of the data sheet.

(2) Flash/EE Data Memory

4 Kbytes of Flash/EE Data Memory are available to the user and can be accessed indirectly via a group of registers mapped into the Special Function Register (SFR) area. Access to the Flash/EE Data memory is discussed in detail later as part of the Flash/EE Memory section in this data sheet.

(3) General-Purpose RAM

The general-purpose RAM is divided into two separate memories, namely the upper and the lower 128 bytes of RAM. The lower 128 bytes of RAM can be accessed through direct or indirect addressing; the upper 128 bytes of RAM can only be accessed through indirect addressing as it shares the same address space as the SFR space, which can only be accessed through direct addressing.

The lower 128 bytes of internal data memory are mapped as shown in Figure 2. The lowest 32 bytes are grouped into four banks of eight registers addressed as R0 through R7. The next

GENERAL NOTES PERTAINING TO THIS DATA SHEET

- 1. SET implies a Logic 1 state and CLEARED implies a Logic 0 state unless otherwise stated.
- 2. SET and CLEARED also imply that the bit is set or automatically cleared by the ADuC834 hardware unless otherwise stated.
- User software should not write 1s to reserved or unimplemented bits as they may be used in future products.
- Any pin numbers used throughout this data sheet refer to the 52-lead MQFP package, unless otherwise stated.

16 bytes (128 bits), locations 20H through 2FH above the register banks, form a block of directly addressable bit locations at bit addresses 00H through 7FH. The stack can be located anywhere in the internal memory address space, and the stack depth can be expanded up to 2048 bytes.

Reset initializes the stack pointer to location 07H. Any CALL or PUSH pre-increments the SP before loading the stack. Therefore, loading the stack starts from locations 08H, which is also the first register (R0) of register bank 1. Thus, if one is going to use more than one register bank, the stack pointer should be initialized to an area of RAM not used for data storage.

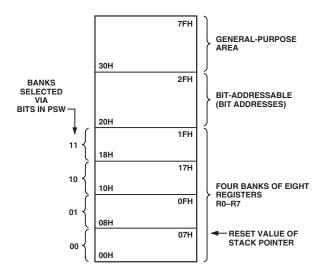


Figure 2. Lower 128 Bytes of Internal Data Memory

(4) Internal XRAM

The ADuC834 contains 2 Kbytes of on-chip extended data memory. This memory, although on-chip, is accessed via the MOVX instruction. The 2 Kbytes of internal XRAM are mapped into the bottom 2 Kbytes of the external address space if the CFG834.0 bit is set. Otherwise, access to the external data memory will occur just like a standard 8051.

Even with the CFG834.0 bit set, access to the external XRAM will occur once the 24-bit DPTR is greater than 0007FFH.

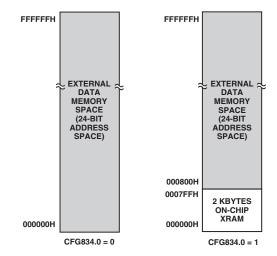


Figure 3. Internal and External XRAM

When accessing the internal XRAM, the P0 and P2 port pins, as well as the \overline{RD} and \overline{WR} strobes, will not be output as per a standard 8051 MOVX instruction. This allows the user to use these port pins as standard I/O.

The upper 1792 bytes of the internal XRAM can be configured to be used as an extended 11-bit stack pointer. By default, the stack will operate exactly like an 8052 in that it will roll over from FFH to 00H in the general-purpose RAM. On the ADuC834 however, it is possible (by setting CFG834.7) to enable the 11-bit extended stack pointer. In this case, the stack will roll over from FFH in RAM to 0100H in XRAM. The 11-bit stack pointer is visible in the SP and SPH SFRs. The SP SFR is located at 81H as with a standard 8052. The SPH SFR is located at B7H. The 3 LSBs of this SFR contain the three extra bits necessary to extend the 8-bit stack pointer into an 11-bit stack pointer.

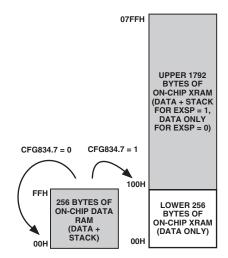
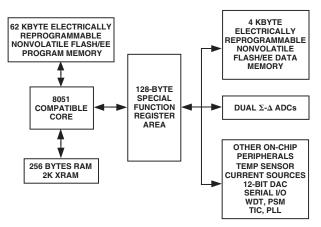


Figure 4. Extended Stack Pointer Operation

External Data Memory (External XRAM)


Just like a standard 8051 compatible core, the ADuC834 can access external data memory using a MOVX instruction. The MOVX instruction automatically outputs the various control strobes required to access the data memory.

The ADuC834 however, can access up to 16 Mbytes of external data memory. This is an enhancement of the 64 Kbytes external data memory space available on a standard 8051 compatible core.

The external data memory is discussed in more detail in the ADuC834 Hardware Design Considerations section.

SPECIAL FUNCTION REGISTERS (SFRS)

The SFR space is mapped into the upper 128 bytes of internal data memory space and accessed by direct addressing only. It provides an interface between the CPU and all on-chip peripherals. A block diagram showing the programming model of the ADuC834 via the SFR area is shown in Figure 5.

Figure 5. Programming Model

All registers, except the Program Counter (PC) and the four general-purpose register banks, reside in the SFR area. The SFR registers include control, configuration, and data registers that provide an interface between the CPU and all on-chip peripherals.

Accumulator SFR (ACC)

ACC is the Accumulator Register and is used for math operations including addition, subtraction, integer multiplication and division, and Boolean bit manipulations. The mnemonics for accumulator-specific instructions refer to the Accumulator as A.

B SFR (B)

The B Register is used with the ACC for multiplication and division operations. For other instructions, it can be treated as a general-purpose scratchpad register.

Data Pointer (DPTR)

The Data Pointer is made up of three 8-bit registers, named DPP (page byte), DPH (high byte) and DPL (low byte). These are used to provide memory addresses for internal and external code access and external data access. It may be manipulated as a 16-bit register (DPTR = DPH, DPL), although INC DPTR instructions will automatically carry over to DPP, or as three independent 8-bit registers (DPP, DPH, DPL).

The ADuC834 supports dual data pointers. Refer to the Dual Data Pointer section in this data sheet.

Stack Pointer (SP and SPH)

The SP SFR is the stack pointer and is used to hold an internal RAM address that is called the 'top of the stack.' The SP Register is incremented before data is stored during PUSH and CALL executions. While the Stack may reside anywhere in on-chip RAM, the SP Register is initialized to 07H after a reset. This causes the stack to begin at location 08H.

As mentioned earlier, the ADuC834 offers an extended 11-bit stack pointer. The three extra bits to make up the 11-bit stack pointer are the 3 LSBs of the SPH byte located at B7H.

Program Status Word (PSW)

The PSW SFR contains several bits reflecting the current status of the CPU as detailed in Table I.

SFR Address	D0H
Power-On Default Value	00H
Bit Addressable	Yes

Table I.	PSW	SFR	Bit	Designations
----------	-----	-----	-----	--------------

Bit	Name	Description
7	СҮ	Carry Flag
6	AC	Auxiliary Carry Flag
5	F0	General-Purpose Flag
4	RS1	Register Bank Select Bits
3	RS0	RS1 RS0 Selected Bank
		0 0 0
		0 1 1
		1 0 2
		1 1 3
2	OV	Overflow Flag
1	F1	General-Purpose Flag
0	P	Parity Bit

Power Control SFR (PCON)

The PCON SFR contains bits for power-saving options and general-purpose status flags as shown in Table II.

The TIC (wake-up/RTC timer) can be used to accurately wake up the ADuC834 from power-down at regular intervals. To use the TIC to wake up the ADuC834 from power-down, the OSC_PD bit in the PLLCON SFR must be clear and the TIC must be enabled.

SFR Address	87H
Power-On Default Value	00H
Bit Addressable	No

Table II. PCON SFR Bit Designations

Bit	Name	Description
7	SMOD	Double UART Baud Rate
6	SERIPD	SPI Power-Down Interrupt Enable
5	INT0PD	INT0 Power-Down Interrupt Enable
4	ALEOFF	Disable ALE Output
3	GF1	General-Purpose Flag Bit
2	GF0	General-Purpose Flag Bit
1	PD	Power-Down Mode Enable
0	IDL	Idle Mode Enable

ADuC834 CONFIGURATION SFR (CFG834)

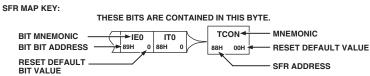
The CFG834 SFR contains the necessary bits to configure the internal XRAM and the extended SP. By default it configures the user into 8051 mode, i.e., extended SP is disabled, internal XRAM is disabled.

SFR Address	AFH
Power-On Default Value	00H
Bit Addressable	No

Table III. CFG834 SFR Bit Designations

Bit	Name	Description
7	EXSP	Extended SP Enable. If this bit is set, the stack will roll over from SPH/SP = 00FFH to 0100H. If this bit is clear, the SPH SFR will be disabled and the stack will roll over from SP = FFH to SP = 00H
6		Reserved for Future Use
5		Reserved for Future Use
4		Reserved for Future Use
3		Reserved for Future Use
2		Reserved for Future Use
1		Reserved for Future Use
0	XRAMEN	XRAM Enable Bit. If this bit is set, the internal XRAM will be mapped into the lower 2 Kbytes of the external address space. If this bit is clear, the internal XRAM will not be accessible and the external data memory will be mapped into the lower 2 Kbytes of external data memory. (See Figure 3.)

COMPLETE SFR MAP


Figure 6 shows a full SFR memory map and the SFR contents after RESET. NOT USED indicates unoccupied SFR locations. Unoccupied locations in the SFR address space are not

implemented; i.e., no register exists at this location. If an unoccupied location is read, an unspecified value is returned. SFR locations that are reserved for future use are shaded (RESERVED) and should not be accessed by user software.


ISPN WCOL SPM CPU of	1001	111001	0.05	0.00			00114	00004	0.00				SPICON				DACL	DACH	DACCON		
B RESERVED RESERVED NOTUSED RESERVED RES				-		-	-	-		BI	TS	\geq	F8H 04H	RESERV	ED	RESERVED		ECH 00H		RESERVED	RESERVED
EFH 0 FBH 0 COV			1					1	1								1511 0011				SPIDAT
Impo OW MOD MCO MCI ICCN ICCN ICCN GNOL ¹ GN	F7H 0	F6H (F5H	F4H	0 F3H	0	F2H (F1H 0	FOH	0 ВГ	TS	>	+	RESERV	ED	RESERVED	NOT USED	RESERVED	RESERVED	RESERVED	-
MDD MDD <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>GNOL</td> <td>1</td> <td>GN0M¹</td> <td>GN0H¹</td> <td>GN1L¹</td> <td>GN1H¹</td> <td></td> <td>F/H UUH</td>										-				GNOL	1	GN0M ¹	GN0H ¹	GN1L ¹	GN1H ¹		F/H UUH
EAR DAT Cal DAT DAT <thdat< th=""> <thdat< th=""> <thdat< th=""></thdat<></thdat<></thdat<>	-					-				BI	TS	>	+					-		RESERVED	RESERVED
ETH 0 ESH 0 EAH 0 EAH 0 EAH 0 BITS EAH OH OH <tho< td=""><td>EFH U</td><td>EER (</td><td></td><td>ECH</td><td>UEBH</td><td>1 0</td><td>EAH</td><td></td><td>E8H</td><td>0</td><td></td><td>(</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></tho<>	EFH U	EER (ECH	UEBH	1 0	EAH		E8H	0		(-						
EPH 0 EAD CAH 0 EAD EAD EAD EAD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>BI</td><td>TS</td><td>\leq</td><td>ACC</td><td>OFOL</td><td></td><td>OF0M</td><td>OF0H</td><td>OF1L</td><td>OF1H</td><td>DESEDVED</td><td>DESERVED</td></t<>										BI	TS	\leq	ACC	OFOL		OF0M	OF0H	OF1L	OF1H	DESEDVED	DESERVED
HUYT CAL NOARE-1 EHH Deh O Deh Deh Deh	E7H 0	E6H (E5H	E4H	0 E3H	0	E2H (E1H 0	E0H	0			E0H 00H	E1H C	юн	E2H 00H	E3H 80H	E4H 00H	E5H 80H	RESERVED	nesenveb
DEFH 0 DEH 0	RDY0	RDY1	CAL	NOXRE	FEF	RR0	ERR1						ADCSTAT	ADCO	L	ADC0M	ADC0H	ADC1L	ADC1H	DEGEDVED	PSMCON
UT1 D DH 0 DH	DFH 0	DEH (DDH	DCH	0 DBH	H 0	DAH	D9H 0	D8H	0 ^{BI}	rs	\geq	D8H 00H	D9H 0	юн	DAH 00H	DBH 00H	DCH 00H	DDH 00H	RESERVED	DFH DEH
D7H D D6H D D4H D D4H <thd d4h<="" th=""> D2</thd>	СҮ	AC	F0	RSI	R	S0	ov	FI	Р				PSW	ADCMO	DE	ADC0CON	ADC1CON	SF	ICON		PLLCON
IFZ EAP2 NULK ILL EARING ILL EARING ILL EARING RESERVED RES							-			0 BI	TS	\geq	рон оон	D1H 0	юн	D2H 07H	D3H 00H	D4H 45H	D5H 00H	RESERVED	D7H 03H
CFH 0 CH 0	TEO	EVEO	DOLK	TOLK			TDO	ONTO	CAD	0			T2CON		-	RCAP2L	RCAP2H	TL2	TH2		
PRE3 PRE2 PRE1 PRE0 WDIR WDS WDE WDWR BITS C7H 0 C6H 0 C5H 0 C4H 1 C3H 0 C2H 0 C1H 0 C0H 0 CHIPID RESERVED				-				-		BI	TS	>		RESERV	ED	CALL 0011	CBH 00H	CCH 00H	CDH 00H	RESERVED	RESERVED
PH22 PH2 PH2 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>CBN UUN</td> <td></td> <td>CDH UUH</td> <td>EADRI</td> <td>FADDU</td>			-					1							_		CBN UUN		CDH UUH	EADRI	FADDU
Image: Construction Padc PT2 PS PT1 PX1 PT0 PX0 BITS BFH 0 BCH 0 BDH 0 BCH 0 BBH 0 BAH B9H 0 BBH 0 BITS BITS BBH 0 BITS BCH 0 BCH 0 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>BI</td> <td>тs</td> <td>></td> <td>-</td> <td>RESERV</td> <td>ED</td> <td></td> <td>RESERVED</td> <td>RESERVED</td> <td>RESERVED</td> <td></td> <td>EADRH</td>				-			_			BI	тs	>	-	RESERV	ED		RESERVED	RESERVED	RESERVED		EADRH
PADC P/2 P/3 P/1 P/1 P/10 P/1	C7H 0	C6H (0 C5H) C4H	1 C3H	1 0	C2H () C1H 0	COH	0		(_	C2H 2×H					
Image: Construction Image: Construction										BI	тs	\leq	IP T	ECON	1	RESERVED	RESERVED	EDATA1	EDATA2	EDATA3	EDATA4
RD WH IT IU IUIT IUI	BFH 0	BEH (BDH	BCH	0 BBH	10	BAH	B9H 0	B8H	0			B8H 00H	B9H C	юн			BCH 00H	BDH 00H	BEH 00H	BFH 00H
B7H 1 B6H 1 B5H 1 B3H 1 B3H 1 B3H 1 B1H 1 B0H 1 B1H 0H B1H 1 B1H 1 <t< td=""><td>RD</td><td>WR</td><td>T1</td><td>Т0</td><td>ĪN</td><td>IT1</td><td>INTO</td><td>TXD</td><td>RXC</td><td></td><td>Te</td><td></td><td>P3</td><td>PWM0</td><td>L</td><td>PWM0H</td><td>PWM1L</td><td>PWM1H</td><td>DECEDVED</td><td>RESERVED</td><td>SPH</td></t<>	RD	WR	T1	Т0	ĪN	IT1	INTO	TXD	RXC		Te		P3	PWM0	L	PWM0H	PWM1L	PWM1H	DECEDVED	RESERVED	SPH
Let EAD EII EXT EIII EIIII EIIII EIIII EIIIIII EIIIIII	B7H 1	B6H 1	B5H	1 B4H	1 B3H	1	B2H	B1H 1	B0H	1			BOH FFH	B1H 0	юн	B2H 00H	B3H 00H	B4H 00H	NEGENVED		B7H 00H
AFH 0 AEH 0 AEH 0 ABH 0 ABH 0 BITS ABH 00H A9H AAH 0 ABH 0 BITS ABH 00H A9H AAH 0 ABH	EA	EADC	ET2	ES	E	T1	EX1	ET0	EX0				IE	IEIP2			_	_		PWMCON	CFG834
A7H 1 A6H 1 A3H 1 A2H 1 A1H 1 A0H FFH A1H 00H A2H 00H A3H 00H A4H 00H A5H 00H A6H 00H A7H 00H SM0 SM1 SM2 REN TB8 RB8 T1 R1 BITS SCON SBUF RESERVED RESERVED NOT USED 9DH 00H A6H 00H A7H 00H 9FH 0 9DH 0 9BH 0 9BH 0 BITS SCON SBUF RESERVED RESERVED NOT USED 9DH 00H A6H 00H A7H 00H 9FH 0 9DH 0 9AH 0 9BH 0 BITS SCON SBUF RESERVED RESERVED NOT USED 9DH 00H RESERVED 97H 96H 1 95H 1 94H 1 93H 1 92H 1 91H 1 90H FFH RESERVED RESERVED RESERVED </td <td>AFH 0</td> <td>AEH (</td> <td>ADH</td> <td>ACH</td> <td>0 ABH</td> <td>H 0</td> <td>AAH (</td> <td>А9Н 0</td> <td></td> <td>I BI</td> <td>TS</td> <td>\geq</td> <td>A8H 00H</td> <td>АЭН А</td> <td>лон</td> <td>RESERVED</td> <td>RESERVED</td> <td>RESERVED</td> <td>RESERVED</td> <td>AEH 00H</td> <td>AFH 00H</td>	AFH 0	AEH (ADH	ACH	0 ABH	H 0	AAH (А9Н 0		I BI	TS	\geq	A8H 00H	АЭН А	лон	RESERVED	RESERVED	RESERVED	RESERVED	AEH 00H	AFH 00H
A7H 1 A6H 1 A3H 1 A2H 1 A1H 1 A0H FFH A1H 00H A2H 00H A3H 00H A4H 00H A5H 00H A6H 00H A7H 00H SM0 SM1 SM2 REN TB8 RB8 T1 R1 BITS SCON SBUF RESERVED RESERVED NOT USED 9DH 00H SERVED 9DH 00H SERVED RESERVED NOT USED 9DH 00H RESERVED									1				P2	TIMECO	DN	HTHSEC ²	SEC ²	MIN ²	HOUR ²	INTVAL	DPCON
SM0 SM1 SM2 REN TB8 RB8 T1 R1 R1 BITS SCON SBUF RESERVED RESERVED NOT USED 9DH OoH PI 9BH OOH 9BH OOH PI PI< PI< <t< td=""><td>A7H 1</td><td>A6H 1</td><td>1 A5H</td><td>1 A4H</td><td>1 A3H</td><td>I 1</td><td>A2H ·</td><td>A1H 1</td><td>AOH</td><td>1 BI</td><td>TS</td><td>></td><td></td><td>A111 0</td><td><u>л</u>ц</td><td>A2H 00H</td><td>A2H 00H</td><td></td><td></td><td></td><td></td></t<>	A7H 1	A6H 1	1 A5H	1 A4H	1 A3H	I 1	A2H ·	A1H 1	AOH	1 BI	TS	>		A111 0	<u>л</u> ц	A2H 00H	A2H 00H				
SM0 SM1 SM2 HEN IBB HBB III HI HI BITS P1 P1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>A211 0011</td> <td></td> <td></td> <td></td> <td></td> <td></td>								1						-	-	A211 0011					
98H 00H 99H 99H <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>в</td> <td>TS</td> <td>></td> <td>-</td> <td></td> <td></td> <td>RESERVED</td> <td>RESERVED</td> <td>NOT USED</td> <td>-</td> <td></td> <td>RESERVED</td>						-				в	TS	>	-			RESERVED	RESERVED	NOT USED	-		RESERVED
97H 1 96H 1 93H 1 92H 1 12LX 112 BITS RESERVED RESE	0.111 0	02.1. 0			0 02.		on in			•		,		99H 0	OH				3D11 00H		
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 BITS 8FH 0 8EH 0 8CH 0 8BH 0 BITS TCON TMOD TL0 TL1 TH0 TH1 RESERVED 8FH 0 8EH 0 8BH 0 BITS <										BI	тs	>	P1	RESERV	ED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED
IF1 IF0 IF0 IF0 IF0 IF1 IF1 IF0 IF0 <td>97H 1</td> <td>96H 1</td> <td>1 95H</td> <td>1 94H</td> <td>1 93H</td> <td>1</td> <td>92H -</td> <td>1 91Н 1</td> <td>90H</td> <td>1</td> <td></td> <td></td> <td>90H FFH</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	97H 1	96H 1	1 95H	1 94H	1 93H	1	92H -	1 91Н 1	90H	1			90H FFH								
BFH 0 8EH 0 8EH 0 88H 00H 88H	TF1	TR1			18	E1	IT1	IE0	IT0	ВІ	тѕ	\mathbf{i}	TCON	TMOD		TL0	TL1	TH0	TH1	RESERVED	RESERVED
	8FH 0	8EH (0 8DH	8CH	0 8BH	I 0	8AH (0 89H 0	88H				88H 00H	89H 0	юн	8AH 00H	8BH 00H	8CH 00H	8DH 00H		
													P0	SP		DPL	DPH	DPP			PCON
87H 1 86H 1 85H 1 84H 1 83H 1 82H 1 81H 1 80H 1 B1H 1 80H 1 B1TS 80H FFH 81H 07H 82H 00H 83H 00H 84H 00H RESERVED RESERVED 87H 00H		86H 1	1 85H	1 84H	1 83H	1	82H	1 81H 1	80H	1	15	\geq	Ť						RESERVED	RESERVED	

NOTES

1CALIBRATION COEFFICIENTS ARE PRECONFIGURED AT POWER-UP TO FACTORY CALIBRATED VALUES. ²THESE SFRS MAINTAIN THEIR PRERESET VALUES AFTER A RESET IF TIMECON.0 = 1.

SFR NOTE: SFRs WHOSE ADDRESSES END IN 0H OR 8H ARE BIT-ADDRESSABLE.

ADC SFR INTERFACE

Both ADCs are controlled and configured via a number of SFRs that are mentioned here and described in more detail in the following pages.

ADCSTAT	ADC Status Register. Holds general status of the primary and auxiliary ADCs.	ADC0L/M/H	Primary ADC 24-bit conversion result is held in these three 8-bit registers.		
ADCMODE	ADC Mode Register. Controls general modes of operation for primary and auxiliary ADCs.	ADC1L/H	Auxiliary ADC 16-bit conversion result is held in these two 8-bit registers.		
ADC0CON	Primary ADC Control Register. Controls specific configuration of primary ADC.	OF0L/M/H	Primary ADC 24-bit Offset Calibration Coefficient is held in these three 8-bit registers.		
ADC1CON	Auxiliary ADC Control Register. Controls specific configuration of auxiliary ADC.	OF1L/H	Auxiliary ADC 16-bit Offset Calibration Coefficient is held in these two 8-bit registers.		
SF	Sinc Filter Register. Configures the decimation factor for the Sinc ³ filter and thus the primary	GN0L/M/H	Primary ADC 24-bit Gain Calibration Coefficient is held in these three 8-bit registers.		
	and auxiliary ADC update rates.	GN1L/H	Auxiliary ADC 16-bit Gain Calibration		
ICON	Current Source Control Register. Allows user control of the various on-chip current source options.		Coefficient is held in these two 8-bit registers.		

ADCSTAT—(ADC Status Register)

This SFR reflects the status of both ADCs including data ready, calibration, and various (ADC-related) error and warning conditions including reference detect and conversion overflow/underflow flags.

SFR Address	D8H
Power-On Default Value	00H
Bit Addressable	Yes

Table IV. ADCSTAT SFR Bit Designations

Bit	Name	Description
7	RDY0	Ready Bit for primary ADC.Set by hardware on completion of ADC conversion or calibration cycle.Cleared directly by the user or indirectly by write to the mode bits to start another primaryADC conversion or calibration. The primary ADC is inhibited from writing further results to itsdata or calibration registers until the RDY0 bit is cleared.
6	RDY1	Ready Bit for auxiliary ADC. Same definition as RDY0 referred to the auxiliary ADC.
5	CAL	Calibration Status Bit. Set by hardware on completion of calibration. Cleared indirectly by a write to the mode bits to start another ADC conversion or calibration.
4	NOXREF	 No External Reference Bit (only active if primary or auxiliary ADC is active). Set to indicate that one or both of the REFIN pins is floating or the applied voltage is below a specified threshold. When Set, conversion results are clamped to all ones, if using external reference. Cleared to indicate valid V_{REF}.
3	ERRO	Primary ADC Error Bit. Set by hardware to indicate that the result written to the primary ADC data registers has been clamped to all zeros or all ones. After a calibration, this bit also flags error conditions that caused the calibration registers not to be written. Cleared by a write to the mode bits to initiate a conversion or calibration.
2	ERR1	Auxiliary ADC Error Bit. Same definition as ERR0 referred to the auxiliary ADC.
1		Reserved for Future Use
0		Reserved for Future Use

ADCMODE (ADC Mode Register)

Used to control the operational mode of both ADCs.

SFR Address	D1H
Power-On Default Value	00H
Bit Addressable	No

Table V. ADCMODE SFR Bit Designations

Bit	Name	Desc	Description								
7		Reser	Reserved for Future Use								
6		Reser	Reserved for Future Use								
5	ADC0EN	Set by	y the us		e. able the primary ADC and place it in the mode selected in MD2–MD0 below. to place the primary ADC in power-down mode.						
4	ADC1EN	Set by	Auxiliary ADC Enable. Set by the user to enable the auxiliary ADC and place it in the mode selected in MD2–MD0 below. Cleared by the user to place the auxiliary ADC in power-down mode.								
3		Reser	ved for	Future	Use						
2	MD2	Prima	ary and	auxiliar	y ADC Mode bits.						
1	MD1	These	e bits se	lect the	operational mode of the enabled ADC as follows:						
0	MD0	MD2	MD1	MD0							
		0	0	0	ADC Power-Down Mode (Power-On Default)						
		0	0	1	Idle Mode. In Idle Mode, the ADC filter and modulator are held in a reset state although the modulator clocks are still provided.						
		0	1	0	Single Conversion Mode. In Single Conversion Mode, a single conversion is performed on the enabled ADC. On completion of the conversion, the ADC data registers (ADC0H/M/L and/or ADC1H/L) are updated, the relevant flags in the ADCSTAT SFR are written, and power-down is re-entered with the MD2–MD0 accordingly being written to 000.						
		0	1	1	Continuous Conversion. In Continuous Conversion Mode, the ADC data registers are regularly updated at the selected update rate (see SF Register).						
		1	0	0	Internal Zero-Scale Calibration. Internal short automatically connected to the enabled ADC input(s).						
		1	0	1	Internal Full-Scale Calibration Internal or External V_{REF} (as determined by XREF0 and XREF1 bits in ADC0/1CON) is automatically connected to the enabled ADC input(s) for this calibration.						
		1	1	0	System Zero-Scale Calibration. User should connect system zero-scale input to the enabled ADC input(s) as selected by CH1/CH0 and ACH1/ACH0 bits in the ADC0/1CON Register.						
		1	1	1	System Full-Scale Calibration. User should connect system full-scale input to the enabled ADC input(s) as selected by CH1/CH0 and ACH1/ACH0 bits in the ADC0/1CON Register.						

NOTES

Any change to the MD bits will immediately reset both ADCs. A write to the MD2-0 Bits with no change is also treated as a reset. (See exception to this in Note 3 below.)
 If ADC0CON is written when ADC0EN = 1, or if ADC0EN is changed from 0 to 1, then both ADCs are also immediately reset. In other words, the primary ADC is given priority over the auxiliary ADC and any change requested on the primary ADC is immediately responded to.

3. On the other hand, if ADC1CON is written or if ADC1EN is changed from 0 to 1, only the auxiliary ADC is reset. For example, if the primary ADC is continuously converting when the auxiliary ADC change or enable occurs, the primary ADC continues undisturbed. Rather than allow the auxiliary ADC to operate with a phase difference from the primary ADC, the auxiliary ADC will fall into step with the outputs of the primary ADC. The result is that the first conversion time for the auxiliary ADC will be delayed up to three outputs while the auxiliary ADC update rate is synchronized to the primary ADC.

4. Once ADCMODE has been written with a calibration mode, the RDY0/1 bits (ADCSTAT) are immediately reset and the calibration commences. On completion, the appropriate calibration registers are written, the relevant bits in ADCSTAT are written, and the MD2–0 bits are reset to 000 to indicate the ADC is back in power-down mode.

5. Any calibration request of the auxiliary ADC while the temperature sensor is selected will fail to complete. Although the RDY1 bit will be set at the end of the calibration cycle, no update of the calibration SFRs will take place and the ERR1 bit will be set.

6. Calibrations are performed at maximum SF (see SF SFR) value guaranteeing optimum calibration operation.

ADC0CON (Primary ADC Control Register) and ADC1CON (Auxiliary ADC Control Register)

The ADC0CON and ADC1CON SFRs are used to configure the primary and auxiliary ADC for reference and channel selection, unipolar or bipolar coding and, in the case of the primary ADC, for range (the auxiliary ADC operates on a fixed input range of $\pm V_{REF}$).

ADC0CON	Primary ADC Control SFR	ADC1CON	Auxiliary ADC Control SFR
SFR Address	D2H	SFR Address	D3H
Power-On Default Value	07H	Power-On Default Value	00H
Bit Addressable	No	Bit Addressable	No

Table VI. ADC0CON SFR Bit Designations

Bit	Name	Description
7		Reserved for Future Use
6	XREF0	Primary ADC External Reference Select Bit.
		Set by user to enable the primary ADC to use the external reference via REFIN(+)/REFIN(-).
		Cleared by user to enable the primary ADC to use the internal band gap reference ($V_{REF} = 1.25 \text{ V}$).
5	CH1	Primary ADC Channel Selection Bits
4	CH0	Written by the user to select the differential input pairs used by the primary ADC as follows:
		CH1 CH0 Positive Input Negative Input
		0 0 AIN1 AIN2
		0 1 AIN3 AIN4
		1 0 AIN2 AIN2 (Internal Short)
		1 1 AIN3 AIN2
3	UNI0	Primary ADC Unipolar Bit.
		Set by user to enable unipolar coding, i.e., zero differential input will result in 000000H output.
		Cleared by user to enable bipolar coding, i.e., zero differential input will result in 800000H output.
2	RN2	Primary ADC Range Bits.
1	RN1	Written by the user to select the primary ADC input range as follows:
0	RN0	RN2 RN1 RN0 Selected Primary ADC Input Range ($V_{REF} = 2.5 V$)
		0 0 0 $\pm 20 \text{ mV}$ (0 mV-20 mV in Unipolar Mode)
		0 0 1 $\pm 40 \text{ mV}$ (0 mV-40 mV in Unipolar Mode)
		0 1 0 $\pm 80 \text{ mV}$ (0 mV-80 mV in Unipolar Mode)
		0 1 1 $\pm 160 \text{ mV}$ (0 mV-160 mV in Unipolar Mode)
		1 0 0 $\pm 320 \text{ mV}$ (0 mV-320 mV in Unipolar Mode)
		1 0 1 $\pm 640 \text{ mV}$ (0 mV-640 mV in Unipolar Mode)
		1 1 0 ±1.28 V (0 V–1.28 V in Unipolar Mode)
		1 1 1 ±2.56 V (0 V–2.56 V in Unipolar Mode)

Table VII. ADC1CON SFR Bit Designations

Bit	Name	Descripti	ion		
7		Reserved	for Future U	Jse	
6	XREF1	Auxiliary	ADC Extern	nal Reference Bit.	
		Set by use	er to enable	the auxiliary ADC t	o use the external reference via REFIN(+)/REFIN(-).
		Cleared by	y user to en	able the auxiliary AI	DC to use the internal band gap reference.
5	ACH1	Auxiliary	ADC Chan	nel Selection Bits.	
4	ACH0	Written by	the user to	select the single-ende	ed input pins used to drive the auxiliary ADC as follows:
		ACH1	ACH0	Positive Input	Negative Input
		0	0	AIN3	AGND
		0	1	AIN4	AGND
		1	0	Temp Sensor	AGND (Temp Sensor routed to the ADC input)
		1	1	AIN5	AGND
3	UNI1	Auxiliary	ADC Unipo	olar Bit.	
		Set by use	er to enable	unipolar coding, i.e.	, zero input will result in 0000H output.
		Cleared by	y user to en	able bipolar coding,	i.e., zero input will result in 8000H output.
2		Reserved	for Future U	Jse	
1		Reserved	Reserved for Future Use		
0	<u> </u>	Reserved	for Future U	Jse	

NOTES

1. When the temperature sensor is selected, user code must select internal reference via XREF1 bit above and clear the UNI1 bit (ADC1CON.3) to select bipolar coding.

2. The temperature sensor is factory calibrated to yield conversion results 8000H at 0 $^\circ\text{C}.$

3. A +1°C change in temperature will result in a +1 LSB change in the ADC1H Register ADC conversion result.

ADC0H/ADC0M/ADC0L (Primary ADC Conversion Result Registers)

These three 8-bit registers hold the 24-bit conversion result from the primary ADC.

SFR Address	ADC0H	High Data Byte DBH
	ADC0M	Middle Data Byte DAH
	ADC0L	Low Data Byte D9H
Power-On Default Value	00H	ADC0H, ADC0M, ADC0L
Bit Addressable	No	ADC0H, ADC0M, ADC0L

ADC1H/ADC1L (Auxiliary ADC Conversion Result Registers)

These two 8-bit registers hold the 16-bit conversion result from the auxiliary ADC.

SFR Address	ADC1H	High Data Byte	DDH
	ADC1L	Low Data Byte	DCH
Power-On Default Value	00H	ADC1H, ADC1L	
Bit Addressable	No	ADC1H, ADC1L	

OF0H/OF0M/OF0L (Primary ADC Offset Calibration Registers*)

These three 8-bit registers hold the 24-bit offset calibration coefficient for the primary ADC. These registers are configured at power-on with a factory default value of 800000H. However, these bytes will be automatically overwritten if an internal or system zero-scale calibration of the primary ADC is initiated by the user via MD2–0 bits in the ADCMODE Register.

SFR Address	OF0H	Primary ADC Offset Coefficient High Byte	E3H
	OF0M	Primary ADC Offset Coefficient Middle Byte	E2H
	OF0L	Primary ADC Offset Coefficient Low Byte	E1H
Power-On Default Value	800000H	OF0H, OF0M, OF0L, respectively	
Bit Addressable	No	OF0H, OF0M, OF0L	

OF1H/OF1L (Auxiliary ADC Offset Calibration Registers*)

These two 8-bit registers hold the 16-bit offset calibration coefficient for the auxiliary ADC. These registers are configured at power-on with a factory default value of 8000H. However, these bytes will be automatically overwritten if an internal or system zero-scale calibration of the auxiliary ADC is initiated by the user via the MD2–0 bits in the ADCMODE Register.

SFR Address	OF1H	Auxiliary ADC Offset Coefficient High Byte	E5H
	OF1L	Auxiliary ADC Offset Coefficient Low Byte	E4H
Power-On Default Value	8000H	OF1H and OF1L, respectively	
Bit Addressable	No	OF1H, OF1L	

GN0H/GN0M/GN0L (Primary ADC Gain Calibration Registers*)

These three 8-bit registers hold the 24-bit gain calibration coefficient for the primary ADC. These registers are configured at power-on with a factory-calculated internal full-scale calibration coefficient. Every device will have an individual coefficient. However, these bytes will be automatically overwritten if an internal or system full-scale calibration of the primary ADC is initiated by the user via MD2–0 bits in the ADCMODE Register.

SFR Address	GN0H	Primary ADC Gain Coefficient High Byte	EBH
	GN0M	Primary ADC Gain Coefficient Middle Byte	EAH
	GN0L	Primary ADC Gain Coefficient Low Byte	E9H
Power-On Default Value		Configured at Factory Final Test; see Notes above.	
Bit Addressable	No	GN0H, GN0M, GN0L	

GN1H/GN1L (Auxiliary ADC Gain Calibration Registers*)

These two 8-bit registers hold the 16-bit gain calibration coefficient for the auxiliary ADC. These registers are configured at power-on with a factory-calculated internal full-scale calibration coefficient. Every device will have an individual coefficient. However, these bytes will be automatically overwritten if an internal or system full-scale calibration of the auxiliary ADC is initiated by the user via MD2–0 bits in the ADCMODE Register.

SFR Address	GN1H	Auxiliary ADC Gain Coefficient High Byte	EDH
	GN1L	Auxiliary ADC Gain Coefficient Low Byte	ECH
Power-On Default Value		Configured at Factory Final Test; see Notes above.	
Bit Addressable	No	GN1H, GN1L	

*These registers can be overwritten by user software only if Mode bits MD0-2 (ADCMODE SFR) are zero.

SF (Sinc Filter Register)

The number in this register sets the decimation factor and thus the output update rate for the primary and auxiliary ADCs. This SFR cannot be written by user software while either ADC is active. The update rate applies to both primary and auxiliary ADCs and is calculated as follows:

$$f_{ADC} = \frac{1}{3} \times \frac{1}{8 \times SF} \times f_{MOD}$$

Where:

 f_{ADC} = ADC Output Update Rate f_{MOD} = Modulator Clock Frequency = 32.768 kHz

SF = Decimal Value of SF Register

The allowable range for SF is 0DH to FFH. Examples of SF values and corresponding conversion update rates (f_{ADC}) and conversion times (t_{ADC}) are shown in Table VIII. The power-on default

value for the SF Register is 45H, resulting in a default ADC update rate of just under 20 Hz. Both ADC inputs are chopped to minimize offset errors, which means that the settling time for a single conversion, or the time to a first conversion result in Continuous Conversion mode, is $2 \times t_{ADC}$. As mentioned earlier, all calibration cycles will be carried out automatically with a maximum, i.e., FFH, SF value to ensure optimum calibration performance. Once a calibration cycle has completed, the value in the SF Register will be that programmed by user software.

Table VIII. SF SFR Bit Designations

SF(dec)	SF(hex)	f _{ADC} (Hz)	t _{ADC} (ms)
13	0D	105.3	9.52
69	45	19.79	50.34
255	FF	5.35	186.77

ICON (Current Sources Control Register)

Used to control and configure the various excitation and burnout current source options available on-chip.

SFR Address	D5H
Power-On Default Value	00H
Bit Addressable	No

Table IX. ICON SFR Bit Designations

Bit	Name	Description
7		Reserved for Future Use
6	ВО	Burnout Current Enable Bit. Set by user to enable both transducer burnout current sources in the primary ADC signal paths. Cleared by user to disable both transducer burnout current sources.
5	ADC1IC	Auxiliary ADC Current Correction Bit. Set by user to allow scaling of the auxiliary ADC by an internal current source calibration word.
4	ADC0IC	Primary ADC Current Correction Bit. Set by user to allow scaling of the primary ADC by an internal current source calibration word.
3	I2PIN*	Current Source-2 Pin Select Bit. Set by user to enable current source-2 (200 µA) to external Pin 3 (P1.2/DAC/IEXC1). Cleared by user to enable current source-2 (200 µA) to external Pin 4 (P1.3/AIN5/IEXC2).
2	I1PIN*	Current Source-1 Pin Select Bit. Set by user to enable current source-1 (200 µA) to external Pin 4 (P1.3/AIN5/IEXC2). Cleared by user to enable current source-1 (200 µA) to external Pin 3 (P1.2/DAC/IEXC1).
1	I2EN	Current Source-2 Enable Bit. Set by user to turn on excitation current source-2 (200 µA). Cleared by user to turn off excitation current source-2 (200 µA).
0	I1EN	Current Source-1 Enable Bit. Set by user to turn on excitation current source-1 (200 µA). Cleared by user to turn off excitation current source-1 (200 µA).

*Both current sources can be enabled to the same external pin, yielding a 400 µA current source.

PRIMARY AND AUXILIARY ADC NOISE PERFORMANCE

Tables X, XI, and XII show the output rms noise in μ V and output peak-to-peak resolution in bits (rounded to the nearest 0.5 LSB) for some typical output update rates on both the primary and auxiliary ADCs. The numbers are typical and are generated at a differential input voltage of 0 V. The output update rate is selected via the Sinc Filter (SF) SFR. It is important to note that the peak-to-peak resolution figures represent the resolution for which there will be no code flicker within a six-sigma limit.

The QuickStart Development system PC software comes complete with an ADC noise evaluation tool. This tool can be easily used with the evaluation board to see these figures from silicon.

Table X. Primary ADC, Typical Output RMS Noise (μV)Typical Output RMS Noise vs. Input Range and Update Rate; Output RMS Noise in μV

SF	Data Update	Input Range							
Word	Rate (Hz)	±20 mV	±40 mV	±80 mV	±160 mV	±320 mV	±640 mV	±1.28 V	±2.56 V
13	105.3	1.50	1.50	1.60	1.75	3.50	4.50	6.70	11.75
69	19.79	0.60	0.65	0.65	0.65	0.65	0.95	1.40	2.30
255	5.35	0.35	0.35	0.37	0.37	0.37	0.51	0.82	1.25

 Table XI. Primary ADC, Peak-to-Peak Resolution (Bits)

 Peak-to-Peak Resolution vs. Input Range and Update Rate; Peak-to-Peak Resolution in Bits

SF	Data Update				Input Range					
Word	Rate (Hz)	±20 mV	±40 mV	±80 mV	±160 mV	±320 mV	±640 mV	±1.28 V	±2.56 V	
13	105.3	12	13	14	15	15	15.5	16	16	
69	19.79	13.5	14	15	16	17	17.5	18	18.5	
255	5.35	14	15	16	17	18	18.5	19	19.5	

Typical RMS Resolution vs. Input Range and Update Rate: RMS Resolution in Bits*

SF	Data Update				Input Range						
Word	Rate (Hz)	±20 mV	±40 mV	±80 mV	±160 mV	±320 mV	±640 mV	±1.28 V	±2.56 V		
13	105.3	14.7	15.7	16.7	17.7	17.7	18.2	18.7	18.7		
69	19.79	16.2	16.7	17.7	18.7	19.7	20.2	20.7	21.2		
255	5.35	16.7	17.7	18.7	19.7	20.7	21.2	21.7	22.2		

*Based on a six-sigma limit, the rms resolution is 2.7 bits greater than the peak-to-peak resolution.

Table XII. Auxiliary ADC

Typical Output RMS Noise vs. Update Rate* Output RMS Noise in µV

SF Word	Data Update Rate (Hz)	Input Range 2.5 V		
13	105.3	10.75		
69	19.79	2.00		
255	5.35	1.15		

*ADC converting in Bipolar mode

Peak-to-Peak Resolution vs. Update Rate¹ Peak-to-Peak Resolution in Bits

SF Word	Data Update Rate (Hz)	Input Range 2.5 V		
13	105.3	16 ²		
69	19.79	16		
255	5.35	16		

NOTES

¹ADC converting in Bipolar mode

²In Unipolar mode, peak-to-peak resolution at 105 Hz is 15 bits.

PRIMARY AND AUXILIARY ADC CIRCUIT DESCRIPTION Overview

The ADuC834 incorporates two independent Σ - Δ ADCs (primary and auxiliary) with on-chip digital filtering intended for the measurement of wide dynamic range, low frequency signals such as those in weigh-scale, strain gage, pressure transducer, or temperature measurement applications.

Primary ADC

This ADC is intended to convert the primary sensor input. The input is buffered and can be programmed for one of eight input ranges from ± 20 mV to ± 2.56 V being driven from one of three differential input channel options AIN1/2, AIN3/4, or AIN3/2. The input channel is internally buffered, allowing the part to handle significant source impedances on the analog input and

allowing R/C filtering (for noise rejection or RFI reduction) to be placed on the analog inputs if required. On-chip burnout currents can also be turned on. These currents can be used to check that a transducer on the selected channel is still operational before attempting to take measurements.

The ADC employs a Σ - Δ conversion technique to realize up to 24 bits of no missing codes performance. The Σ - Δ modulator converts the sampled input signal into a digital pulse train whose duty cycle contains the digital information. A Sinc³ programmable low-pass filter is then employed to decimate the modulator output data stream to give a valid data conversion result at programmable output rates from 5.35 Hz (186.77 ms) to 105.03 Hz (9.52 ms). A chopping scheme is also employed to minimize ADC offset errors. A block diagram of the primary ADC is shown in Figure 7.

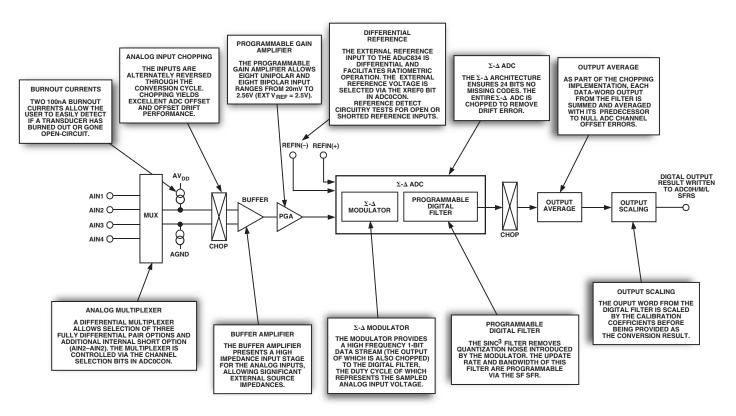


Figure 7. Primary ADC Block Diagram

Auxiliary ADC

The auxiliary ADC is intended to convert supplementary inputs such as those from a cold junction diode or thermistor. This ADC is not buffered and has a fixed input range of 0 V to 2.5 V (assuming an external 2.5 V reference). The single-ended inputs can be driven from AIN3, AIN4, or AIN5 Pins, or directly from the on-chip temperature sensor voltage. A block diagram of the auxiliary ADC is shown in Figure 8.

Analog Input Channels

The primary ADC has four associated analog input pins (labelled AIN1 to AIN4) that can be configured as two fully differential input channels. Channel selection bits in the ADC0CON SFR detailed in Table VI allow three combinations of differential pair selection as well as an additional shorted input option (AIN2–AIN2).

The auxiliary ADC has three external input pins (labelled AIN3 to AIN5) as well as an internal connection to the on-chip temperature sensor. All inputs to the auxiliary ADC are single-ended inputs referenced to the AGND on the part. Channel selection bits in the ADC1CON SFR previously detailed in Table VII allow selection of one of four inputs.

Two input multiplexers switch the selected input channel to the on-chip buffer amplifier in the case of the primary ADC and directly to the Σ - Δ modulator input in the case of the auxiliary ADC. When the analog input channel is switched, the settling time of the part must elapse before a new valid word is available from the ADC.

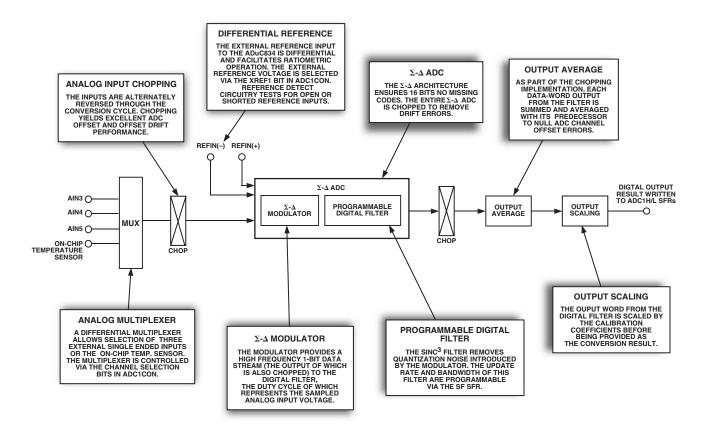


Figure 8. Auxiliary ADC Block Diagram