imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG DEVICES

MicroConverter 12-Bit ADCs and DACs with Embedded High Speed 62 kB Flash MCU

Data Sheet

ADuC841/ADuC842/ADuC843

FEATURES

LATORES
Pin compatible upgrade of ADuC812/ADuC831/ADuC832
Increased performance
Single-cycle 20 MIPS 8052 core
High speed 420 kSPS 12-bit ADC
Increased memory
Up to 62 kBytes on-chip Flash/EE program memory
4 kBytes on-chip Flash/EE data memory
In-circuit reprogrammable
Flash/EE, 100 year retention, 100 kCycle endurance
2304 bytes on-chip data RAM
Smaller package
8 mm × 8 mm chip scale package
52-lead PQFP—pin-compatible upgrade
Analog I/O
8-channel, 420 kSPS high accuracy, 12-bit ADC
On-chip, 15 ppm/°C voltage reference
DMA controller, high speed ADC-to-RAM capture
Two 12-bit voltage output DACs ¹
Dual output PWM Σ-Δ DACs
On-chip temperature monitor function
8052 based core
8051 compatible instruction set (20 MHz max)
High performance single-cycle core
32 kHz external crystal, on-chip programmable PLL
12 interrupt sources, 2 priority levels
Dual data pointers, extended 11-bit stack pointer
On-chip peripherals
Time interval counter (TIC)
UART, I ² C°, and SPI° Serial I/O
Watchdog timer (WDT)
Power supply monitor (PSM)
Power
Normal: 4.5 mA @ 3 V (core CLK = 2.098 MHz)
Power-down: 10 μA @ 3 V²
Development tools
Low cost, comprehensive development system
incorporating nonintrusive single-pin emulation,
IDE based assembly and C source debugging
APPLICATIONS

Optical networking—laser power control Base station systems Precision instrumentation, smart sensors Transient capture systems DAS and communications systems

¹ ADuC841/ADuC842 only. ² ADuC842/ADuC843 only, ADuC841 driven directly by external crystal. Rev. A Document Fe

Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

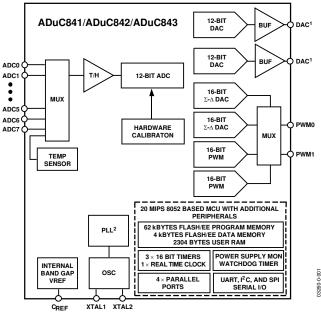


Figure 1.

GENERAL DESCRIPTION

The ADuC841/ADuC842/ADuC843¹ are complete smart transducer front ends, that integrates a high performance self-calibrating multichannel ADC, a dual DAC, and an optimized single-cycle 20 MHz 8-bit MCU (8051 instruction set compatible) on a single chip.

The ADuC841 and ADuC842 are identical with the exception of the clock oscillator circuit; the ADuC841 is clocked directly from an external crystal up to 20 MHz whereas the ADuC842 uses a 32 kHz crystal with an on-chip PLL generating a programmable core clock up to 16.78 MHz.

The ADuC843 is identical to the ADuC842 except that the ADuC843 has no analog DAC outputs.

The microcontroller is an optimized 8052 core offering up to 20 MIPS peak performance. Three different memory options are available offering up to 62 kBytes of nonvolatile Flash/EE program memory. Four kBytes of nonvolatile Flash/EE data memory, 256 bytes RAM, and 2 kBytes of extended RAM are also integrated on-chip.

¹ Protected by U.S. Patent No. 5,969,657.

(continued on page 15)

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2003–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	
Absolute Maximum Ratings	
ESD Caution	
Pin Configurations and Function Descriptions	9
Terminology	19
ADC Specifications	
DAC Specifications	19
Typical Performance Characteristics	
Functional Description	24
8052 Instruction Set	24
Other Single-Cycle Core Features	
Memory Organization	
Special Function Registers (SFRs)	
Accumulator SFR (ACC)	
Special Function Register Banks	
ADC Circuit Information	
Calibrating the ADC	
Nonvolatile Flash/EE Memory	
Using Flash/EE Data Memory	

	User Interface to On-Chip Peripherals	. 46
	On-Chip PLL	. 49
	Pulse-Width Modulator (PWM)	. 50
	Serial Peripheral Interface (SPI)	. 53
	I ² C Compatible Interface	. 56
	Dual Data Pointer	. 59
	Power Supply Monitor	. 60
	Watchdog Timer	. 61
	Time Interval Counter (TIC)	. 62
	8052 Compatible On-Chip Peripherals	. 65
	Timer/Counter 0 and 1 Operating Modes	. 70
	Timer/Counter Operating Modes	. 72
	UART Serial Interface	. 73
	SBUF	. 73
	Interrupt System	. 78
	Hardware Design Considerations	. 80
	Other Hardware Considerations	. 84
	Development Tools	. 85
	QuickStart Development System	. 85
Т	[°] iming Specifications [•]	. 86
C	Outline Dimensions	. 94
	Ordering Guide	. 95

REVISION HISTORY

4/16—Rev. 0 to Rev. A	
Added Patent Note, Note 1	1
Changes to Figure 3 and Table 3	
Changes to Figure 4	14
Added Table 4; Renumbered Sequentially	14

Changes to Using the DAC Section	47
Updated Outline Dimensions	94
Changes to Ordering Guide	95

11/03—Revision 0: Initial Version

SPECIFICATIONS¹

Table 1. $AV_{DD} = DV_{DD} = 2.7 V$ to 3.6 V or 4.75 V to 5.25 V; $V_{REF} = 2.5 V$ internal reference, $f_{CORE} = 16.78 MHz @ 5 V 8.38 MHz @ 3 V$; all specifications $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted

Parameter	$V_{DD} = 5 V$	$V_{DD} = 3 V$	Unit	Test Conditions/Comments
ADC CHANNEL SPECIFICATIONS				
DC ACCURACY ^{2, 3}				$f_{SAMPLE} = 120 \text{ kHz}$, see the Typical
				Performance Characteristics for typical
				performance at other values of f_{SAMPLE}
Resolution	12	12	Bits	
Integral Nonlinearity	±1	±1	LSB max	2.5 V internal reference
	±0.3	±0.3	LSB typ	
Differential Nonlinearity	+1/-0.9	+1/-0.9	LSB max	2.5 V internal reference
	±0.3	±0.3	LSB typ	
Integral Nonlinearity ⁴	±2	±1.5	LSB max	1 V external reference
Differential Nonlinearity ⁴	+1.5/-0.9	+1.5/-0.9	LSB max	1 V external reference
Code Distribution	1	1	LSB typ	ADC input is a dc voltage
CALIBRATED ENDPOINT ERRORS ^{5, 6}				
Offset Error	±3	±2	LSB max	
Offset Error Match	±1	±1	LSB typ	
Gain Error	±3	±2	LSB max	
Gain Error Match	±1	±1	LSB typ	
DYNAMIC PERFORMANCE				$f_{IN} = 10 \text{ kHz}$ sine wave
		71		f _{sample} = 120 kHz
Signal-to-Noise Ratio (SNR) ⁷	71	71	dB typ	
Total Harmonic Distortion (THD)	-85	-85	dB typ	
Peak Harmonic or Spurious Noise	-85	-85	dB typ	
Channel-to-Channel Crosstalk ⁸	-80	-80	dB typ	
ANALOG INPUT	0. V	0 · V		
Input Voltage Range	0 to V _{REF}	0 to V _{REF}	V	
Leakage Current	±1	±1	µA max	
	32	32	pF typ	
TEMPERATURE SENSOR ⁹	700	700		
Voltage Output at 25°C	700	700	mV typ	
Voltage TC	-1.4	-1.4	mV/°C typ	
Accuracy	±1.5	±1.5	°C typ	Internal/External 2.5 V V _{REF}
				DAC load to AGND
DAC CHANNEL SPECIFICATIONS				
Internal Buffer Enabled ADuC841/ADuC842 Only				$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$
DC ACCURACY ¹⁰				
Resolution	12	12	Bits	
Relative Accuracy	±3	±3	LSB typ	
Differential Nonlinearity ¹¹	-1	-1	LSB max	Guaranteed 12-bit monotonic
	±1/2	±1/2	LSB typ	
Offset Error	±50	±50	mV max	V _{REF} range
Gain Error	±1	±1	% max	AV _{DD} range
	±1	±1	% typ	V _{REF} range
Gain Error Mismatch	0.5	0.5	% typ	% of full-scale on DAC1
ANALOG OUTPUTS				
Voltage Range_0	$0 \text{ to } V_{\text{REF}}$	0 to V_{REF}	V typ	$DACV_{REF} = 2.5 V$
Voltage Range_1	0 to V _{DD}	0 to V _{DD}	V typ	$DAC V_{REF} = V_{DD}$
Output Impedance	0.5	0.5	Ωtyp	

Parameter	$V_{DD} = 5 V$	$V_{DD} = 3 V$	Unit	Test Conditions/Comments
DAC AC CHARACTERISTICS				
Voltage Output Settling Time	15	15	μs typ	Full-scale settling time to within ½ LSB of final value
Digital-to-Analog Glitch Energy	10	10	nV-sec typ	1 LSB change at major carry
DAC CHANNEL SPECIFICATIONS ^{12, 13}				
nternal Buffer Disabled ADuC841/ADuC842 Only				
DC ACCURACY ¹⁰				
Resolution	12	12	Bits	
Relative Accuracy	±3	±3	LSB typ	
Differential Nonlinearity ¹¹	-1	-1	LSB max	Guaranteed 12-bit monotonic
	±1/2	±1/2	LSB typ	
Offset Error	±5	±5	mV max	V _{REF} range
Gain Error	±0.5	±0.5	% typ	V _{REF} range
Gain Error Mismatch ⁴	0.5	0.5	% typ	% of full-scale on DAC1
ANALOG OUTPUTS				
Voltage Range_0	0 to V_{REF}	0 to V_{REF}	V typ	DAC $V_{REF} = 2.5 V$
REFERENCE INPUT/OUTPUT REFERENCE OUTPUT ¹⁴				
Output Voltage (V _{REF})	2.5	2.5	V	
Accuracy	±10	±10	mV Max	Of V_{REF} measured at the C_{REF} pin $T_A = 25^{\circ}C$
Power Supply Rejection	65	67	dB typ	
Reference Temperature Coefficient	±15	±15	ppm/°C typ	
Internal V _{REF} Power-On Time	2	2	ms typ	
EXTERNAL REFERENCE INPUT ¹⁵				
Voltage Range (V _{REF}) ⁴	1	1	V min	
	VDD	V _{DD}	V max	
Input Impedance	20	20	kΩ typ	
Input Leakage	1	1	µA max	Internal band gap deselected via ADCCON1.6
POWER SUPPLY MONITOR (PSM)				
DV _{DD} Trip Point Selection Range		2.93	V min	Two trip points selectable in this
		3.08	V max	range programmed via TPD1–0 in PSMCON, 3 V part only
DV _{DD} Power Supply Trip Point Accuracy		±2.5	% max	
VATCHDOG TIMER (WDT) ⁴			1	
Timeout Period	0	0	ms min	Nine timeout periods selectable ir
	2000	2000	ms max	this range
LASH/EE MEMORY RELIABILITY CHARACTERISTICS ¹⁶				
Endurance ¹⁷	100,000	100,000	Cycles min	
Data Retention ¹⁸	100	100	Years min	
DIGITAL INPUTS			1	
Input Leakage Current (Port 0, EA)	±10	±10	µA max	$V_{IN} = 0 V \text{ or } V_{DD}$
	±1	±1	μA typ	$V_{\rm IN} = 0 \text{ V or } V_{\rm DD}$
Logic 1 Input Current				
(All Digital Inputs), SDATA, SCLOCK	±10	±10	μA max	$V_{IN} = V_{DD}$
	±10	±10	μA typ	$V_{\rm IN} = V_{\rm DD}$ $V_{\rm IN} = V_{\rm DD}$
Logic 0 Input Current (Ports 1, 2, 3) SDATA, SCLOCK	-75	-25	μA typ μA max	
Logic o input current (rons 1, 2, 3) 3DATA, 3CLOCK	-40	-15	μA typ	$V_{IL} = 450 \text{ mV}$
Logic 1 to Logic 0 Transition Current (Ports 2 and 3)	-40 -660	-15	μΑ typ μΑ max	$V_{IL} = 430 \text{ mV}$ $V_{IL} = 2 \text{ V}$
Logic Fito Logic o Hansition Current (Ports 2 and 3)	-660 -400	-250	-	$V_{IL} = 2 V$ $V_{IL} = 2 V$
DECET			μA typ	
RESET	±10	±10	µA max	$V_{\rm IN} = 0 V$
	10	5	μA min	$V_{IN} = 5 V, 3 V$ Internal Pull Down
	105	35	μA max	$V_{IN} = 5 V$, 3 V Internal Pull Down

Parameter	$V_{DD} = 5 V$	$V_{DD} = 3 V$	Unit	Test Conditions/Comments
LOGIC INPUTS ⁴				
INPUT VOLTAGES				
All Inputs Except SCLOCK, SDATA, RESET, and XTAL1				
VINL, Input Low Voltage	0.8	0.4	V max	
VINH, Input High Voltage	2.0	2.0	V min	
SDATA				
VINL, Input Low Voltage	0.8	0.8	V max	
VINH, Input High Voltage	2.0	2.0	V min	
SCLOCK and RESET ONLY ⁴				
(Schmitt-Triggered Inputs)				
V _{T+}	1.3	0.95	V min	
	3.0	0.25	V max	
V _{T-}	0.8	0.4	Vmin	
	1.4	1.1	V max	
$V_{T+} - V_{T-}$	0.3	0.3	V min	
	0.85	0.85	V max	
CRYSTAL OSCILLATOR				
Logic Inputs, XTAL1 Only				
V _{INL} , Input Low Voltage	0.8	0.4	V typ	
V_{INH} , Input High Voltage	3.5	2.5	V typ	
XTAL1 Input Capacitance	18	18	pF typ	
XTAL2 Output Capacitance	18	18	pF typ	
MCU CLOCK RATE	16.78	8.38	MHz max	ADuC842/ADuC843 Only
	20	8.38	MHz max	ADuC841 Only
DIGITAL OUTPUTS	20	0.50		
Output High Voltage (Vон)	2.4		V min	$V_{DD} = 4.5 V \text{ to } 5.5 V$
output high voltage (von)	4		V typ	$I_{\text{SOURCE}} = 80 \mu\text{A}$
	•	2.4	Vmin	$V_{DD} = 2.7 \text{ V to } 3.3 \text{ V}$
		2.6	V typ	$I_{\text{SOURCE}} = 20 \mu\text{A}$
Output Low Voltage (Vol)		2.0	1 UP	1500KCE - 20 µ/
ALE, Ports 0 and 2	0.4	0.4	V max	$I_{SINK} = 1.6 \text{ mA}$
	0.4	0.4	V typ	$I_{\text{SINK}} = 1.6 \text{ mA}$
Port 3	0.2	0.2	V typ V max	$I_{SINK} = 1.6 \text{ mA}$ $I_{SINK} = 4 \text{ mA}$
SCLOCK/SDATA	0.4	0.4	V max	$I_{SINK} = 4 \text{ mA}$ $I_{SINK} = 8 \text{ mA}, I^2 \text{C} \text{ Enabled}$
Floating State Leakage Current ⁴	0.4 ±10			ISINK – O ITIA, I C ENADIEU
Hoating State Leakage Current	±10 ±1	±10	μA max	
STARTUP TIME		±1	μA typ	At any core CLK
At Power-On	500	500	matur	At any core CLK
	500	500	ms typ	
From Idle Mode	100	100	µs typ	
From Power-Down Mode	150	400	us true	
Wake-up with INTO Interrupt	150	400	µs typ	
Wake-up with SPI/I ² C Interrupt	150	400	μs typ	
Wake-up with External RESET	150	400	µs typ	
After External RESET in Normal Mode	30	30	ms typ	
After WDT Reset in Normal Mode	3	3	ms typ	Controlled via WDCON SFR

Parameter	$V_{DD} = 5 V$	$V_{DD} = 3 V$	Unit	Test Conditions/Comments
POWER REQUIREMENTS ^{19, 20}				
Power Supply Voltages				
$AV_{DD}/DV_{DD} - AGND$		2.7	V min	$AV_{DD}/DV_{DD} = 3 V nom$
		3.6	V max	
	4.75		V min	$AV_{DD}/DV_{DD} = 5 V nom$
	5.25		V max	
Power Supply Currents Normal Mode ²¹				
DV _{DD} Current ⁴	10	4.5	mA typ	Core CLK = 2.097 MHz
AV _{DD} Current	1.7	1.7	mA max	Core CLK = 2.097 MHz
DV _{DD} Current	38	12	mA max	Core CLK = 16.78MHz/8.38 MHz 5 V/3
	33	10	mA typ	Core CLK = 16.78MHz/8.38 MHz 5 V/3
AV _{DD} Current	1.7	1.7	mA max	Core CLK = 16.78MHz/8.38 MHz 5 V/3
DV _{DD} Current ⁴	45	N/A	mA max	Core CLK = 20MHz ADuC841 Only
Power Supply Currents Idle Mode ²¹				
DV _{DD} Current	4.5	2.2	mA typ	Core CLK = 2.097 MHz
AV _{DD} Current	3	2	μA typ	Core CLK = 2.097 MHz
DV _{DD} Current ⁴	12	5	mA max	Core CLK = 16.78 MHz/8.38 MHz 5 V/3
	10	3.5	mA typ	Core CLK = 16.78 MHz/8.38 MHz 5 V/3
AV _{DD} Current	3	2	μA typ	Core CLK = 16.78 MHz/8.38 MHz 5 V/3
Power Supply Currents Power-Down Mode ²¹				Core CLK = any frequency
DV _{DD} Current	28	18	μA max	Oscillator Off / TIMECON.1 = 0
	20	10	μA typ	
AV _{DD} Current	2	1	μA typ	Core CLK = any frequency, ADuC841 Only
DV _{DD} Current ⁴	3	1	mA max	TIMECON.1 = 1
DV _{DD} Current ⁴	50	22	μA max	Core CLK = any frequency
	40	15	μA typ	ADuC842/ADuC843 Only, oscillator of
Typical Additional Power Supply Currents				
PSM Peripheral	15	10	μA typ	$AV_{DD} = DV_{DD}$
ADC ⁴	1.0	1.0	mA min	MCLK Divider = 32
	2.8	1.8	mA max	MCLK Divider = 2
DAC	150	130	μA typ	

See footnotes on the next page.

Data Sheet

¹ Temperature Range –40°C to +85°C.

- ² ADC linearity is guaranteed during normal MicroConverter core operation.
- ³ ADC LSB size = $V_{REF}/2^{12}$, that is, for internal V_{REF} = 2.5 V, 1 LSB = 610 μ V, and for external V_{REF} = 1 V, 1 LSB = 244 μ V.
- ⁴ These numbers are not production tested but are supported by design and/or characterization data on production release.
- ⁵ Offset and gain error and offset and gain error match are measured after factory calibration.
- ⁶ Based on external ADC system components, the user may need to execute a system calibration to remove additional external channel errors to achieve these
- specifications.
- ⁷ SNR calculation includes distortion and noise components.
- ⁸ Channel-to-channel crosstalk is measured on adjacent channels.
- ⁹ The temperature monitor gives a measure of the die temperature directly; air temperature can be inferred from this result.
- ¹⁰ DAC linearity is calculated using:
 - Reduced code range of 100 to 4095, 0 V to V_{REF} range.
 - Reduced code range of 100 to 3945, 0 V to V_{DD} range.
 - DAC output load = $10 \text{ k}\Omega$ and 100 pF.
- ¹¹ DAC differential nonlinearity specified on 0 V to V_{REF} and 0 V to V_{DD} ranges.
- ¹² DAC specification for output impedance in the unbuffered case depends on DAC code.
- ¹³ DAC specifications for I_{SINK}, voltage output settling time, and digital-to-analog glitch energy depend on external buffer implementation in unbuffered mode. DAC in unbuffered mode tested with OP270 external buffer, which has a low input leakage current.
- ¹⁴ Measured with C_{REF} pin decoupled with 0.47 μF capacitor to ground. Power-up time for the internal reference is determined by the value of the decoupling capacitor chosen for the C_{REF} pin.
- ¹⁵ When using an external reference device, the internal band gap reference input can be bypassed by setting the ADCCON1.6 bit.
- ¹⁶ Flash/EE memory reliability characteristics apply to both the Flash/EE program memory and the Flash/EE data memory.
- ¹⁷ Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 method A117 and measured at -40°C, +25°C, and +85°C. Typical endurance at 25°C is 700,000 cycles.
 ¹⁸ Retention lifetime equivalent at junction temperature (T_j) = 55°C as per JEDEC Std. 22 method A117. Retention lifetime based on an activation energy of 0.6 eV derates with junction temperature as shown in Figure 38 in the Flash/EE Memory Reliability section.
- ¹⁹ Power supply current consumption is measured in normal, idle, and power-down modes under the following conditions:
 - Normal Mode: Reset = 0.4 V, digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), core executing internal software loop.

Idle Mode: Reset = 0.4 V, digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), PCON.0 = 1, core execution suspended in idle mode.

- Power-Down Mode: Reset = 0.4 V, all Port 0 pins = 0.4 V, All other digital I/O and Port 1 pins are open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), PCON.0 = 1, core execution suspended in power-down mode, OSC turned on or off via OSC_PD bit (PLLCON.7) in PLLCON SFR (ADuC842/ADuC843).
- ²⁰ DV_{DD} power supply current increases typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle.
- ²¹ Power supply currents are production tested at 5.25 V and 3.3 V for a 5 V and 3 V part, respectively.

ABSOLUTE MAXIMUM RATINGS

Table 2. $T_A = 25^{\circ}$ C, unless otherwise noted

Tuble 2. TA = 25 °C, unless other wise noted					
Parameter	Rating				
AV _{DD} to DV _{DD}	–0.3 V to +0.3 V				
AGND to DGND	–0.3 V to +0.3 V				
DV _{DD} to DGND, AV _{DD} to AGND	–0.3 V to +7 V				
Digital Input Voltage to DGND	-0.3 V to DV _{DD} + 0.3 V				
Digital Output Voltage to DGND	–0.3 V to DV_{DD} + 0.3 V				
V _{REF} to AGND	-0.3 V to AV _{DD} + 0.3 V				
Analog Inputs to AGND	-0.3 V to AV _{DD} + 0.3 V				
Operating Temperature Range, Industrial ADuC841BS, ADuC842BS, ADuC843BS, ADuC841BCP, ADuC842BCP, ADuC843BCP	–40°C to +85°C				
Storage Temperature Range	–65°C to +150°C				
Junction Temperature	150°C				
θ _{JA} Thermal Impedance (ADuC84xBS)	90°C/W				
θ_{JA} Thermal Impedance (ADuC84xBCP)	52°C/W				
Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec)	215°C 220°C				

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

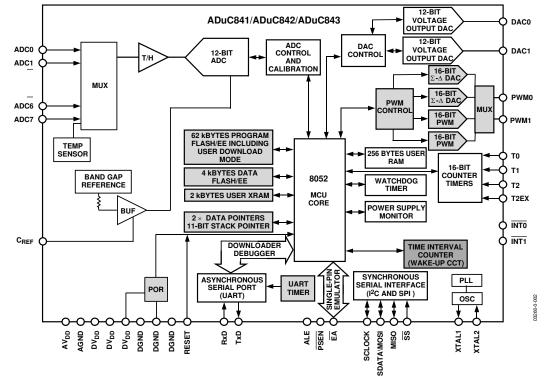
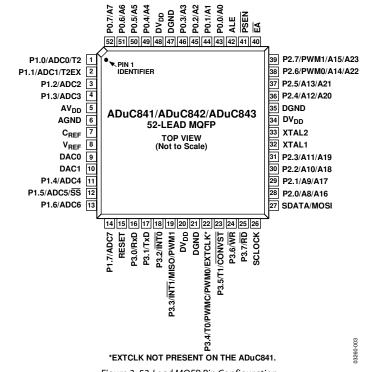
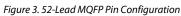




Figure 2. ADuC841/ADuC842/ADuC843 Block Diagram (Shaded Areas are Features Not Present on the ADuC812), No DACs on ADuC843, PLL on ADuC842/ADuC843 Only.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Type ¹	Description	
1	P1.0/ADC0/T2	I	Input Port 1 (P1.0). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.	
			Single-Ended Analog Input (ADC0). Channel selection is via ADCCON2 SFR.	
			Timer 2 Digital Input (T2). Input to Timer/Counter 2. When enabled, Counter 2 is incremented in response to a 1 to 0 transition of the T2 input.	
2	P1.1/ADC1/T2EX	1	Input Port 1 (P1.1). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.	
			Single-Ended Analog Input 1 (ADC1). Channel selection is via ADCCON2 SFR.	
			Capture/Reload Trigger for Counter 2 (T2EX). T2EX is a digital input. This pin also functions as an up/down control input for Counter 2.	
3	P1.2/ADC2	1	Input Port 1 (P1.2). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.	
			Single-Ended Analog Input (ADC2). Channel selection is via ADCCON2 SFR.	
4	P1.3/ADC3	1	Input Port 1 (P1.3). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.	
			Single-Ended Analog Input (ADC3). Channel selection is via ADCCON2 SFR.	
5	AV _{DD}	Р	Analog Positive Supply Voltage. 3 V or 5 V nominal.	
6	AGND	G	Analog Ground. AGND is the ground reference point for the analog circuitry.	
7	Cref	I/O	Decoupling Input for On-Chip Reference. Connect a 0.47 µF capacitor between this pin and AGND.	
8	V _{REF}	NC	Not Connected. This was a reference output on the ADuC812; use the CREF pin instead.	
9	DAC0	0	Voltage Output from DAC0. This pin is a no connect on the ADuC843.	
10	DAC1	0	Voltage Output from DAC1. This pin is a no connect on the ADuC843.	

Data Sheet

Pin No.	Mnemonic	Type ¹	Description
11	P1.4/ADC4		Input Port 1 (P1.4). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
12	P1.5/ADC5/SS	I	Single-Ended Analog Input 4 (ADC4). Channel selection is via ADCCON2 SFR. Input Port 1 (P1.5). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
			Single-Ended Analog Input 5 (ADC5). Channel selection is via ADCCON2 SFR. Slave Select Input for the SPI Interface (SS).
13	P1.6/ADC6	I	Input Port 1 (P1.6). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
14	P1.7/ADC7	I	Single-Ended Analog Input 6 (ADC6). Channel selection is via ADCCON2 SFR. Input Port 1(P1.7). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
			Single-Ended Analog Input 7 (ADC7). Channel selection is via ADCCON2 SFR.
15	RESET	I	Reset. Digital Input. A high level on this pin for 24 master clock cycles while the oscillator is running resets the device.
16	P3.0/RxD	I/O	Input/Output Port 3 (P3.0). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Receiver Data Input (Asynchronous) or Data Input/Output (Synchronous) of the Serial (UART) Port (RxD).
17	P3.1/TxD	I/O	Input/Output Port 3 (P3.1). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Transmitter Data Output (Asynchronous) or Clock Output (Synchronous) of the Serial (UART) Port (TxD).
18	P3.2/INTO	I/O	Input/Output Port 3 (P3.2). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Interrupt 0 (INTO). Programmable edge or level triggered interrupt input; can be programmed to one of two priority levels. This pin can also be used as a gate control input to Timer 0.
19	P3.3/INT1/MISO/PWM1	I/O	Input/Output Port 3 (P3.3). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Interrupt 1 (INT1). Programmable edge or level triggered interrupt input; can be programmed to one of two priority levels. This pin can also be used as a gate control input to Timer 1.
			SPI Master Input/Slave Output Data I/O Pin for SPI Serial Interface (MISO). PWM 1 Voltage Output (PWM1). See the CFG841/CFG842 register for further information.
20, 34, 48	DV _{DD}	Р	Digital Positive Supply Voltage. 3 V or 5 V nominal.
21, 35, 47	DGND	G	Digital Ground. DGND is the ground reference point for the digital circuitry.

Pin No.	Mnemonic	Type ¹	Description
22	P3.4/T0/PWMC/PWM0/EXTCLK	I/O	Input/Output Port 3 (P3.4). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Timer/Counter 0 Input (T0).
			PWM Clock Input (PWMC).
			PWM 0 Voltage Output (PWM0). PWM outputs can be configured to use Port 2.6 and Port 2.7 or Port 3.4 and Port 3.3.
			Input for External Clock Signal (EXTCLK). This pin function must be enabled via the CFG842 register.
23	P3.5/T1/CONVST	I/O	Input/Output Port 3 (P3.5). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Timer/Counter 1 Input (T1).
			Active Low Convert Start Logic Input for the ADC Block When the External Convert Start Function is Enabled (CONVST). A low to high transition on this input puts the track-and-hold into hold mode and starts the conversion.
24	P3.6/WR	I/O	Input/Output Port 3 (P3.6). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Write Control Signal, Logic Output (WR). Latches the data byte from Port 0 into the external data memory.
25	P3.7/RD	I/O	Input/Output Port 3 (P3.7). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Read Control Signal, Logic Output (RD). Enables the external data memory to Port 0.
26	SCLOCK	I/O	Serial Clock Pin for I ² C-Compatible Clock or for SPI Serial Interface Clock.
27	SDATA/MOSI	I/O	User Selectable, I ² C Compatible, or SPI Data Input/Output Pin (SDATA).
			SPI Master Output/Slave Input Data I/O Pin for SPI Interface (MOSI).
28	P2.0/A8/A16	I/O	Input/Output Port 2 (P2.0). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A8). Port 2 emits the middle order address byte
			during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A16). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
29	P2.1/A9/A17	I/O	Input/Output Port 2 (P2.1). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A9). Port 2 emits the middle order address byte
			during accesses to the external 24-bit external data memory space. External Memory Addresses (A17). Port 2 emits the high order address byte during
30	P2.2/A10/A18	I/O	accesses to the external 24-bit external data memory space. Input/Output Port 2 (P2.2). Port 2 is a bidirectional port with internal pull-up
			resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A10). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space. External Memory Addresses (A18). Port 2 emits the high order address byte during
			accesses to the external 24-bit external data memory space.

Pin No.	Mnemonic	Type ¹	Description
31	P2.3/A11/A19	I/O	Input/Output Port 2 (P2.3). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A11). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A19). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
32	XTAL1	I	Input to the Inverting Oscillator Amplifier.
33	XTAL2	0	Output of the Inverting Oscillator Amplifier.
36	P2.4/A12/A20	I/O	Input/Output Port 2 (P2.4). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A12). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A20). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
37	P2.5/A13/A21	I/O	Input/Output Port 2 (P2.5). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A13). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A21). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
38	P2.6/PWM0/A14/A22	I/O	Input/Output Port 2 (P2.6). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			PWM 0 Voltage Output (PWM0). PWM outputs can be configured to use Port 2.6 and Port 2.7 or Port 3.4 and Port 3.3.
			External Memory Addresses (A14). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A22). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
39	P2.7/PWM1/A15/A23	I/O	Input/Output Port 2 (P2.7). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			PWM 1 Voltage Output (PWM1). See the CFG841/CFG842 register for further information.
			External Memory Addresses (A15). Port 2 emits the middle-order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A23). Port 2 emits the high-order address bytes during accesses to the external 24-bit external data memory space.
40	ĒĀ	I	External Access Enable, Logic Input. When held high, this input enables the device to fetch code from internal program memory locations. The devices do not support external code memory. Do not leave this pin floating.
41	PSEN	0	Program Store Enable, Logic Output. This pin remains low during internal program execution. PSEN enables serial download mode when pulled low through a
			resistor on power-up or reset. On reset, this pin momentarily becomes an input and the status of the pin is sampled. If there is no pull-down resistor in place, the pin goes momentarily high and then user code executes. If a pull-down resistor is in place, the embedded serial download/debug kernel executes.
42	ALE	0	Address Latch Enable, Logic Output. This output latches the low byte and page
			byte for 24-bit address space accesses of the address into external data memory.

ADuC841/ADuC842/ADuC843

Pin No.	Mnemonic	Type ¹	Description
43	P0.0/A0	I/O	Input/Output Port 0 (P0.0). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A0). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
44	P0.1/A1	I/O	Input/Output Port 0 (P0.1). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A1). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
45	P0.2/A2	I/O	Input/Output Port 0 (P0.2). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A2). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
46	P0.3/A3	I/O	Input/Output Port 0 (P0.3).Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A3). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
49	P0.4/A4	I/O	Input/Output Port 0 (P0.4). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A4). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
50	P0.5/A5	I/O	Input/Output Port 0 (P0.5). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A5). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
51	P0.6/A6	I/O	Input/Output Port 0 (P0.6). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A6). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
52	P0.7/A7	I/O	Input/Output Port 0 (P0.7). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A7). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.

 1 P = power, G = ground, I= input, O = output., NC = no connect.

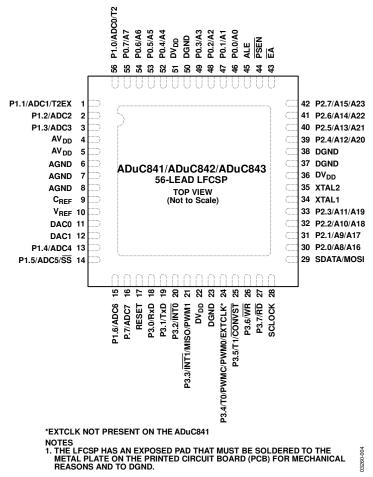


Figure 4. 56-Lead LFCSP Pin Configuration

Table 4. 56-Lead LFCSP Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description	
1	P1.1/ADC1/T2EX	I	Input Port 1 (P1.1). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.	
			Single-Ended Analog Input 1 (ADC1). Channel selection is via ADCCON2 SFR.	
			Capture/Reload Trigger for Counter 2 (T2EX). Digital Input. This pin also functions as an up/down control input for Counter 2.	
2	P1.2/ADC2	I	Input Port 1 (P1.2). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.	
			Single-Ended Analog Input (ADC2). Channel selection is via ADCCON2 SFR.	
3	P1.3/ADC3	I	Input Port 1 (P1.3). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.	
			Single-Ended Analog Input (ADC3). Channel selection is via ADCCON2 SFR.	
4, 5	AV _{DD}	Р	Analog Positive Supply Voltage. 3 V or 5 V nominal.	
6, 7, 8	AGND	G	Analog Ground. AGND is the ground reference point for the analog circuitry.	
9	C _{REF}	I/O	Decoupling Input for On-Chip Reference. Connect a 0.47 μF capacitor between this pin and AGND.	
10	V _{REF}	NC	Not Connected. This was a reference output on the ADuC812; use the C _{REF} pin instead.	
11	DAC0	0	Voltage Output from DAC0. This pin is a no connect on the ADuC843.	

Pin No.	Mnemonic	Type ¹	Description
12	DAC1	0	Voltage Output from DAC1. This pin is a no connect on the ADuC843.
13	P1.4/ADC4		Input Port 1 (P1.0). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
			Single-Ended Analog Input 4 (ADC4). Channel selection is via ADCCON2 SFR.
14	P1.5/ADC5/SS	I	Input Port 1 (P1.5). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
			Single-Ended Analog Input 5 (ADC5). Channel selection is via ADCCON2 SFR.
			Slave Select Input for the SPI Interface (SS).
15	P1.3/ADC6	I	Input Port 1 (P1.3). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
			Single-Ended Analog Input 6 (ADC6). Channel selection is via ADCCON2 SFR.
16	P1.7/ADC7	1	Input Port 1(P1.7). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
			Single-Ended Analog Input 7 (ADC7). Channel selection is via ADCCON2 SFR.
17	RESET	I	Reset. Digital Input. A high level on this pin for 24 master clock cycles while the oscillator is running resets the device.
18	P3.0/RxD	I/O	Input/Output Port 3 (P3.0). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Receiver Data Input (Asynchronous) or Data Input/Output (Synchronous) of the Serial (UART) Port (RxD).
19	P3.1/TxD	I/O	Input/Output Port 3 (P3.1). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Transmitter Data Output (Asynchronous) or Clock Output (Synchronous) of the Serial (UART) Port (TxD).
20	P3.2/INTO	I/O	Input/Output Port 3 (P3.2). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Interrupt 0 (INTO). Programmable edge or level triggered interrupt input; can be programmed to one of two priority levels. This pin can also be used as a gate
			control input to Timer 0.
21	P3.3/ĪNT1/MISO/PWM1	I/O	Input/Output Port 3 (P3.3). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Interrupt 1 (INT1). Programmable edge or level triggered interrupt input; can be programmed to one of two priority levels. This pin can also be used as a gate control input to Timer 1.
			SPI Master Input/Slave Output Data I/O Pin for SPI Serial Interface (MISO). PWM 1 Voltage Output (PWM1). See the CFG841/CFG842 register for further information.
22, 36, 51	DV _{DD}	Р	Digital Positive Supply Voltage. 3 V or 5 V nominal.
23, 37, 38, 50	DGND	G	Digital Ground. DGND is the ground reference point for the digital circuitry.

Data Sheet

Pin No.	Mnemonic	Type ¹	Description
24	P3.4/T0/PWMC/PWM0/EXTCLK	I/O	Input/Output Port 3 (P3.4). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Timer/Counter 0 Input (T0).
			PWM Clock Input (PWMC).
			PWM 0 Voltage Output (PWM0). PWM outputs can be configured to use Port 2.6 and Port 2.7 or Port 3.4 and Port 3.3.
			Input for External Clock Signal (EXTCLK). This pin function must be enabled via the CFG842 register.
25	P3.5/T1/CONVST	I/O	Input/Output Port 3 (P3.5). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors. Timer/Counter 1 Input (T1).
			Active Low Convert Start Logic Input for the ADC Block when the External
			Convert Start Function is Enabled (CONVST). A low to high transition on this input puts the track-and-hold into hold mode and starts the conversion.
26	P3.6/WR	I/O	Input/Output Port 3 (P3.6). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Write Control Signal, Logic Output (WR). Latches the data byte from Port 0 into
			the external data memory.
27	P3.7/RD	I/O	Input/Output Port 3 (P3.7). Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low source current because of the internal pull-up resistors.
			Read Control Signal, Logic Output (RD). Enables the external data memory to Port 0.
28	SCLOCK	I/O	Serial Clock Pin for I ² C-Compatible Clock or for SPI Serial Interface Clock.
29	SDATA/MOSI	I/O	User Selectable, I ² C Compatible, or SPI Data Input/Output Pin (SDATA).
			SPI Master Output/Slave Input Data I/O Pin for SPI Interface (MOSI).
30	P2.0/A8/A16	I/O	Input/Output Port 2 (P2.0). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A8). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A16). Port 2 emits the high order address byte
			during accesses to the external 24-bit external data memory space.
31	P2.1/A9/A17	I/O	Input/Output Port 2 (P2.1). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins
			being pulled externally low source current because of the internal pull-up resistors. External Memory Addresses (A9). Port 2 emits the middle order address byte
			during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A17). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
32	P2.2/A10/A18	I/O	Input/Output Port 2 (P2.2). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A10). Port 2 emits the middle address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A18). Port 2 emits the high-order address byte during accesses to the external 24-bit external data memory space.

Pin No.	Mnemonic	Type ¹	Description
33	P2.3/A11/A19	I/O	Input/Output Port 2 (P2.3). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A11). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space. External Memory Addresses (A19). Port 2 emits the high order address byte
			during accesses to the external 24-bit external data memory space.
34	XTAL1		Input to the Inverting Oscillator Amplifier.
35 39	XTAL2 P2.4/A12/A20	0 1/0	Output of the Inverting Oscillator Amplifier. Input/Output Port 2 (P2.4). Port 2 is a bidirectional port with internal pull-up
	12,4/112/120		resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A12). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A20). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
40	P2.5/A13/A21	I/O	Input/Output Port 2 (P2.5). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal
			pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A13). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A21). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
41	P2.6/A14/A22	I/O	Input/Output Port 2 (P2.6). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A14). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A22). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
42	P2.7/A15/A23	I/O	Input/Output Port 2 (P2.7). Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors.
			External Memory Addresses (A15). Port 2 emits the middle order address byte during accesses to the external 24-bit external data memory space.
			External Memory Addresses (A23). Port 2 emits the high order address byte during accesses to the external 24-bit external data memory space.
43	ĒĀ	I	External Access Enable, Logic Input. When held high, this input enables the device to fetch code from internal program memory locations. The devices do not support external code memory. Do not leave this pin floating.
44	PSEN	0	Program Store Enable, Logic Output. This pin remains low during internal program execution. PSEN enables serial download mode when pulled low
			through a resistor on power-up or reset. On reset, this pin momentarily becomes
			an input and the status of the pin is sampled. If there is no pull-down resistor in place, the pin goes momentarily high and then user code executes. If a pull-down resistor is in place, the embedded serial download/debug kernel executes.
45	ALE	0	Address Latch Enable, Logic Output. This output latches the low byte and page byte for 24-bit address space accesses of the address into external data memory.

Data Sheet

Pin No.	Mnemonic	Type ¹	Description
46	P0.0/A0	I/O	Input/Output Port 0 (P0.0). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A0). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-ups when emitting 1s.
47	P0.1/A1	I/O	Input/Output Port 0 (P0.1). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A1). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
48	P0.2/A2	I/O	Input/Output Port 0 (P0.2). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A2). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
49	P0.3/A3	I/O	Input/Output Port 0 (P0.3). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A3). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
52	P0.4/A4	I/O	Input/Output Port 0 (P0.4). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A4). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
53	P0.5/A5	I/O	Input/Output Port 0 (P0.5). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A5). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
54	P0.6/A6	I/O	Input/Output Port 0 (P0.6). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A6). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
55	P0.7/A7	I/O	Input/Output Port 0 (P0.7). Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high impedance inputs.
			External Memory Address (A7). Port 0 is also the multiplexed low order address and data bus during accesses to external data memory. In this application, it uses strong internal pull-up resistors when emitting 1s.
56	P1.0/ADC0/T2	1	Input Port 1 (P1.0). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.
			Single-Ended Analog Input (ADC0). Channel selection is via ADCCON2 SFR.
			Timer 2 Digital Input (T2). Input to Timer/Counter 2. When enabled, Counter 2 is incremented in response to a 1-to-0 transition of the T2 input.
	EPAD		Exposed Pad. The LFCSP has an exposed pad that must be soldered to the metal plate on the printed circuit board (PCB) for mechanical reasons and to DGND.

 1 P = power, G = ground, I = input, O = output, and NC = no connect.

TERMINOLOGY ADC SPECIFICATIONS

Integral Nonlinearity

The maximum deviation of any code from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point ½ LSB below the first code transition, and full scale, a point ½ LSB above the last code transition.

Differential Nonlinearity

The difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Offset Error

The deviation of the first code transition (0000 . . . 000) to (0000 . . . 001) from the ideal, that is, $+\frac{1}{2}$ LSB.

Gain Error

The deviation of the last code transition from the ideal AIN voltage (Full Scale – $\frac{1}{2}$ LSB) after the offset error has been adjusted out.

Signal-to-(Noise + Distortion) Ratio

The measured ratio of signal to (noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the rms sum of all nonfundamental signals up to half the sampling frequency ($f_s/2$), excluding dc. The ratio depends on the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. The theoretical signal-to-(noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by

Signal-to-(Noise + Distortion) = (6.02N + 1.76) dB

Thus for a 12-bit converter, this is 74 dB.

Total Harmonic Distortion (THD)

The ratio of the rms sum of the harmonics to the fundamental.

DAC SPECIFICATIONS

Relative Accuracy

Relative accuracy or endpoint linearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error.

Voltage Output Settling Time

The amount of time it takes for the output to settle to a specified level for a full-scale input change.

Digital-to-Analog Glitch Impulse

The amount of charge injected into the analog output when the inputs change state. It is specified as the area of the glitch in nV-sec.

TYPICAL PERFORMANCE CHARACTERISTICS

The typical performance plots presented in this section illustrate typical performance of the ADuC841/ADuC842/ ADuC843 under various operating conditions.

Figure 5 and Figure 6 show typical ADC integral nonlinearity (INL) errors from ADC Code 0 to Code 4095 at 5 V and 3 V supplies, respectively. The ADC is using its internal reference (2.5 V) and is operating at a sampling rate of 152 kHz; the typical worst-case errors in both plots are just less than 0.3 LSB. Figure 7 and Figure 8 also show ADC INL at a higher sampling rate of 400 kHz. Figure 9 and Figure 10 show the variation in worst-case positive (WCP) INL and worst-case negative (WCN) INL versus external reference input voltage.

Figure 11 and Figure 12 show typical ADC differential nonlinearity (DNL) errors from ADC Code 0 to Code 4095 at 5 V and 3 V supplies, respectively. The ADC is using its internal reference (2.5 V) and is operating at a sampling rate of 152 kHz; the typical worst-case errors in both plots are just less than 0.2 LSB. Figure 13 and Figure 14 show the variation in worstcase positive (WCP) DNL and worst-case negative (WCN) DNL versus external reference input voltage.

Figure 15 shows a histogram plot of 10,000 ADC conversion results on a dc input with $V_{DD} = 5$ V. The plot illustrates an excellent code distribution pointing to the low noise performance of the on-chip precision ADC.

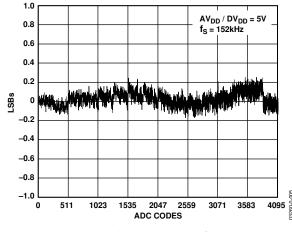


Figure 5. Typical INL Error, $V_{DD} = 5 V$, $f_s = 152 kHz$

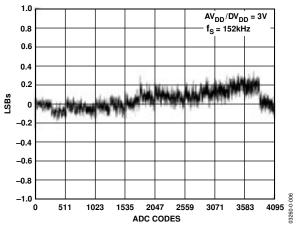
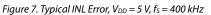
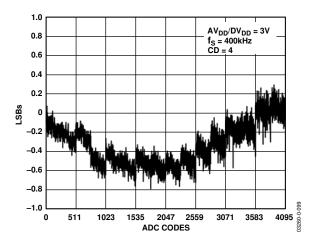
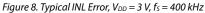
Figure 16 shows a histogram plot of 10,000 ADC conversion results on a dc input for V_{DD} = 3 V. The plot again illustrates a very tight code distribution of 1 LSB with the majority of codes appearing in one output pin.

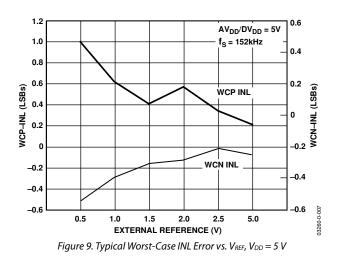
Figure 17 and Figure 18 show typical FFT plots for the parts. These plots were generated using an external clock input. The ADC is using its internal reference (2.5 V), sampling a full-scale, 10 kHz sine wave test tone input at a sampling rate of 149.79 kHz. The resulting FFTs shown at 5 V and 3 V supplies illustrate an excellent 100 dB noise floor, 71 dB signal-to-noise ratio (SNR), and THD greater than –80 dB.

Figure 19 and Figure 20 show typical dynamic performance versus external reference voltages. Again, excellent ac performance can be observed in both plots with some roll-off being observed as V_{REF} falls below 1 V.

Figure 21 shows typical dynamic performance versus sampling frequency. SNR levels of 71 dB are obtained across the sampling range of the parts.

Figure 22 shows the voltage output of the on-chip temperature sensor versus temperature. Although the initial voltage output at 25°C can vary from part to part, the resulting slope of -1.4 mV/° C is constant across all parts.


Figure 6. Typical INL Error, $V_{DD} = 3 V$, $f_s = 152 kHz$

1.0 $AV_{DD}/DV_{DD} = 5V$ $f_{S} = 400kHz$ CD = 40.8 0.6 0.4 0.2 LSBs 0 -0.2 -0.4 -0.6 -0.8 -1.0 0 511 1023 1535 2047 2559 3071 3583 4095 03260-0-1 ADC CODES

ADuC841/ADuC842/ADuC843

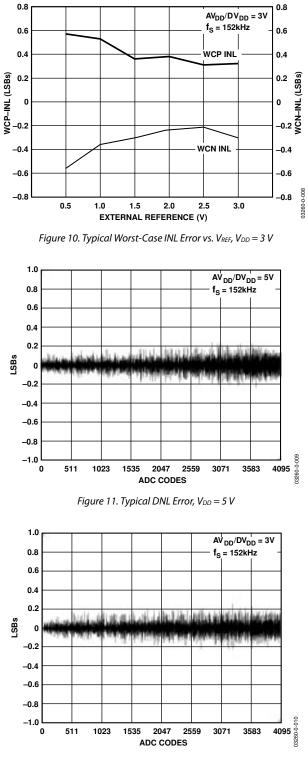


Figure 12. Typical DNL Error, $V_{DD} = 3 V$

03260-

3260-0-015

3260-0-016

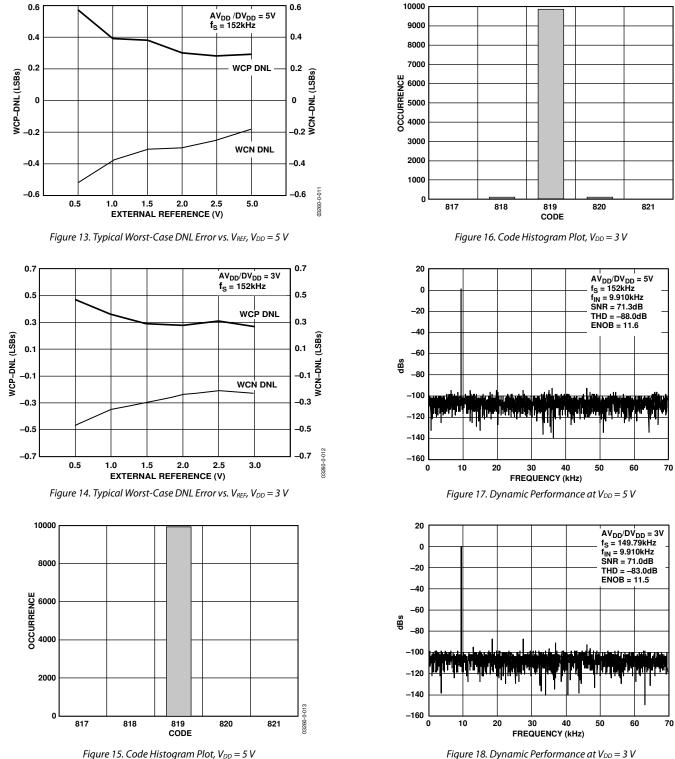


Figure 18. Dynamic Performance at $V_{DD} = 3 V$

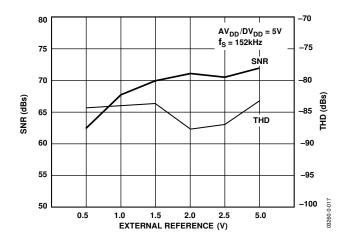


Figure 19. Typical Dynamic Performance vs. V_{REF} , $V_{DD} = 5 V$

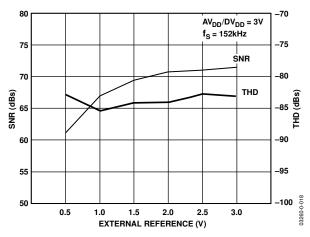


Figure 20. Typical Dynamic Performance vs. V_{REF} , $V_{DD} = 3 V$

GENERAL DESCRIPTION (continued)

The parts also incorporate additional analog functionality with two 12-bit DACs, power supply monitor, and a band gap reference. On-chip digital peripherals include two 16-bit Σ - Δ . DACs, a dual output 16-bit PWM, a watchdog timer, a time interval counter, three timers/counters, and three serial I/O ports (SPI, I²C, and UART).

On the ADuC812 and the ADuC832, the I²C and SPI interfaces share some of the same pins. For backwards compatibility, this is also the case for the ADuC841/ADuC842/ADuC843.

ADuC841/ADuC842/ADuC843

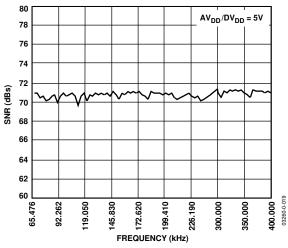


Figure 21. Typical Dynamic Performance vs. Sampling Frequency

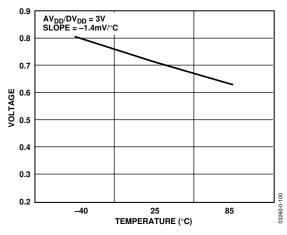


Figure 22. Typical Temperature Sensor Output vs. Temperature

However, there is also the option to allow SPI operate separately on P3.3, P3.4, and P3.5, while I²C uses the standard pins. The I²C interface has also been enhanced to offer repeated start, general call, and quad addressing.

On-chip factory firmware supports in-circuit serial download and debug modes (via UART) as well as single-pin emulation mode via the $\overline{\text{EA}}$ pin. A functional block diagram of the parts is shown on the first page.

FUNCTIONAL DESCRIPTION

8052 INSTRUCTION SET

Table 5 documents the number of clock cycles required for each instruction. Most instructions are executed in one or two clock cycles, resulting in a 16 MIPS peak performance when operating at PLLCON = 00H on the ADuC842/ADuC843. On the ADuC841, 20 MIPS peak performance is possible with a 20 MHz external crystal.

Table 5. Instructions

Mnemonic	Description	Bytes	Cycles
Arithmetic			
ADD A,Rn	Add register to A	1	1
ADD A,@Ri	Add indirect memory to A	1	2
ADD A,dir	Add direct byte to A	2	2
ADD A,#data	Add immediate to A	2	2
ADDC A,Rn	Add register to A with carry	1	1
ADDC A,@Ri	Add indirect memory to A with carry	1	2
ADDC A,dir	Add direct byte to A with carry	2	2
ADD A,#data	Add immediate to A with carry	2	2
SUBB A,Rn	Subtract register from A with borrow	1	1
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2
SUBB A,dir	Subtract direct from A with borrow	2	2
SUBB A,#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC @Ri	Increment indirect memory	1	2
INC dir	Increment direct byte	2	2
INC DPTR	Increment data pointer	1	3
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC @Ri	Decrement indirect memory	1	2
DEC dir	Decrement direct byte	2	2
MUL AB	Multiply A by B	1	9
DIV AB	Divide A by B	1	9
DA A	Decimal adjust A	1	2
Logic			
ANL A,Rn	AND register to A	1	1
ANL A,@Ri	AND indirect memory to A	1	2
ANL A,dir	AND direct byte to A	2	2
ANL A,#data	AND immediate to A	2	2
ANL dir,A	AND A to direct byte	2	2
ANL dir,#data	AND immediate data to direct byte	3	3
ORL A,Rn	OR register to A	1	1
ORL A,@Ri	OR indirect memory to A	1	2
ORL A,dir	OR direct byte to A	2	2
ORL A,#data	OR immediate to A	2	2
ORL dir,A	OR A to direct byte	2	2
ORL dir,#data	OR immediate data to direct byte	3	3
XRL A,Rn	Exclusive-OR register to A	1	1
XRL A,@Ri	Exclusive-OR indirect memory to A	2	2
XRL A,#data	Exclusive-OR immediate to A	2	2
XRL dir,A	Exclusive-OR A to direct byte	2	2

Mnemonic	Description	Bytes	Cycles
XRL A,dir	Exclusive-OR indirect memory to A	2	2
XRL dir,#data	Exclusive-OR immediate data to direct	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
Data Transfer			
MOV A,Rn	Move register to A	1	1
MOV A,@Ri	Move indirect memory to A	1	2
MOV Rn,A	Move A to register	1	1
MOV @Ri,A	Move A to indirect memory	1	2
MOV A,dir	Move direct byte to A	2	2
MOV A,#data	Move immediate to A	2	2
MOV Rn,#data	Move register to immediate	2	2
MOV dir,A	Move A to direct byte	2	2
MOV Rn, dir	Move register to direct byte	2	2
MOV dir, Rn	Move direct to register	2	2
MOV @Ri,#data	Move immediate to indirect memory	2	2
MOV dir,@Ri	Move indirect to direct memory	2	2
MOV @Ri,dir	Move direct to indirect memory	2	2
MOV dir,dir	Move direct byte to direct byte	3	3
MOV dir,#data	Move immediate to direct byte	3	3
MOV DPTR,#data	Move immediate to data pointer	3	3
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	4
MOVC A,@A+PC	Move code byte relative PC to A	1	4
MOVX A,@Ri	Move external (A8) data to A	1	4
MOVX A,@DPTR	Move external (A16) data to A	1	4
MOVX @Ri,A	Move A to external data (A8)	1	4
MOVX @DPTR,A	Move A to external data (A16)	1	4
PUSH dir	Push direct byte onto stack	2	2
POP dir	Pop direct byte from stack	2	2
XCH A,Rn	Exchange A and register	1	1
XCH A,@Ri	Exchange A and indirect memory	1	2
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2
XCH A,dir	Exchange A and direct byte	2	2
Boolean		<u> </u>	
CLR C	Clear carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement carry	1	1
CPL bit	Complement direct bit	2	2
ANL C,bit	AND direct bit and carry	2	2
ANL C,/bit	AND direct bit inverse to carry	2	2
ORL C,bit	OR direct bit and carry	2	2
ORL C,/bit	OR direct bit inverse to carry	2	2
MOV C,bit	Move direct bit to carry	2	2
MOV bit,C	Move carry to direct bit	2	2