: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

Qualified for automotive applications
Low power operation
5 V operation
1.0 mA per channel maximum at $\mathbf{0}$ Mbps to $\mathbf{2}$ Mbps
3.5 mA per channel maximum at 10 Mbps

31 mA per channel maximum at 90 Mbps
3 V operation
0.7 mA per channel maximum at 0 Mbps to 2 Mbps
2.1 mA per channel maximum at 10 Mbps

20 mA per channel maximum at 90 Mbps
Bidirectional communication
3 V/5 V level translation
High temperature operation: $125^{\circ} \mathrm{C}$
High data rate: dc to 90 Mbps (NRZ)
Precise timing characteristics
2 ns maximum pulse width distortion
$2 \mathbf{n s}$ maximum channel-to-channel matching
High common-mode transient immunity: $\mathbf{> 2 5} \mathbf{~ k V} / \mu \mathrm{s}$
Output enable function
16-lead SOIC wide body package
RoHS-compliant models available
Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE Certificate of Conformity DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
$\mathrm{V}_{\text {IORM }}=560 \mathrm{~V}$ peak
TÜV approval: IEC/EN/UL/CSA 61010-1

APPLICATIONS

General-purpose multichannel isolation SPI interface/data converter isolation RS-232/RS-422/RS-485 transceivers Industrial field bus isolation

GENERAL DESCRIPTION

The ADuM1400/ADuM1401/ADuM1402 ${ }^{1}$ are quad-channel digital isolators based on Analog Devices, Inc., iCoupler ${ }^{\ominus}$ technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives, such as optocoupler devices.
By avoiding the use of LEDs and photodiodes, iCoupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics.
The need for external drivers and other discrete components is eliminated with these i Coupler products. Furthermore, i Coupler devices consume one tenth to one sixth of the power of optocouplers at comparable signal data rates.
The ADuM1400/ADuM1401/ADuM1402 isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. In addition, the ADuM1400/ ADuM1401/ADuM1402 provide low pulse width distortion ($<2 \mathrm{~ns}$ for CRW grade) and tight channel-to-channel matching ($<2 \mathrm{~ns}$ for CRW grade). Unlike other optocoupler alternatives, the ADuM1400/ADuM1401/ADuM1402 isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and when power is not applied to one of the supplies.
${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADuM1400

Figure 2. ADuM1401

Figure 3. ADuM1402

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams. 1
Revision History 3
Specifications 4
Electrical Characteristics-5 V, $105^{\circ} \mathrm{C}$ Operation 4
Electrical Characteristics- $3 \mathrm{~V}, 105^{\circ} \mathrm{C}$ Operation 6
Electrical Characteristics—Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or $3 \mathrm{~V} / 5 \mathrm{~V}, 105^{\circ} \mathrm{C}$
Operation 8
Electrical Characteristics- $5 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 11
Electrical Characteristics- $3 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 13
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 15
Electrical Characteristics-Mixed $3 \mathrm{~V} / 5 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 17
Package Characteristics 19
Regulatory Information 19
Insulation and Safety Related Specifications 19
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 20
Recommended Operating Conditions 20
Absolute Maximum Ratings 21
ESD Caution 21
Pin Configurations and Function Descriptions 22
Typical Performance Characteristics 25
Applications Information 27
PC Board Layout 27
Propagation Delay-Related Parameters. 27
DC Correctness and Magnetic Field Immunity 27
Power Consumption 28
Insulation Lifetime 29
Outline Dimensions 30
Ordering Guide 30
Automotive Products 31

REVISION HISTORY

12/2016—Rev. K to Rev. L
Changes to Table 1 4
Changes to Table 2 6
Changes to Table 3 9
Changes to Table 4 11
Changes to Table 5 13
Changes to Table 6 15
Changes to Table 7 17
Changes to Table 9 and Table 10 19
Changes to Ordering Guide 30
7/2015—Rev. J to Rev. K
Changes to Table 9 and Table 10 19
4/2015-Rev. I to Rev. J
Changed ADuM140x to ADuM1400/ADuM1401/ ADuM1402. Throughout
Changes to Table 10 19
4/2014—Rev. H to Rev. I
Change to Table 9 19
3/2012—Rev. G to Rev. H
Created Hyperlink for Safety and Regulatory Approvals Entry in Features Section 1
Change to PC Board Layout Section 27
Updated Outline Dimensions 30
Moved Automotive Products Section 31
5/2008—Rev. F to Rev. G
Added ADuM1400W, ADuM1401W, and ADuM1402W Parts Universal
Added Table 4 11
Added Table 5 13
Added Table 6 15
Added Table 7 17
Changes to Table 12 20
Changes to Table 13 21
Added Automotive Products Section 29
Changes to Ordering Guide 30
11/2007—Rev. E to Rev. F
Changes to Note 1 1
Added ADuM140xARW Change vs. Temperature Parameter ... 4Added ADuM140xARW Change vs. Temperature Parameter ... 5Added ADuM140xARW Change vs. Temperature Parameter ... 8
Changes to Figure 17 18
6/2007—Rev. D to Rev. E
Updated VDE Certification Throughout 1
Changes to Features and Note 11
Changes to Figure 1, Figure 2, and Figure 31
Changes to Regulatory Information Section 10
Changes to Table 7 11
Added Table 10 12
Added Insulation Lifetime Section 20
Updated Outline Dimensions. 21
Changes to Ordering Guide 21
2/2006—Rev. C to Rev. D
Updated Format Universal
Added TÜV Approval Universal
5/2005-Rev. B to Rev. C
Changes to Format Universal
Changes to Figure 2 1
Changes to Table 3 8
Changes to Table 6 12
Changes to Ordering Guide 21
6/2004—Rev. A to Rev. B
Changes to Format Universal
Changes to Features 1
Changes to Electrical Characteristics-5 V Operation
Changes to Electrical Characteristics-3 V Operation 5
Changes to Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or 3 V/5 V Operation 7
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics Title 11
Changes to the Ordering Guide 19
5/2004—Rev. 0 to Rev. A
Updated Format Universal
Changes to the Features 1
Changes to Table 7 and Table 8 14
Changes to Table 9 15
Changes to the DC Correctness and Magnetic Field Immunity Section 20
Changes to the Power Consumption Section 21
Changes to the Ordering Guide 22
9/2003-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS— $\mathbf{5 ~ V , 1 0 5}{ }^{\circ} \mathrm{C}$ OPERATION ${ }^{1}$

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. These specifications do not apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	$1 \mathrm{I}_{\text {DI (}}$ ()		0.50	0.53	mA	
Output Supply Current per Channel, Quiescent	IDDO (Q)		0.19	0.21	mA	
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (Q)		2.2	2.8	mA	DC to 1 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	$\operatorname{ldD2}$ (Q)		0.9	1.4	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$V_{\text {DD } 1}$ Supply Current	l DD1 (10)		8.6	10.6	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\text {DD2 (10) }}$		2.6	3.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} 1 \text { (90) }}$		70	100	mA	45 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	ldD2 (90)		18	25	mA	45 MHz logic signal freq.
ADuM1401 Total Supply Current, Four Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (Q)		1.8	2.4	mA	DC to 1 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2} \mathrm{(Q)}$		1.2	1.8	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\text {DD1 (10) }}$		7.1	9.0	mA	5 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	l DD2 (10)		4.1	5.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$V_{\text {DD } 1}$ Supply Current	IDD1 (90)		57	82	mA	45 MHz logic signal freq.
$V_{\text {DD } 2}$ Supply Current	l DD2 (90)		31	43	mA	45 MHz logic signal freq.
ADuM1402 Total Supply Current, Four Channels ${ }^{2}$						
DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{l}_{\mathrm{DD} 1 \text { (Q) }}, \mathrm{l}_{\mathrm{DD2}}(\mathrm{Q})$		1.5	2.1	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
VDD1 or V ${ }_{\text {DD2 }}$ Supply Current	$\mathrm{IDD1}_{(10)}, \mathrm{I}_{\text {DD2 (10) }}$		5.6	7.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\text {DD } 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} 1 \text { (90) }}, \mathrm{I}_{\text {DD2 }}(90)$		44	62	mA	45 MHz logic signal freq.
For All Models						
Input Currents	$I_{I A}, I_{I_{B}}, I_{I_{1}}$, $\mathrm{I}_{\mathrm{I}}, \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{~V}_{\mathrm{IB},}, \mathrm{~V}_{\mathrm{IC},}, \mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2,}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\text {IH, }} \mathrm{V}_{\text {EH }}$	2.0			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL, }} \mathrm{V}_{\text {EL }}$			0.8	V	
Logic High Output Voltages	$\mathrm{V}_{\text {oah, }} \mathrm{V}_{\text {obh, }}$	$\left(V_{D D 1}\right.$ or $\left.V_{D D 2}\right)-0.1$	5.0		V	$\mathrm{I}_{0 \mathrm{x}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {IxH }}$
	$\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {ODH }}$	$\left(V_{D D 1}\right.$ or $\left.V_{D D 2}\right)-0.4$	4.8		V	$\mathrm{l}_{\mathrm{ox}}=-3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {oal, }} \mathrm{V}$ Obl,		0.0	0.1	V	$\mathrm{l}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
	Vocl, $\mathrm{V}_{\text {OdL }}$		0.04	0.1	V	$\mathrm{l}_{\mathrm{ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
SWITCHING SPECIFICATIONS						
ADuM1400ARW/ADuM1401ARW/ADuM1402ARW						
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	50	65	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Pulse Width Distortion, $\mid t_{\text {PLH }}-$ t $\left._{\text {PHL }}\right\|^{5}$	PWD			40	$\mathrm{ns}^{\mathrm{ps}}{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			11		ps $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching ${ }^{7}$	tpskco/tpskod			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM1400BRW/ADuM1401BRW/ADuM1402BRW						
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	32	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, \mid tplh - tphl ${ }^{5}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		ps/ $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{6}$	$\mathrm{t}_{\text {Psk }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	tpskco			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PSKod }}$			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
ADuM1400CRW/ADuM1401CRW/ADuM1402CRW						
Minimum Pulse Width ${ }^{3}$	PW		8.3	11.1	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		90	120		Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	18	27	32	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\mid \mathrm{t}_{\mathrm{PLH}}-\mathrm{t}_{\text {PHL }}{ }^{5}$	PWD		0.5	2	$\mathrm{ns}^{\mathrm{ps}}{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			3		ps $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{6}$	$\mathrm{t}_{\text {Psk }}$			10	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {Pskc }}$			2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PSKod }}$			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
For All Models						
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHz, }} \mathrm{t}_{\text {PLH }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PzH, }} \mathrm{t}_{\text {pzL }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	$\mid \mathrm{CMH}_{\mathrm{H}}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	$\left\|\mathrm{CM}_{L}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps	
Input Dynamic Supply Current per Channel ${ }^{9}$	IDDI (D)		0.19		mA/Mbps	
Output Dynamic Supply Current per Channel ${ }^{9}$	Iodo (0)		0.05		mA/Mbps	

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\text {IX }}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{6} \mathrm{t}_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1400/ADuM1401/ADuM1402

ELECTRICAL CHARACTERISTICS—3 V, 105 ${ }^{\mathbf{C}} \mathbf{C}$ OPERATION ${ }^{1}$

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. These specifications do not apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	IDDI(0)		0.26	0.31	mA	
Output Supply Current per Channel, Quiescent	IDDo (e)		0.11	0.14	mA	
ADuM1400 Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$\mathrm{V}_{\text {DDI }}$ Supply Current	$\mathrm{lol1} \mathrm{(0)}$		1.2	1.9	mA	DC to 1 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	lod2(0)		0.5	0.9	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$V_{\text {DDI }}$ Supply Current	$\operatorname{loD1}(10)$		4.5	6.5	mA	5 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}$ (10)		1.4	2.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	IDD1 (90)		37	65	mA	45 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(90)$		11	15	mA	45 MHz logic signal freq.
ADuM1401 Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$V_{\text {DDI } 1}$ Supply Current	IDD1 (0)		1.0	1.6	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(0)$		0.7	1.2	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$\mathrm{V}_{\text {DDI }}$ Supply Current	IDDI (10)		3.7	5.4	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{ldD2}(10)$		2.2	3.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$\mathrm{V}_{\text {DDI }}$ Supply Current	IDD1 (90)		30	52	mA	45 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{lod2}(90)$		18	27	mA	45 MHz logic signal freq.
ADuM1402 Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD1}}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD1}(0), \mathrm{lod} 2(0)$		0.9	1.5	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$V_{D D 1}$ or $V_{D D 2}$ Supply Current 90 Mbps (CRW Grade Only)	$\mathrm{IDD1}(10), \mathrm{IDO2}_{\text {(10) }}$		3.0	4.2	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD1}}$ or $\mathrm{V}_{\text {D } 2}$ Supply Current	$\mathrm{IDO1}_{1901} \mathrm{I}_{\text {DD2 }}(90)$		24	39	mA	45 MHz logic signal freq.
For All Models						
Input Currents	$I_{A A}, I_{I_{B},}, I_{C_{1}}$ $\mathrm{I}_{\mathrm{I},}, \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 V \leq V_{I A 1}, V_{I B}, V_{I C}, V_{I D} \leq V_{D D 1} \text { or } V_{D D 2}, \\ & 0 V \leq V_{E 1}, V_{E 2} \leq V_{D D 1} \text { or } V_{D D 2} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\text {HH, }} \mathrm{V}_{\text {EH }}$	1.6			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {LI, }} \mathrm{V}_{\text {EL }}$			0.4	V	
Logic High Output Voltages	$\mathrm{V}_{\text {оан }} \mathrm{V}_{\text {овн, }}$	$\left(\mathrm{V}_{\mathrm{DD} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1$	3.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$
	$\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {ODH }}$	$\left(V_{\mathrm{DD} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.4$	2.8		V	$\mathrm{l}_{\mathrm{ox}}=-3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL, }} \mathrm{V}_{\text {OBL, }}$		0.0	0.1	V	$\mathrm{l}_{\text {ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{\text {IxL }}$
	Vocl, Vodl		0.04	0.1	V	$\mathrm{l}_{\mathrm{Ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lx }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {x\| }}$
SWITCHING SPECIFICATIONS						
ADuM1400ARW/ADuM1401ARW/ADuM1402ARW						
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	50	75	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\mid \mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}{ }^{5}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			11		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{7}$	tPskco/tpskod			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	38	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	$t_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PKKCD }}$			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	tPskod			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
ADuM1400CRW/ADuM1401CRW/ADuM1402CRW							
Minimum Pulse Width ${ }^{3}$	PW		8.3	11.1	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{4}$		90	120		Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	34	45	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD		0.5	2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			3		ps/ ${ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	$t_{\text {psk }}$			16	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PSKCD }}$			2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PSKOD }}$			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Lx}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps		
Input Dynamic Supply Current per Channel ${ }^{9}$	$\mathrm{I}_{\text {DII (} \mathrm{D} \text {) }}$		0.10		mA/ Mbps		
Output Dynamic Supply Current per Channel ${ }^{9}$	IDDO (D)		0.03		mA/ Mbps		

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{0 x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \mathrm{x}}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \mathrm{x}}$ signal.
${ }^{6}$ tpsk is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or tpLh that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1400/ADuM1401/ADuM1402

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR $\mathbf{3}$ V/5 V, 105 ${ }^{\circ} \mathrm{C}$ OPERATION ${ }^{1}$

$5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} ; 3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. These specifications do not apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	$\mathrm{I}_{\text {DII (Q) }}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.50	0.53	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.26	0.31	mA	
Output Supply Current per Channel, Quiescent	IDDO (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.11	0.14	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.19	0.21	mA	
ADuM1400 Total Supply Current, Four Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD1 } 1 ~ S u p p l y ~ C u r r e n t ~}^{\text {c }}$	$\mathrm{IDD1}$ (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.2	2.8	mA	DC to 1 MHz logic signal freq.
3 V/5 V Operation			1.2	1.9	mA	DC to 1 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{IDD2}$ (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.5	0.9	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.9	1.4	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
VDD1 Supply Current	ldD1 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			8.6	10.6	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			4.5	6.5	mA	5 MHz logic signal freq.
VDD2 Supply Current	IDD2 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.4	2.0	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.6	3.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
$V_{D D 1}$ Supply Current	$\mathrm{IDD1}$ (90)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			70	100	mA	45 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			37	65	mA	45 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD2}$ (90)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			11	15	mA	45 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			18	25	mA	45 MHz logic signal freq.
ADuM1401 Total Supply Current, Four Channels ${ }^{2}$						
DC to 2 Mbps						
VDD1 Supply Current	$\mathrm{IDD1}$ (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.8	2.4	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.0	1.6	mA	DC to 1 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}$ (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.7	1.2	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.8	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
$V_{\text {DD1 }}$ Supply Current	$\mathrm{IDD1}$ (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			7.1	9.0	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.7	5.4	mA	5 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(10)$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.2	3.0	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			4.1	5.0	mA	5 MHz logic signal freq.

ADuM1400/ADuM1401/ADuM1402

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
Pulse Width Distortion, $\mid \mathrm{tpLH}^{\text {- }}$ tPHL $\left.\right\|^{5}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		ps/ $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	tpsk			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	tPSKCD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	tpskod			6	ns	$\mathrm{CLL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
ADuM1400CRW/ADuM1401CRW/ADuM1402CRW							
Minimum Pulse Width ${ }^{3}$	PW		8.3	11.1	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{4}$		90	120		Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{tPHL}^{\text {, }}$ tPLH	20	30	40	ns	$\mathrm{CLL}^{2}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD		0.5	2	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			3		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	tpsk			14	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	tPSKCD			2	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	tpskod			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			3.0		ns		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5		ns		
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\| $\mathrm{CMH}^{\text {\| }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps		
Input Dynamic Supply Current per Channel ${ }^{9}$	l DII (D)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.19		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.10		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{9}$	IDDO (D)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.05		mA/Mbps		

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the V_{IX} signal to the 50% level of the falling edge of the V_{Ox} signal. $\mathrm{t}_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{6} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1400/ADuM1401/ADuM1402

ELECTRICAL CHARACTERISTICS-5 V, $\mathbf{1 2 5}^{\circ}{ }^{\circ}$ OPERATION ${ }^{1}$

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. These specifications apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	IDDI(0)		0.50	0.53	mA	
Output Supply Current per Channel, Quiescent	IDDo (0)		0.19	0.21	mA	
ADuM1400W, Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	IDD1 (0)		2.2	2.8	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	lod2(0)		0.9	1.4	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
$V_{\text {DDI }}$ Supply Current	$\operatorname{ldD1}(10)$		8.6	10.6	mA	5 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(10)$		2.6	3.5	mA	5 MHz logic signal freq.
ADuM1401W, Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	IDD1 (0)		1.8	2.4	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(0)$		1.2	1.8	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
V DD 1 Supply Current	$\operatorname{ldD1}(10)$		7.1	9.0	mA	5 MHz logic signal freq.
$\mathrm{V}_{\text {DD } 2}$ Supply Current	$\mathrm{ldD2}(10)$		4.1	5.0	mA	5 MHz logic signal freq.
ADuM1402W, Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current 10 Mbps (TRWZ Grade Only)	$\mathrm{IDD1}_{(0)}, \mathrm{IDD2}^{(0)}$		1.5	2.1	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\text {DD } 1}$ or $\mathrm{V}_{\text {DD2 }}$ Supply Current	$\operatorname{IDD1~(10),~} \operatorname{IDD2}$ (10)		5.6	7.0	mA	5 MHz logic signal freq.
For All Models						
Input Currents	$\mathrm{I}_{\mathrm{I},}, \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, V_{\mathrm{V}, 1}, \mathrm{~V}_{1,}, \mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\mathrm{H},}, \mathrm{V}_{\text {EH }}$	2.0			V	
Logic Low Input Threshold	$\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{EL}}$			0.8	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH, }} \mathrm{V}_{\text {овн, }}$	$\left(V_{D D 1}\right.$ or $\left.V_{\text {DO2 }}\right)-0.1$	5.0		V	$\mathrm{l}_{\text {ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$
	$\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {OOH }}$	$\left(V_{D D 1}\right.$ or $\left.V_{D D 2}\right)-0.4$	4.8		V	$\mathrm{l}_{\mathrm{ox}}=-3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$
Logic Low Output Voltages	Voal, Vobl,		0.0	0.1	V	$\mathrm{l}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxL }}$
	Vocl, $\mathrm{V}_{\text {odl }}$		0.04	0.1	V	$\mathrm{loxx}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {lx }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$
SWITCHING SPECIFICATIONS						
ADuM1400WSRWZ/ADuM1401WSRWZ/ ADuM1402WSRWZ						
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	50	65	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching ${ }^{7}$	$\mathrm{t}_{\text {PSkco/ } / \text { Pskoo }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM1400/ADuM1401/ADuM1402

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
ADuM1400WTRWZ/ADuM1401WTRWZ/ ADuM1402WTRWZ							
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	18	27	34	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|^{5}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Change vs. Temperature			5		ps/ $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay Skew ${ }^{6}$	$t_{\text {PSK }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	tPskod			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\|CMH		25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	\|CM ${ }^{\text {L }}$	25	35		$\mathrm{kV} / \mathrm{\mu s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.2		Mbps		
Input Dynamic Supply Current per Channel ${ }^{9}$	IDDI (D)		0.19		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{9}$	IDDo (D)		0.05		mA/Mbps		

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the V_{l} signal to the 50% level of the falling edge of the V_{Ox} signal. $\mathrm{t}_{\mathrm{PLH}}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 \times}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{6}$ tpsk is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1400/ADuM1401/ADuM1402

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
ADuM1400WTRWZ/ADuM1401WTRWZ/ ADuM1402WTRWZ							
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	34	45	ns	$C_{L}=15 \mathrm{pF}$, CMOS signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	$\mathrm{t}_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	tPSKCD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{7}$	tPskod			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {Pzh, }} \mathrm{t}_{\text {PzL }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	\|CM ${ }_{\text {L }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.1		Mbps		
Input Dynamic Supply Current per Channel ${ }^{9}$	IDDI (D)		0.10		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{9}$	IDDO (D)		0.03		mA/Mbps		

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the V_{IX} signal to the 50% level of the falling edge of the V_{Ox} signal. $\mathrm{t}_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{6} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1400/ADuM1401/ADuM1402

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, 125 ${ }^{\circ}$ C OPERATION ${ }^{1}$

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. These specifications apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.

Table 6.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	IDDI(0)		0.50	0.53	mA	
Output Supply Current per Channel, Quiescent	IDDo (0)		0.11	0.14	mA	
ADuM1400W, Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{ldD1}$ (0)		2.2	2.8	mA	DC to 1 MHz logic signal freq.
VDD2 Supply Current	lod2(0)		0.5	0.9	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
V ${ }_{\text {DDI }}$ Supply Current	$\operatorname{ldD1}(10)$		8.6	10.6	mA	5 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(10)$		1.4	2.0	mA	5 MHz logic signal freq.
ADuM1401W, Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{ldD1}$ (0)		1.8	2.4	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(0)$		0.7	1.2	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
V ${ }_{\text {DDI }}$ Supply Current	$\operatorname{lod} 1$ (10)		7.1	9.0	mA	5 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(10)$		2.2	3.0	mA	5 MHz logic signal freq.
ADuM1402W, Total Supply Current, Four Channels ${ }^{2}$ DC to 2 Mbps						
$V_{\text {DD1 }}$ Supply Current	IDD1 (0)		1.5	2.1	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}(0)$		0.9	1.5	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
$V_{\text {DDI }}$ Supply Current	IDD1 (10)		5.6	7.0	mA	5 MHz logic signal freq.
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}$ (10)		3.0	4.2	mA	5 MHz logic signal freq.
For All Models						
Input Currents	$I_{A A}, I_{I_{B},}, I_{C}$, $\mathrm{I}_{\mathrm{i}, \mathrm{C}} \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E}} 2$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA},}, \mathrm{~V}_{\mathrm{IB}}, \mathrm{~V}_{\mathrm{IC},}, \mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{DD} 1} \\ & \text { or } \mathrm{V}_{\mathrm{DD} 2}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1} \\ & \text { or } \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
Logic$5 \mathrm{~V} / 3$VV Operation	$\mathrm{V}_{\text {H, }}, \mathrm{V}_{\text {EH }}$					
		2.0			V	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation		1.6			V	
Logic Low Input Threshold	$\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{EL}}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation				0.8	V	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation				0.4	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAн, }} \mathrm{V}_{\text {овн, }}$	$\left(\mathrm{V}_{\text {D1 }}\right.$ or $\left.\mathrm{V}_{\text {DD2 }}\right)-0.1$	$V_{\text {DD } 1}$ or $V_{\text {DD } 2}$		V	$\mathrm{l}_{\text {ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxH }}$
	Voch, $\mathrm{V}_{\text {odh }}$	$\left(\mathrm{V}_{\text {D1 }}\right.$ Or $\mathrm{V}_{\text {DO2 }}$) -0.4	$\mathrm{V}_{\mathrm{DO} 1}, \mathrm{~V}_{\mathrm{DD} 2}-0.2$		V	$\mathrm{lox}^{\text {a }}=-3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxH }}$
Logic Low Output Voltages	Voal, Vobl,		0.0	0.1	V	$\mathrm{I}_{\text {Ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {l }}=\mathrm{V}_{\text {Ix }}$
	Vocl, $\mathrm{V}_{\text {OdL }}$		0.04	0.1	V	$\mathrm{I}_{\mathrm{ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxL }}$
			0.2	0.4	V	$\mathrm{loxx}=3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$
SWITCHING SPECIFICATIONS						
ADuM1400WSRWZ/ADuM1401WSRWZ/ ADuM1402WSRWZ						
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{4}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	50	70	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, \mid tpLH $-\mathrm{t}_{\text {PHL }}{ }^{5}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{6}$	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{7}$	$\mathrm{t}_{\text {PSKCo }} / \mathrm{t}_{\text {PKKod }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM1400/ADuM1401/ADuM1402

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
ADuM1400WTRWZ/ADuM1401WTRWZ/ ADuM1402WTRWZ						
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	30	40	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD			3	ns	$\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	$t_{\text {PSKCD }}$			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	tpskod			6	ns	$\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
For All Models						
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PzL }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	\|CM ${ }^{\text {L }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps	
Input Dynamic Supply Current per Channel ${ }^{9}$	IDDI (D)		0.19		mA/Mbps	
Output Dynamic Supply Current per Channel ${ }^{9}$	IDDO (D)		0.03		mA/Mbps	

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the V_{lx} signal to the 50% level of the falling edge of the V_{Ox} signal. $\mathrm{t}_{\mathrm{PLH}}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 \times}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{6} \mathrm{t}_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM L is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1400/ADuM1401/ADuM1402

ELECTRICAL CHARACTERISTICS—MIXED $\mathbf{3} \mathbf{V} / 5 \mathbf{V}, \mathbf{1 2 5}^{\circ}{ }^{\circ}$ OPERATION ${ }^{1}$

$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. These specifications apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.

Table 7.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	IDDI(0)		0.26	0.31	mA	
Output Supply Current per Channel, Quiescent	IDDo (0)		0.19	0.21	mA	
ADuM1400W, Total Supply Current, Four Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD1 }}$ Supply Current	$\operatorname{loD1~(0)~}$		1.2	1.9	mA	DC to $1 \mathrm{MHz} \mathrm{logic} \mathrm{signal} \mathrm{freq}$.
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2}(0)$		0.9	1.4	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	IDD1 (10)		4.5	6.5	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{ldD2}(10)$		2.6	3.5	mA	5 MHz logic signal freq.
ADuM1401W, Total Supply Current, Four Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DDI }}$ Supply Current	IDD1 (0)		1.0	1.6	mA	DC to 1 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2}(0)$		1.2	1.8	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
$V_{\text {DDI }}$ Supply Current	IDD1 (10)		3.7	5.4	mA	5 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{ldD2}(10)$		4.1	5.0	mA	5 MHz logic signal freq.
ADuM1402W, Total Supply Current, Four Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	$\mathrm{IDDI}_{(0)}$		0.9	1.5	mA	DC to 1 MHz logic signal freq.
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	ldD2 (0)		1.5	2.1	mA	DC to 1 MHz logic signal freq.
10 Mbps (TRWZ Grade Only)						
$V_{\text {DDI }}$ Supply Current	$\mathrm{ldD1}(10)$		3.0	4.2	mA	5 MHz logic signal freq.
$V_{\text {DD2 } 2}$ Supply Current	lod2 (10)		5.6	7.0	mA	5 MHz logic signal freq.
For All Models						
Input Currents	$I_{A A}, I_{l_{B}}, I_{I}$, 	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 A}, V_{B B}, V_{I C}, V_{I D} \leq V_{D D I}$ or $\mathrm{V}_{\mathrm{DD} 2}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$
Logic High Input Threshold	$\mathrm{V}_{\text {H, }} \mathrm{V}_{\text {EH }}$	1.6			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {LI, }} \mathrm{V}_{\text {EL }}$			0.4	V	
Logic High Output Voltages	$\mathrm{V}_{\text {оАн, }} \mathrm{V}_{\text {овн, }}$	$\left(V_{D D 1}\right.$ or $\left.V_{\text {DD2 }}\right)-0.1$	$V_{D D 1}, V_{\text {DD } 2}$		V	$\mathrm{l}_{\text {ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$
	$\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {OdH }}$	$\left(V_{D D 1}\right.$ or $\left.V_{D D 2}\right)-0.4$	$V_{D D 1}, V_{\text {DD } 2}-0.2$		v	$\mathrm{l}_{\mathrm{ox}}=-3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$
Logic Low Output Voltages	$\mathrm{V}_{\text {oal, }} \mathrm{V}_{\text {obl, }}$		0.0	0.1	V	$\mathrm{l}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{lx}}$
	Vocl, Vodl		0.04	0.1	V	$\mathrm{l}_{\text {ox }}=400 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxL }}$
			0.2	0.4	v	$\mathrm{l}_{\text {ox }}=3.2 \mathrm{~mA}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$
SWITCHING SPECIFICATIONS						
ADuM1400WSRWZ/ADuM1401WSRWZ/ ADuM1402WSRWZ						
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		1			Mbps	$\mathrm{C}_{L}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{5}$	$\mathrm{tphL}^{\text {t }}$ tLH	50	70	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\mid \mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}{ }^{5}$	PWD			40	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{6}$	$\mathrm{t}_{\text {Psk }}$			50	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching ${ }^{7}$	$\mathrm{t}_{\text {PSkco/ttskoo }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM1400/ADuM1401/ADuM1402

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
ADuM1400WTRWZ/ADuM1401WTRWZ/ ADuM1402WTRWZ						
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{4}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	20	30	40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{6}$	$t_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{7}$	tPskod			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
For All Models						
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		$\mathrm{kV} / \mathrm{\mu s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	\|CM ${ }_{\text {L }}$	25	35		$\mathrm{kV} / \mathrm{\mu s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps	
Input Dynamic Supply Current per Channel ${ }^{9}$	ldDI (D)		0.10		mA/Mbps	
Output Dynamic Supply Current per Channel ${ }^{9}$	IDDO (D)		0.05		mA/Mbps	

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the V_{lx} signal to the 50% level of the falling edge of the V_{Ox} signal. $\mathrm{t}_{\mathrm{PLH}}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 \times}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{6} \mathrm{t}_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM L is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

PACKAGE CHARACTERISTICS

Table 8.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input to Output) ${ }^{1}$	R-O		10^{12}		Ω	
Capacitance (Input to Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction to Case Thermal Resistance, Side 1	$\theta_{\text {Jcı }}$		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at
IC Junction to Case Thermal Resistance, Side 2	$\theta_{\text {лсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	center of package underside

${ }^{1}$ Device is considered a 2-terminal device; $\operatorname{Pin} 1, \operatorname{Pin} 2, \operatorname{Pin} 3, \operatorname{Pin} 4, \operatorname{Pin} 5, \operatorname{Pin} 6, \operatorname{Pin} 7$, and $\operatorname{Pin} 8$ are shorted together and $\operatorname{Pin} 9, \operatorname{Pin} 10, \operatorname{Pin} 11, \operatorname{Pin} 12, \operatorname{Pin} 13, \operatorname{Pin} 14$, Pin 15 , and Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM1400/ADuM1401/ADuM1402 are approved by the organizations listed in Table 9. Refer to Table 14 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 9.

UL	CSA	VDE	CQC	TüV
Recognized Under UL 1577 Component Recognition Program ${ }^{1}$	Approved under CSA Component Acceptance Notice 5A	Certified according to DIN VVDE V 0884-10 (VDE V 0884-10):2006-12²	Approved under CQC11-471543-2012	Approved according to IEC 61010-1:2001 (2 ${ }^{\text {nd }}$ Edition), EN 61010-1:2001 (2 ${ }^{\text {nd }}$ Edition), UL 61010-1:2004, and CSA C22.2.61010.1:2005
Single Protection, 2500 V rms Isolation Voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 780 V rms (1103 V peak) maximum working voltage Reinforced insulation per CSA 60950-1-03 and IEC 60950-1, 390 V rms (551 V peak) maximum working voltage	Reinforced insulation, 560 V peak	Basic Insulation per GB4943.1-2011, 415 V rms (588 V peak) maximum working voltage, tropical climate, altitude ≤ 5000 m	Reinforced insulation, 400 V rms maximum working voltage
File E214100	File 205078	File 2471900-4880-0001	File CQC14001114900	Certificate U8V 050656232002

${ }^{1}$ In accordance with UL 1577, each ADuM1400/ADuM1401/ADuM1402 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V} \mathrm{rms}$ for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM1400/ADuM1401/ADuM1402 is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The asterisk $\left(^{*}\right)$ marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 10.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(101)	7.8 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	7.8 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance)	L(PCB)	8.3 min	mm	Measured from input terminals to output terminals, shortest distance through air, and line of sight, in the PCB mounting plane
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

ADuM1400/ADuM1401/ADuM1402

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.

Table 11.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V} \mathrm{rms}$			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1				
Maximum Working Insulation Voltage		VIorm	560	\checkmark peak
Input to Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input to Output Test Voltage, Method A	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{P R}$		
After Environmental Tests Subgroup 1			896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10$ seconds	$V_{\text {TR }}$	4000	\checkmark peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 4)			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		Is_{1}	265	mA
Side 2 Current		I_{5}	335	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 12.

Parameter	Rating	
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)^{2}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Supply Voltages $\left(\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1,3}$	2.7 V to 5.5 V	
Supply Voltages $\left(\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{2,3}$	3.0 V to 5.5 V	
Input Signal Rise and Fall Times	1.0 ms	
Does not apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive		
grade versions.		
${ }^{2}$ Applies to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade		
versions.		
${ }^{3}$ All voltages are relative to their respective ground. See the DC Correctness		
and Magnetic Field Immunity section for information on immunity to		
external magnetic fields.		

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 13.

Parameter	Rating
Storage Temperature ($\mathrm{Tst}_{\text {) }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Ambient Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)^{2}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\text {DD2 }}\right)^{3}$	-0.5 V to +7.0 V
Input Voltage ($\left.\mathrm{V}_{1 \mathrm{~A}}, \mathrm{~V}_{1 B}, \mathrm{~V}_{1 C}, \mathrm{~V}_{\text {ID }}, \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2}\right)^{3,4}$	-0.5 V to $\mathrm{V}_{\text {DDI }}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\text {OA }}, \mathrm{V}_{\text {OB }}, \mathrm{V}_{\text {OC, }}, \mathrm{V}_{\text {OD }}\right)^{3,4}$	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5$
Average Output Current per Pin^{5}	
Side 1 (lo1)	-18 mA to +18 mA
Side 2 (l_{02})	-22 mA to +22 mA
Common-Mode Transients ${ }^{6}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$
${ }^{1}$ Does not apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.	
${ }^{2}$ Applies to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade versions.	
${ }^{3}$ All voltages are relative to their respective ground.	
${ }^{4} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.	
${ }^{5}$ See Figure 4 for maximum rated current values for various temperatures.	
Common-mode transients exceeding the Absolute Maximum Ratings may cause latch-up or permanent damage.	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 14. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
\quad Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
\quad Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
\quad Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

Table 15. Truth Table (Positive Logic)

$\mathrm{V}_{\text {Ix }}$ Input ${ }^{1}$	$\mathrm{V}_{\text {Ex }}$ Input ${ }^{1,2}$	V ${ }_{\text {DII }}$ State ${ }^{1}$	$\mathrm{V}_{\text {DDO }}$ State ${ }^{1}$	V_{ox} Output ${ }^{1}$	Notes
H	H or NC	Powered	Powered	H	
L	H or NC	Powered	Powered	L	
X	L	Powered	Powered	Z	
X	H or NC	Unpowered	Powered	H	Outputs return to the input state within $1 \mu \mathrm{~S}$ of $\mathrm{V}_{\text {DII }}$ power restoration.
X		Unpowered	Powered		
X	X	Powered	Unpowered	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {doo }}$ power restoration if the V_{Ex} state is H or NC. Outputs return to a high impedance state within 8 ns of $\mathrm{V}_{\text {DDo }}$ power restoration if the $\mathrm{V}_{\text {Ex }}$ state is L .

[^0]
ADuM1400/ADuM1401/ADuM1402

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 1 IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 5. ADuM1400 Pin Configuration
Table 16. ADuM1400 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1.
2	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	$V_{\text {IC }}$	Logic Input C.
6	$V_{\text {ID }}$	Logic Input D.
7	NC	No Connect.
8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. $V_{O A}, ~ V_{O B}, ~ V_{O C}$, and $V_{O D}$ outputs are enabled when $V_{E 2}$ is high or disconnected. $\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}, \mathrm{V}_{\mathrm{OC}}$, and V_{OD} outputs are disabled when $\mathrm{V}_{\mathrm{E} 2}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended.
11	$V_{\text {OD }}$	Logic Output D.
12	Voc	Logic Output C.
13	$\mathrm{V}_{\text {OB }}$	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
16	$V_{\text {DD2 }}$	Supply Voltage for Isolator Side 2.

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 1 IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 6. ADuM1401 Pin Configuration
Table 17. ADuM1401 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD1	Supply Voltage for Isolator Side 1.
2	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	VIC	Logic Input C.
6	Vod	Logic Output D.
7	$\mathrm{V}_{\mathrm{E} 1}$	Output Enable 1. Active high logic input. $V_{O D}$ output is enabled when $V_{E 1}$ is high or disconnected. $V_{O D}$ is disabled when $V_{E 1}$ is low. In noisy environments, connecting $V_{E 1}$ to an external logic high or low is recommended.
8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. $V_{O A}, V_{O B}$, and $V_{O C}$ outputs are enabled when $V_{E 2}$ is high or disconnected. VOA, $\mathrm{V}_{\text {ов, }}$ and $\mathrm{V}_{\text {oc }}$ outputs are disabled when $\mathrm{V}_{\mathrm{E} 2}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended.
11	V ID	Logic Input D.
12	V oc	Logic Output C.
13	V OB	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2.

Figure 7. ADuM1402 Pin Configuration
Table 18. ADuM1402 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1.
2	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$\mathrm{V}_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	Voc	Logic Output C.
6	Vod	Logic Output D.
7	$V_{E 1}$	Output Enable 1. Active high logic input. $V_{\text {OC }}$ and $V_{O D}$ outputs are enabled when $V_{E 1}$ is high or disconnected. $V_{O C}$ and $V_{D D}$ outputs are disabled when $V_{E 1}$ is low. In noisy environments, connecting $V_{E 1}$ to an external logic high or low is recommended.
8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. $V_{\text {OA }}$ and $V_{O B}$ outputs are enabled when $V_{E 2}$ is high or disconnected. $V_{O A}$ and $V_{\text {ob }}$ outputs are disabled when $V_{E 2}$ is low. In noisy environments, connecting $V_{E 2}$ to an external logic high or low is recommended.
11	VID	Logic Input D.
12	VIC	Logic Input C.
13	$\mathrm{V}_{\text {OB }}$	Logic Output B.
14	$\mathrm{V}_{\text {OA }}$	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
16	$V_{\text {DD2 }}$	Supply Voltage for Isolator Side 2.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation

Figure 9. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 10. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 11. Typical ADuM1400 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 12. Typical ADuM1400 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 13. Typical ADuM1401 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

[^0]: ${ }^{1} V_{I x}$ and $V_{0 x}$ refer to the input and output signals of a given channel (A, B, C, or D). $V_{E x}$ refers to the output enable signal on the same side as the $V_{O x}$ outputs. $V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of the given channel, respectively.
 ${ }^{2}$ In noisy environments, connecting V_{Ex} to an external logic high or low is recommended.

