

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Quad-Channel, Digital Isolators, Enhanced System-Level ESD Reliability

Data Sheet

ADuM3400W/ADuM3401W/ADuM3402W

FEATURES

Enhanced system-level ESD performance per IEC 61000-4-x Low power operation

- 5 V operation
 - 1.4 mA per channel maximum at 0 Mbps to 2 Mbps
 - 4.3 mA per channel maximum at 10 Mbps
- 3.3 V operation
 - 0.9 mA per channel maximum at 0 Mbps to 2 Mbps
 - 2.4 mA per channel maximum at 10 Mbps

Bidirectional communication

3.3 V/5 V level translation

High temperature operation: 125°C High data rate: dc to 10 Mbps (NRZ) Precise timing characteristics

- 3.5 ns maximum pulse width distortion
- 3.5 ns maximum channel-to-channel matching High common-mode transient immunity: >25 kV/µs Output enable function
- 16-lead SOIC wide body, RoHS-compliant package Safety and regulatory approvals
 - UL recognition: 2500 V rms for 1 minute per UL 1577
 - CSA Component Acceptance Notice #5A

VDE Certificate of Conformity

DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12

 $V_{IORM} = 560 V peak$

Qualified for automotive applications

APPLICATIONS

Hybrid electric vehicles Battery monitor Motor drive

GENERAL DESCRIPTION

The ADuM340xW¹ are 4-channel digital isolators based on the Analog Devices, Inc., *i*Coupler® technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.

*i*Coupler devices remove the design difficulties commonly associated with optocouplers. Typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple *i*Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these *i*Coupler products. Furthermore, *i*Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM340xW isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). All models of the ADuM340xW provide operation from 3.135 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage level translation function across the isolation barrier. The ADuM340xW isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

The ADuM340xW isolators contain various circuit and layout changes to provide increased capability relative to system-level IEC 61000-4-x testing (ESD/burst/surge). The precise capability in these tests is strongly determined by the design and layout of the user's board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

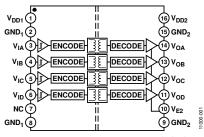


Figure 1. ADuM3400W Functional Block Diagram

Figure 2. ADuM3401W Functional Block Diagram

GND₁ (8

100 V{E2}

(9) GND₂

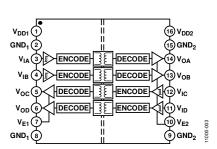


Figure 3. ADuM3402W Functional Block
Diagram

tev. B Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

¹ Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.

Data Sheet

ADuM3400W/ADuM3401W/ADuM3402W

TABLE OF CONTENTS

Features1	L
Applications1	L
General Description1	L
Functional Block Diagrams1	L
Revision History2	2
Specifications3	3
Electrical Characteristics—5 V Operation	3
Electrical Characteristics—3.3 V Operation	ŧ
Electrical Characteristics—Mixed 5 V/3.3 V, Operation	5
Electrical Characteristics—Mixed 3.3 V/5 V Operation	6
Package Characteristics	7
Regulatory Information	7
Insulation and Safety-Related Specifications	7
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics	3
Recommended Operating Conditions	3
REVISION HISTORY 11/14—Rev. A to Rev. B	
Changed Minimum Supply Voltage from 3.0 V to 3.135 V (Throughout) 1 Changes to Table 3 3 Changes to Table 6 4 Changes to Table 9 5 Changes to Table 12 6	3
4/14—Rev. 0 to Rev. A	
Changes to Table 14	7

Absolute Maximum Ratings	9
ESD Caution	9
Pin Configurations and Function Descriptions	. 10
Typical Performance Characteristics	. 13
Application Information	. 15
PC Board Layout	. 15
System-Level ESD Considerations and Enhancements	. 15
Propagation Delay-Related Parameters	. 15
DC Correctness and Magnetic Field Immunity	. 15
Power Consumption	. 16
Insulation Lifetime	. 17
Outline Dimensions	. 18
Ordering Guide	. 18
Automotive Products	16

Changed Minimum Supply Voltage from 3.0 V	to 3.135 V
(Throughout)	
Changes to Table 3	
Changes to Table 6	
Changes to Table 9	
Changes to Table 12	6
4/14—Rev. 0 to Rev. A	
Character Table 14	-

9/12—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All typical specifications are at $T_A = 25^{\circ}\text{C}$, $V_{DD1} = V_{DD2} = 5$ V. Minimum/maximum specifications apply over the entire recommended operation range of 4.5 V \leq V_{DD1} \leq 5.5 V, 4.5 V \leq V_{DD2} \leq 5.5 V, and $-40^{\circ}\text{C} \leq$ $T_A \leq +125^{\circ}\text{C}$, unless otherwise noted. Switching specifications are tested with $C_L = 15$ pF and CMOS signal levels, unless otherwise noted.

Table 1.

			WA Grad	le	WB Grade				
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	50	65	100	18	32	36	ns	50% input to 50% output
Pulse Width Distortion	PWD			40			3.5	ns	tplh - tphl
Change vs. Temperature			11			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t _{PSK}			50			15	ns	Between any two units
Channel Matching									
Codirectional	t _{PSKCD}			50			3.5	ns	
Opposing-Direction	t _{PSKOD}			50			6	ns	

Table 2.

			1 Mbps—WA, WB	Grades	10	10 Mbps—WB Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3400W	I_{DD1}		2.9	3.5		9.0	11.6	mA	
	I _{DD2}		1.2	2.0		3.0	5.5	mA	
ADuM3401W	I_{DD1}		2.5	3.2		7.4	10.6	mA	
	I _{DD2}		1.6	2.4		4.4	6.5	mA	
ADuM3402W	I _{DD1}		2.0	2.8		6.0	7.5	mA	
	I_{DD2}		2.0	2.8		6.0	7.5	mA	

Table 3. For All Models

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V _{IH}	2.0			V	
Logic Low Input Threshold	V _{IL}			8.0	V	
Logic High Output Voltage	Vон	$V_{DDx} - 0.1$	V_{DDx}		V	$I_{Ox} = -20 \mu A$, $V_{Ix} = V_{IxH}$
		V _{DDx} - 0.4	V _{DDx} 0.2		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltage	V _{OL}		0.0	0.1	V	$I_{Ox}=20~\mu\text{A, }V_{Ix}=V_{IxL}$
			0.04	0.1	V	$I_{Ox}=400~\mu\text{A, }V_{Ix}=V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Leakage per Channel	l _l	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{1x} \leq V_{DDx}$
V _{Ex} Input Pull-Up Current	I _{PU}	-10	-3		μΑ	$V_{Ex} = 0 V$
Tristate Leakage Current per Channel	loz	-10	+0.01	+10	μΑ	
Supply Current per Channel						
Quiescent Input Supply Current	$I_{DDI(Q)}$		0.57	0.83	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO(Q)}		0.23	0.35	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI(D)}		0.20		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.05		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{lx} = V_{DDx}$
Output Disable Propagation Delay	t _{PHZ} , t _{PLH}		6	8	ns	High/low-to-high impedance
Output Enable Propagation Delay	t _{PZH} , t _{PZL}		6	8	ns	High impedance-to-high/low
Refresh Rate	f _r		1.0		Mbps	

 $^{^{1}}$ [CM] is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{Ox} > 0.8 V_{DD}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. $V_{CM} = 1000 V$, transient magnitude = 800 V.

ELECTRICAL CHARACTERISTICS—3.3 V OPERATION

All typical specifications are at $T_A = 25^{\circ}\text{C}$, $V_{DD1} = V_{DD2} = 3.3 \text{ V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.135 \text{ V} \le V_{DD1} \le 3.6 \text{ V}$, $3.135 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$, and $-40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$, unless otherwise noted. Switching specifications are tested with $C_L = 15 \text{ pF}$ and CMOS signal levels, unless otherwise noted.

Table 4.

		'	NA Grac	le		WB Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	50	75	100	20	38	45	ns	50% input to 50% output
Pulse Width Distortion	PWD			40			3.5	ns	tplh - tphl
Change vs. Temperature			11			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t _{PSK}			50			22	ns	Between any two units
Channel Matching									
Codirectional	t _{PSKCD}			50			3.5	ns	
Opposing-Direction	t _{PSKOD}			50			6	ns	

Table 5.

		1 /	Mbps—WA, WB	Grades	10	Mbps—W	'B Grade		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3400W	I_{DD1}		1.6	2.2		4.8	7.1	mA	
	I_{DD2}		0.7	1.4		1.8	2.6	mA	
ADuM3401W	I_{DD1}		1.4	2.0		0.1	5.6	mA	
	I_{DD2}		0.9	1.6		2.5	3.3	mA	
ADuM3402W	I_{DD1}		1.2	1.8		3.3	4.4	mA	
	I_{DD2}		1.2	1.8		3.3	4.4	mA	

Table 6. For All Models

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	1.6			V	
Logic Low Input Threshold	V _{IL}			0.4	V	
Logic High Output Voltage	V _{OH}	$V_{DDx} - 0.1$	V_{DDx}		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{DDx}-0.4$	V_{DDx} - 0.2		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltage	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A$, $V_{Ix} = V_{IxL}$
			0.04	0.1	V	$I_{Ox} = 400 \mu A$, $V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Leakage per Channel	I ₁	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{1x} \leq V_{DDx}$
V _{Ex} Input Pull-Up Current	I _{PU}	-10	-3		μΑ	$V_{Ex} = 0 V$
Tristate Leakage Current per Channel	loz	-10	+0.01	+10	μΑ	
Supply Current per Channel						
Quiescent Input Supply Current	$I_{DDI(Q)}$		0.31	0.49	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO(Q)}		0.19	0.27	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI(D)}		0.10		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.03		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		3		ns	10% to 90%
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{lx} = V_{DDx}$
Output Disable Propagation Delay	t _{PHZ} , t _{PLH}		6	8	ns	High/low-to-high impedance
Output Enable Propagation Delay	t _{PZH} , t _{PZL}		6	8	ns	High impedance-to-high/low
Refresh Rate	f _r		1.0		Mbps	

 $^{^{1}}$ [CM] is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{Ox} > 0.8 V_{DD}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V, OPERATION

All typical specifications are at $T_A = 25^{\circ}\text{C}$, $V_{DD1} = 5$ V, $V_{DD2} = 3.3$ V. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \text{ V} \le V_{DD1} \le 5.5 \text{ V}$, $3.135 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$, and $-40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$, unless otherwise noted. Switching specifications are tested with $C_L = 15 \text{ pF}$ and CMOS signal levels, unless otherwise noted.

Table 7.

			WA Grad	le		WB Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	50	70	100	20	30	42	ns	50% input to 50% output
Pulse Width Distortion	PWD			40			3.5	ns	t _{PLH} — t _{PHL}
Change vs. Temperature			11			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t _{PSK}			50			22	ns	Between any two units
Channel Matching									
Codirectional	t _{PSKCD}			50			3.5	ns	
Opposing-Direction	t _{PSKOD}			50			6	ns	

Table 8.

			1 Mbps—WA, WB	Grades	,	10 Mbps—WB Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3400W	I _{DD1}		2.9	3.5		9.0	11.6	mA	
	I_{DD2}		0.7	1.4		1.8	2.6	mA	
ADuM3401W	I _{DD1}		2.5	3.2		7.4	10.6	mA	
	I_{DD2}		0.9	1.6		2.5	3.3	mA	
ADuM3402W	I _{DD1}		2.0	2.8		6.0	7.5	mA	
	I _{DD2}		1.2	1.8		3.3	4.4	mA	

Table 9. For All Models

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
5 V Logic High Input Threshold	V _{IH}	2.0			V	
3.3 V Logic High Input Threshold	V _{IH}	1.6			V	
5 V Logic Low Input Threshold	V _{IL}			0.8	V	
3.3 V Logic Low Input Threshold	V _{IL}			0.4	V	
Logic High Output Voltage	V _{OH}	$V_{DDx}-0.1$	V_{DDx}		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		V _{DDx} - 0.4	V _{DDx} - 0.2		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltage	V _{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.04	0.1	V	$I_{Ox} = 400 \mu A$, $V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Leakage per Channel	l ₁	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{1x} \leq V_{DDx}$
V _{Ex} Input Pull-Up Current	I _{PU}	-10	-3		μΑ	$V_{Ex} = 0 V$
Tristate Leakage Current per Channel	loz	-10	+0.01	+10	μΑ	
Supply Current per Channel						
Quiescent Input Supply Current	I _{DDI(Q)}		0.57	0.83	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO(Q)}		0.29	0.27	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI(D)}		0.20		mA/Mbps	
Dynamic Output Supply Current	I _{DDO(D)}		0.03		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		3		ns	10% to 90%
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{lx} = V_{DDx}$
Output Disable Propagation Delay	t _{PHZ} , t _{PLH}		6	8	ns	High/low-to-high impedance
Output Enable Propagation Delay	t _{PZH} , t _{PZL}		6	8	ns	High impedance-to-high/low
Refresh Rate	f _r		1.0		Mbps	

 $^{^{1}}$ [CM] is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{Ox} > 0.8 V_{DD}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. $V_{CM} = 1000 V$, transient magnitude = 800 V.

ELECTRICAL CHARACTERISTICS—MIXED 3.3 V/5 V OPERATION

All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = 3.3$ V, $V_{DD2} = 5$ V. Minimum/maximum specifications apply over the entire recommended operation range: 3.135 V $\leq V_{DD1} \leq 3.6$ V, 4.5 V $\leq V_{DD2} \leq 5.5$ V; and $-40^{\circ}C \leq T_A \leq +125^{\circ}C$, unless otherwise noted. Switching specifications are tested with $C_L = 15$ pF and CMOS signal levels, unless otherwise noted.

Table 10.

		WA Grade		WB Grade					
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	50	70	100	20	30	42	ns	50% input to 50% output
Pulse Width Distortion	PWD			40			3.5	ns	$ t_PLH - t_PHL $
Change vs. Temperature			11			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t _{PSK}			50			22	ns	Between any two units
Channel Matching									
Codirectional	t _{PSKCD}			50			3.5	ns	
Opposing-Direction	t _{PSKOD}			50			6	ns	

Table 11.

		1 Mbps—WA, WB Grades			10 Mbps-	-WB Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3400W	I _{DD1}		1.6	2.2		4.8	7.1	mA	
	I_{DD2}		1.2	2.0		3.0	5.5	mA	
ADuM3401W	I _{DD1}		1.4	2.0		4.1	5.6	mA	
	I_{DD2}		1.6	2.4		4.4	6.5	mA	
ADuM3402W	I _{DD1}		1.2	1.8		3.3	4.4	mA	
	I_{DD2}		2.0	2.8		6.0	7.5	mA	

Table 12. For All Models

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
5 V Logic High Input Threshold	V _{IH}	2.0			V	
3.3 V Logic High Input Threshold	V _{IH}	1.6			V	
5 V Logic Low Input Threshold	V _{IL}			8.0	V	
3.3 V Logic Low Input Threshold	V _{IL}			0.4	V	
Logic High Output Voltage	V _{OH}	V _{DDx} - 0.1	V_{DDx}		V	$I_{Ox} = -20 \mu A$, $V_{Ix} = V_{IxH}$
		V _{DDx} - 0.4	V _{DDx} -0.2		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltage	V _{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A$, $V_{Ix} = V_{IxL}$
			0.04	0.1	V	$I_{Ox} = 400 \mu A$, $V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Leakage per Channel	I ₁	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{1x} \leq V_{DDx}$
V _{Ex} Input Pull-Up Current	I _{PU}	-10	-3		μΑ	$V_{Ex} = 0 V$
Tristate Leakage Current per Channel	loz	-10	+0.01	+10	μΑ	
Supply Current per Channel						
Quiescent Input Supply Current	I _{DDI(Q)}		0.31	0.49	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO(Q)}		0.19	0.35	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI(D)}		0.10		mA/Mbps	
Dynamic Output Supply Current	I _{DDO(D)}		0.05		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{lx} = V_{DDx}$
Output Disable Propagation Delay	t _{PHZ} , t _{PLH}		6	8	ns	High/low-to-high impedance
Output Enable Propagation Delay	t _{PZH} , t _{PZL}		6	8	ns	High impedance-to-high/low
Refresh Rate	fr		1.0		Mbps	

 $^{^{1}}$ [CM] is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{Ox} > 0.8 V_{DD}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. $V_{CM} = 1000 V$, transient magnitude = 800 V.

PACKAGE CHARACTERISTICS

Table 13.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Resistance (Input-to-Output) ¹	R _{I-O}		10 ¹²		Ω	
Capacitance (Input-to-Output) ¹	C _{I-O}		2.2		рF	f = 1 MHz
Input Capacitance ²	Cı		4.0		рF	
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JCI}		33		°C/W	Thermocouple located at
IC Junction-to-Case Thermal Resistance, Side 2	θιςο		28		°C/W	center of package underside

¹ Device considered a 2-terminal device; Pin 1 to Pin 8 are shorted together and Pin 9 to Pin 16 are shorted together.

REGULATORY INFORMATION

The ADuM3400W/ADuM3401W/ADuM3402W is approved by the organizations listed in Table 14. Refer to Table 19 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific crossisolation waveforms and insulation levels.

Table 14.

UL	CSA	VDE
Recognized under 1577 component recognition program ¹	Approved under CSA Component Acceptance Notice #5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 ²
Single protection, 2500 V rms isolation voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms (1131 V peak) maximum working voltage	Reinforced insulation, 560 V peak
	Reinforced insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage	
File E214100	File 205078	File 2471900-4880-0001

¹ In accordance with UL 1577, each ADuM3400W/ADuM3401W/ADuM3402W is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 15.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(I01)	7.7 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

² Input capacitance is from any input data pin to ground.

leakage detection limit = 5 μ A).

² In accordance with DIN V VDE V 0884-10, each ADuM3400W/ADuM3401W/ADuM3402W is proof tested by applying an insulation test voltage \geq 1050 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The * marking on packages denotes DIN V VDE V 0884-10 approval.

Table 16.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				-
For Rated Mains Voltage ≤ 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			I to III	
For Rated Mains Voltage ≤ 400 V rms			l to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		V _{IORM}	560	V peak
Input-to-Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{PR}$, 100% production test, $t_m = 1$ sec, partial discharge < 5 pC	V _{PR}	1050	V peak
Input-to-Output Test Voltage, Method A	$V_{IORM} \times 1.6 = V_{PR}$, $t_m = 60$ sec, partial discharge < 5 pC	V_{PR}		
After Environmental Tests Subgroup 1			896	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{PR}$, $t_m = 60$ sec, partial discharge < 5 pC		672	V peak
Highest Allowable Overvoltage	Transient overvoltage, $t_{TR} = 10$ seconds	V_{TR}	4000	V peak
Safety-Limiting Values	Maximum value allowed in the event of a failure (see Figure 4)			
Case Temperature		Ts	150	°C
Side 1 Current		I _{S1}	265	mA
Side 2 Current		I _{S2}	335	mA
Insulation Resistance at Ts	V _{IO} = 500 V	Rs	>109	Ω

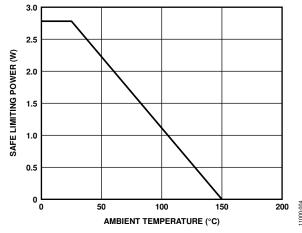


Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values with Ambient Temperature per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 17.

Parameter	Rating
Operating Temperature Range (T _A)	-40°C to +125°C
Supply Voltages (V _{DD1} , V _{DD2}) ¹	3.135 V to 5.5 V
Input Signal Rise and Fall Times	1.0 ms

¹ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 18.

Tuble 10.	
Parameter	Rating
Storage Temperature Range (Tst)	−65°C to +150°C
Ambient Operating Temperature Range (T _A)	-40°C to +125°C
Supply Voltages (V _{DD1} , V _{DD2}) ¹	-0.5 V to +7.0 V
Input Voltage $(V_{IA}, V_{IB}, V_{IC}, V_{ID}, V_{E1}, V_{E2})^{1,2}$	$-0.5 \mathrm{V}$ to $\mathrm{V}_{\mathrm{DD1}} + 0.5 \mathrm{V}$
Output Voltage (Voa, Vob, Voc, Vob)1,2	$-0.5 \mathrm{V}$ to $\mathrm{V}_{\mathrm{DDO}} + 0.5 \mathrm{V}$
Average Output Current per Pin ³	
Side 1 (I ₀₁)	-18 mA to +18 mA
Side 2 (I ₀₂)	-22 mA to + 22 mA
Common-Mode Transients (CM _H , CM _L) ⁴	−100 kV/µs to
	+100 kV/μs

¹ All voltages are relative to their respective ground.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

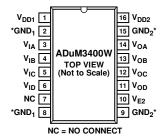
Table 19. Maximum Continuous Working Voltage¹

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

 $^{^1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

Table 20. Truth Table (Positive Logic)

1 4010 201		(1 00101.0 208	5/		
V _{ix} Input ¹	V _{Ex} Input ²	V _{DDI} State ¹	V _{DDO} State ¹	Vox Output ¹	Notes
Н	H or NC	Powered	Powered	Н	
L	H or NC	Powered	Powered	L	
х	L	Powered	Powered	Z	
X	H or NC	Unpowered	Powered	Н	Outputs return to the input state within 1 µs of VDDI power restoration.
X	L	Unpowered	Powered	Z	
х	х	Powered	Unpowered	Indeterminate	Outputs return to the input state within 1 µs of VDDO power restoration
					if V_{Ex} state is H or NC. Outputs return to high impedance state within
					8 ns of V_{DDO} power restoration if V_{Ex} state is L.

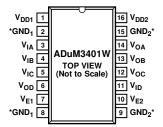

 $^{^{1}}$ V_{Ix} and V_{Ox} refer to the input and output signals of a given channel (A, B, C, or D). V_{Ex} refers to the output enable signal on the same side as the V_{Ox} outputs. V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of the given channel, respectively.

 $^{^2\,}V_{DDI}$ and V_{DDO} refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.

 ³ See Figure 4 for maximum rated current values for various temperatures.
 ⁴ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Ratings can cause latch-up or permanent damage.

 $^{^2}$ In noisy environments, connecting V_{Ex} to an external logic high or low is recommended.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

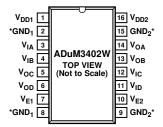

NC = NO CONNECT:

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING
BOTH TO GND₇ IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY
CONNECTED AND CONNECTING BOTH TO GND₂ IS RECOMMENDED.
IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR
ADum3401W/ADum3402W AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL
LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 5. ADuM3400W Pin Configuration

Table 21. ADuM3400W Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V_{DD1}	Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.
2, 8	GND ₁	Ground 1. Ground reference for Isolator Side 1.
3	VIA	Logic Input A.
4	V _{IB}	Logic Input B.
5	V _{IC}	Logic Input C.
6	V_{ID}	Logic Input D.
7	NC	This pin is not Connected Internally (see Figure 5).
9, 15	GND ₂	Ground 2. Ground reference for Isolator Side 2.
10	V _{E2}	Output Enable 2. Active high logic input. V_{OA} , V_{OB} , V_{OC} , and V_{OD} outputs are enabled when V_{E2} is high or disconnected. V_{OA} , V_{OB} , V_{OC} , and V_{OD} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended.
11	V _{OD}	Logic Output D.
12	V _{oc}	Logic Output C.
13	V _{OB}	Logic Output B.
14	Voa	Logic Output A.
16	V_{DD2}	Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.



*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND, IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND, IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADUM3401W/ ADUM3402W AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 6. ADuM3401W Pin Configuration

Table 22. ADuM3401W Pin Function Descriptions

Pin No.	Mnemonic	Description					
1	V_{DD1}	Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.					
2, 8	GND ₁	Ground 1. Ground reference for Isolator Side 1.					
3	VIA	Logic Input A.					
4	V _{IB}	Logic Input B.					
5	V _{IC}	Logic Input C.					
6	V _{OD}	Logic Output D.					
7	V _{E1}	Output Enable 1. Active high logic input. V_{OD} output is enabled when V_{E1} is high or disconnected. V_{OD} is disabled when V_{E1} is low. In noisy environments, connecting V_{E1} to an external logic high or low is recommended.					
9, 15	GND ₂	Ground 2. Ground reference for Isolator Side 2.					
10	V _{E2}	Output Enable 2. Active high logic input. V_{OA} , V_{OB} , and V_{OC} outputs are enabled when V_{E2} is high or disconnected. V_{OA} , V_{OB} , and V_{OC} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended.					
11	V_{ID}	Logic Input D.					
12	Voc	Logic Output C.					
13	V_{OB}	Logic Output B.					
14	Voa	Logic Output A.					
16	V_{DD2}	Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.					

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND₁ IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND₂ IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADUM3401W/ADUM3402W AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 7. ADuM3402W Pin Configuration

Table 23. ADuM3402W Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V_{DD1}	Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.
2, 8	GND₁	Ground 1. Ground reference for Isolator Side 1.
3	VIA	Logic Input A.
4	V_{IB}	Logic Input B.
5	Voc	Logic Output C.
6	V _{OD}	Logic Output D.
7	V _{E1}	Output Enable 1. Active high logic input. V_{OC} and V_{OD} outputs are enabled when V_{E1} is high or disconnected. V_{OC} and V_{OD} outputs are disabled when V_{E1} is low. In noisy environments, connecting V_{E1} to an external logic high or low is recommended.
9, 15	GND ₂	Ground 2. Ground reference for Isolator Side 2.
10	V _{E2}	Output Enable 2. Active high logic input. V_{OA} and V_{OB} outputs are enabled when V_{E2} is high or disconnected. V_{OA} and V_{OB} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended.
11	V_{ID}	Logic Input D.
12	V _{IC}	Logic Input C.
13	V _{OB}	Logic Output B.
14	V _{OA}	Logic Output A.
16	V_{DD2}	Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.

TYPICAL PERFORMANCE CHARACTERISTICS

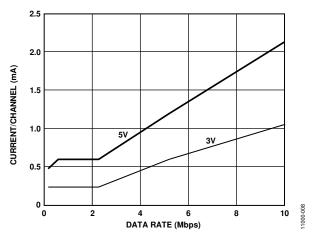


Figure 8. Typical Input Supply Current per Channel vs. Data Rate (No Load)

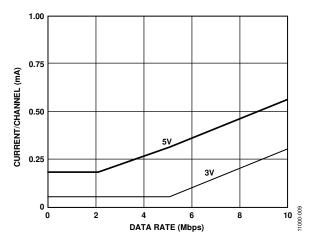


Figure 9. Typical Output Supply Current per Channel vs. Data Rate (No Load)

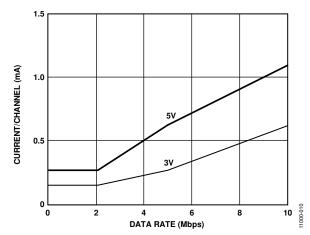


Figure 10. Typical Output Supply Current per Channel vs. Data Rate (15 pF Output Load)

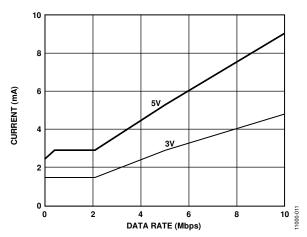


Figure 11. Typical ADuM3400W V_{DD1} Supply Current vs. Data Rate for 5 V and 3.3 V Operation

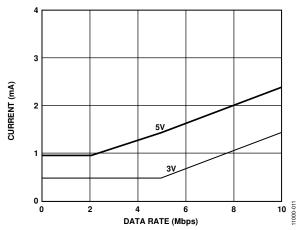


Figure 12. Typical ADuM3400W V_{DD2} Supply Current vs. Data Rate for 5 V and 3.3 V Operation

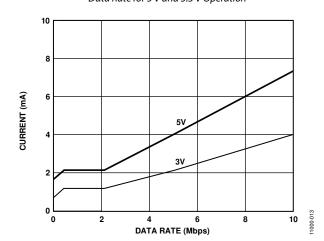


Figure 13. Typical ADuM3401W V_{DD1} Supply Current vs. Data Rate for 5 V and 3.3 V Operation

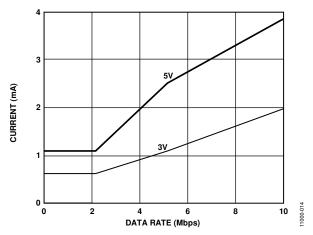


Figure 14. Typical ADuM3401W V_{DD2} Supply Current vs. Data Rate for 5 V and 3.3 V Operation

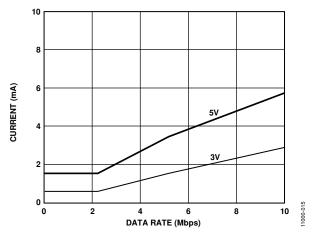


Figure 15. Typical ADuM3402W V_{DD1} or V_{DD2} Supply Current vs. Data Rate for 5 V and 3.3 V Operation

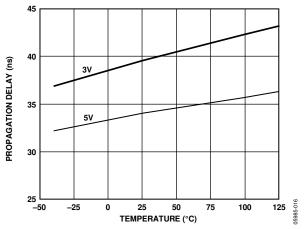


Figure 16. Propagation Delay vs. Temperature, WB Grade

APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM3400W/ADuM3401W/ADuM3402W digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 17). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{\rm DD1}$ and between Pin 15 and Pin 16 for $V_{\rm DD2}$. The capacitor value should be between 0.01 μF and 0.1 μF . The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package.

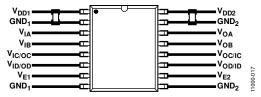
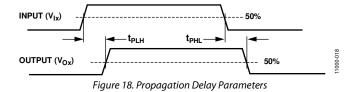


Figure 17. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the Absolute Maximum Ratings of the device, thereby leading to latch-up or permanent damage.

SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS


System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design, which varies widely by application. The ADuM3400W/ADuM3401W/ADuM3402W incorporate many enhancements to make ESD reliability less dependent on system design. The enhancements include:

- ESD protection cells added to all input/output interfaces.
- Key metal trace resistances reduced using wider geometry and paralleling of lines with vias.
- The SCR effect inherent in CMOS devices minimized by use of guarding and isolation technique between PMOS and NMOS devices.
- Areas of high electric field concentration eliminated using 45° corners on metal traces.
- Supply pin overvoltage prevented with larger ESD clamps between each supply pin and its respective ground.

While the ADuM3400W/ADuM3401W/ADuM3402W improve system-level ESD reliability, they are no substitute for a robust system-level design. See the AN-793 Application Note, *ESD/Latch-Up Considerations with iCoupler Isolation Products* for detailed recommendations on board layout and system-level design.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high.

Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM3400W/ADuM3401W/ADuM3402W component.

Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM3400W/ADuM3401W/ADuM3402W components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow (\sim 1 ns) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than \sim 1 μ s, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about 5 μ s, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 20) by the watchdog timer circuit.

The limitation on the magnetic field immunity of the ADuM3400W/ADuM3401W/ADuM3402W is set by the condition in which induced voltage in the receiving coil of the transformer is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3.3 V operating condition of the ADuM3400W/ADuM3401W/ADuM3402W is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$V = (-d\beta/dt) \sum \prod r_n^2; N = 1, 2, \dots, N$$

where:

 β is magnetic flux density (gauss).

N is the number of turns in the receiving coil.

 r_n is the radius of the nth turn in the receiving coil (cm).

Given the geometry of the receiving coil in the ADuM3400W/ADuM3401W/ADuM3402W and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 19.

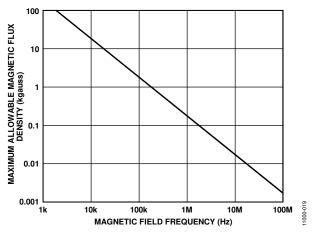


Figure 19. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil, which is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM3400W/ADuM3401W/ADuM3402W transformers. Figure 20 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM3400W/ADuM3401W/ADuM3402W is extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM3400W/ADuM3401W/ADuM3402W to affect the operation of the component.

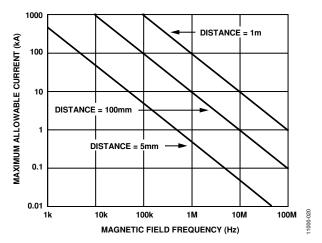


Figure 20. Maximum Allowable Current for Various Current-to-ADuM3400W/ADuM3401W/ADuM3402W Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce error voltages sufficiently large enough to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM3400W/ ADuM3401W/ADuM3402W isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by

$$I_{DDI} = I_{DDI(Q)}$$
 $f \le 0.5 f_r$
 $I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)}$ $f > 0.5 f_r$

For each output channel, the supply current is given by

$$I_{DDO} = I_{DDO (Q)}$$
 $f \le 0.5 f_r$
 $I_{DDO} = (I_{DDO (D)} + (0.5 \times 10^{-3}) \times C_L \times V_{DDO}) \times (2f - f_r) + I_{DDO (Q)}$
 $f > 0.5 f_r$

where:

 $I_{DDI(D)}$, $I_{DDO(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).

 C_L is the output load capacitance (pF).

 V_{DDO} is the output supply voltage (V).

f is the input logic signal frequency (MHz); it is half of the input data rate expressed in units of Mbps.

 f_r is the input stage refresh rate (Mbps).

 $I_{DDI(Q)}$, $I_{DDO(Q)}$ are the specified input and output quiescent supply currents (mA).

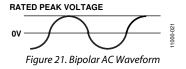
Data Sheet

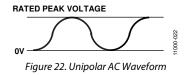
ADuM3400W/ADuM3401W/ADuM3402W

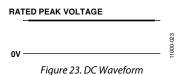
To calculate the total $I_{\rm DD1}$ and $I_{\rm DD2}$ supply current, the supply currents for each input and output channel corresponding to $V_{\rm DD1}$ and $V_{\rm DD2}$ are calculated and totaled. Figure 8 provides the per-channel input supply current as a function of the data rate. Figure 9 and Figure 10 provide the per-channel supply output current as a function of the data rate for an unloaded output condition and for a 15 pF output condition, respectively. Figure 11 through Figure 15 provide the total $V_{\rm DD1}$ and $V_{\rm DD2}$ supply current as a function of the data rate for ADuM3400W/ ADuM3401W/ADuM3402W channel configurations.

INSULATION LIFETIME

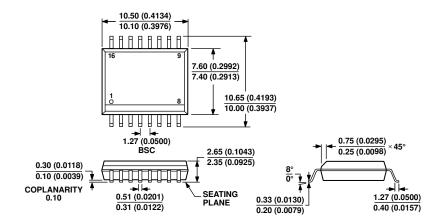
All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM3400W/ADuM3401W/ADuM3402W.


Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Figure 21 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition, and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50-year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.


The insulation lifetime of the ADuM3400W/ADuM3401W/ADuM3402W depends on the voltage waveform type imposed across the isolation barrier. The *i*Coupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 21, Figure 22, and Figure 23 illustrate these different isolation voltage waveforms.


Bipolar ac voltage is the most stringent environment. The goal of a 50-year operating lifetime under the ac bipolar condition determines the recommended maximum working voltage of Analog Devices.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower, which allows operation at higher working voltages while still achieving a 50-year service life. The working voltages listed in Table 19 can be applied while maintaining the 50-year minimum lifetime provided the voltage conforms to either the unipolar ac or dc voltage cases. Any cross insulation voltage waveform that does not conform to Figure 22 or Figure 23 should be treated as a bipolar ac waveform and its peak voltage should be limited to the 50-year lifetime voltage value listed in Table 19.


Note that the voltage presented in Figure 22 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 24. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ^{1, 2, 3}	Number of Inputs, V _{DD1} Side	Number of Inputs, V _{DD2} Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Description	Package Option
ADuM3400WARWZ	4	0	1	100	40	-40°C to +125°C	16-Lead SOIC_W	RW-16
ADuM3400WBRWZ	4	0	10	36	3.5	-40°C to +125°C	16-Lead SOIC_W	RW-16
ADuM3401WARWZ	3	1	1	100	40	-40°C to +125°C	16-Lead SOIC_W	RW-16
ADuM3401WBRWZ	3	1	10	36	3.5	-40°C to +125°C	16-Lead SOIC_W	RW-16
ADuM3402WARWZ	2	2	1	100	40	-40°C to +125°C	16-Lead SOIC_W	RW-16
ADuM3402WBRWZ	2	2	10	36	3.5	-40°C to +125°C	16-Lead SOIC_W	RW-16

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADuM3400W/ADuM3401W/ADuM3402W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

² Tape and reel are available. The addition of an -RL suffix designates a 13" (1,000 units) tape-and-reel option.

³ W = Qualified for Automotive Applications.

Data Sheet

ADuM3400W/ADuM3401W/ADuM3402W

NOTES

Data Sheet

NOTES