

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PWM Controller and Transformer Driver with Quad-Channel Isolators

Data Sheet

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

FEATURES

Isolated PWM controller Integrated transformer driver

Regulated adjustable output: 3.3 V to 24 V

2 W output power

70% efficiency at guaranteed load of 400 mA at 5.0 V output

Quad dc-to-25 Mbps (NRZ) signal isolation channels

20-lead SSOP package

High temperature operation: 105°C maximum High common-mode transient immunity: >25 kV/μs 200 kHz to 1 MHz adjustable oscillator frequency

Soft start function at power-up

Pulse-by-pulse overcurrent protection

Thermal shutdown

Safety and regulatory approvals

UL recognition: 2500 V rms for 1 minute per UL 1577

CSA Component Acceptance Notice #5A

VDE certificate of conformity

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

 $V_{IORM} = 560 V peak$

Qualified for automotive applications

APPLICATIONS

RS-232/RS-422/RS-485 transceivers Industrial field bus isolation Power supply start-up bias and gate drives Isolated sensor interfaces Process controls Automotive

GENERAL DESCRIPTION

The ADuM3470/ADuM3471/ADuM3472/ADuM3473/

ADuM3474 devices¹ are quad-channel digital isolators with an integrated PWM controller and transformer driver for an isolated dc-to-dc converter. Based on the Analog Devices, Inc., *i*Coupler® technology, the dc-to-dc converter provides up to 2 W of regulated, isolated power at 3.3 V to 24 V from a 5.0 V input supply or from a 3.3 V supply. This eliminates the need for a separate, isolated dc-to-dc converter in 2 W isolated designs. The *i*Coupler chip scale transformer technology is used to isolate the logic signals, and the integrated transformer driver with isolated secondary side control provides higher efficiency for the isolated dc-to-dc converter. The result is a small form factor, total isolation solution. The ADuM347x isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide).

¹ Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending.

Durate stand by U.C. Detaute 5 052 040 C 072 0CF, and 7 075 220 Other protection and dis-

Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. Functional Block Diagram

Figure 2. Block Diagrams of I/O Channels

TABLE OF CONTENTS

Features 1	Typical Performance Characteristics	19
Applications1	Terminology	24
General Description1	Applications Information	25
Functional Block Diagrams1	Application Schematics	25
Revision History2	Transformer Design	
Specifications	Transformer Turns Ratio	26
Electrical Characteristics—5 V Primary Input Supply/	Transformer ET Constant	
5 V Secondary Isolated Supply	Transformer Primary Inductance and Resistance	
Electrical Characteristics—3.3 V Primary Input Supply/	Transformer Isolation Voltage	
3.3 V Secondary Isolated Supply5	Switching Frequency	
Electrical Characteristics—5 V Primary Input Supply/		
3.3 V Secondary Isolated Supply7	Transient Response	
Electrical Characteristics—5 V Primary Input Supply/	Component Selection	
15 V Secondary Isolated Supply9	Printed Circuit Board (PCB) Layout	28
Package Characteristics	Thermal Analysis	28
Regulatory Approvals11	Propagation Delay-Related Parameters	28
Insulation and Safety-Related Specifications11	DC Correctness and Magnetic Field Immunity	29
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12	Power Consumption	30
Insulation Characteristics	Power Considerations	30
Recommended Operating Conditions	Insulation Lifetime	
Absolute Maximum Ratings	Outline Dimensions	
ESD Caution	Ordering Guide	
Pin Configurations and Function Descriptions14	Automotive Products	
REVISION HISTORY		
5/14—Rev. A to Rev. B	Changes to Figure 6 and Table 14	16
Change to Table 49	Changes to Figure 7 and Table 15	
	Changes to Figure 8, Table 16, and Table 17	
7/13—Rev. 0 to Rev. A	Change to Figure 9	
Changed V _{DD1} Pin to NC Pin Throughout	Changes to Terminology Section	24
Changes to Features Section, Applications Section,	Changes to Applications Information Section, Application	25
General Description Section, and Figure 1	Schematics Section, Figure 38, Figure 39, and Figure 40	
Created Hyperlink for Safety and Regulatory Approvals Entry in Features Section	Changes to Transformer Turns Ratio Section	26
Changes to Table 1	Transient Response Section, and Table 19	27
Changes to Table 2	Changes to Figure 41	
Changes to Table 3	Changes to Power Consumption Section and Figure 45	
Changes to Table 4	Changes to Insulation Lifetime Section and Figure 48	
Changes to Regulatory Approvals Section	Changes to Ordering Guide	
Changes to Figure 3 and Table 9	Added Automotive Products Section	
Changes to Figure 4 and Table 12		00
Changes to Figure 5 and Table 13	10/10—Revision 0: Initial Version	

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY

 $4.5~V \le V_{DD1} = V_{DDA} \le 5.5~V; V_{DD2} = V_{REG} = V_{ISO} = 5.0~V; f_{SW} = 500~kHz;$ all voltages are relative to their respective grounds (see the application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DDA} = 5.0~V$, $V_{DD2} = V_{REG} = V_{ISO} = 5.0~V$.

Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DC-TO-DC CONVERTER POWER SUPPLY						
Isolated Output Voltage	V _{ISO}	4.5	5.0	5.5	V	$I_{ISO} = 0 \text{ mA}, V_{ISO} = V_{FB} \times (R1 + R2)/R2$
Feedback Voltage Setpoint	V_{FB}	1.125	1.25	1.375	V	$I_{ISO} = 0 \text{ mA}$
Line Regulation	V _{ISO (LINE)}		1	10	mV/V	$I_{ISO} = 50 \text{ mA}, V_{DD1} = 4.5 \text{ V to } 5.5 \text{ V}$
Load Regulation	V _{ISO} (LOAD)		1	2	%	I _{ISO} = 50 mA to 200 mA
Output Ripple	V _{ISO (RIP)}		50		mV p-p	20 MHz bandwidth, $C_{OUT} = 0.1 \mu F 47 \mu F, I_{ISO} = 100 \text{ mA}$
Output Noise	V _{ISO (N)}		100		mV p-p	20 MHz bandwidth, $C_{OUT} = 0.1 \mu F 47 \mu F, I_{ISO} = 100 \text{ mA}$
Switching Frequency	f _{sw}		1000		kHz	$R_{OC} = 50 \text{ k}\Omega$
			200		kHz	$R_{OC} = 270 \text{ k}\Omega$
		192	318	515	kHz	$V_{OC} = V_{DD2}$ (open loop)
Switch On Resistance	Ron		0.5		Ω	
Undervoltage Lockout, V _{DD1} , V _{DD2} Supplies						
Positive Going Threshold	V_{UV+}		2.8		V	
Negative Going Threshold	V_{UV-}		2.6		V	
Hysteresis	V _{UVH}		0.2		V	
DC to 2 Mbps Data Rate ¹						f ≤ 1 MHz
Maximum Output Supply Current ²	I _{ISO (MAX)}	400			mA	$V_{ISO} = 5.0 \text{ V}$
Efficiency at Maximum Output Supply Current ³			70		%	I _{ISO} = I _{ISO (MAX)}
<i>i</i> COUPLER DATA CHANNELS						
DC to 2 Mbps Data Rate ¹						
IDD1 Supply Current, No VISO Load	I _{DD1 (Q)}					$I_{ISO} = 0 \text{ mA, } f \le 1 \text{ MHz}$
ADuM3470			14	30	mA	
ADuM3471			15	30	mA	
ADuM3472			16	30	mA	
ADuM3473			17	30	mA	
ADuM3474			18	30	mA	
25 Mbps Data Rate (C Grade Only)						
IDD1 Supply Current, No VISO Load	I _{DD1 (D)}					$I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$
ADuM3470			44		mA	
ADuM3471			46		mA	
ADuM3472			48		mA	
ADuM3473			50		mA	
ADuM3474			52		mA	
Available V _{ISO} Supply Current ⁴	I _{ISO (LOAD)}					$C_L = 15 \text{ pF, } f = 12.5 \text{ MHz}$
ADuM3470			390		mA	
ADuM3471			388		mA	
ADuM3472			386		mA	
ADuM3473			384		mA	
ADuM3474			382		mA	
I _{DD1} Supply Current, Full V _{ISO} Load	I _{DD1} (MAX)		550		mA	$C_L = 0 \text{ pF, } f = 0 \text{ MHz, } V_{DD1} = 5 \text{ V,}$ $I_{ISO} = 400 \text{ mA}$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
I/O Input Currents	I _{IA} , I _{IB} , I _{IC} , I _{ID}	-20	+0.01	+20	μΑ	
Logic High Input Threshold	V _{IH}	2.0			V	
Logic Low Input Threshold	V _{IL}			0.8	V	
Logic High Output Voltages	V _{OAH} , V _{OBH} , V _{OCH} , V _{ODH}	$V_{DD1} - 0.3,$ $V_{ISO} - 0.3$	5.0		V	$I_{Ox} = -20 \ \mu\text{A}, V_{Ix} = V_{IxH}$
		$V_{DD1} - 0.5,$ $V_{ISO} - 0.5$	4.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V _{OAL} , V _{OBL} , V _{OCL} , V _{ODL}		0.0	0.1	V	$I_{Ox}=20~\mu\text{A, }V_{lx}=V_{lxL}$
			0.0	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
AC SPECIFICATIONS						
A Grade						$C_L = 15$ pF, CMOS signal levels
Minimum Pulse Width	PW			1000	ns	
Maximum Data Rate		1			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}		55	100	ns	
Pulse Width Distortion, tplh - tphl	PWD			40	ns	
Propagation Delay Skew	t _{PSK}			50	ns	
Channel-to-Channel Matching	t _{PSKCD} /t _{PSKOD}			50	ns	
C Grade						$C_L = 15 \text{ pF, CMOS signal levels}$
Minimum Pulse Width	PW			40	ns	
Maximum Data Rate		25			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}	30	45	60	ns	
Pulse Width Distortion, t _{PLH} - t _{PHL}	PWD			8	ns	
Change vs. Temperature			5		ps/°C	
Propagation Delay Skew	t _{PSK}			15	ns	
Channel-to-Channel Matching						
Codirectional Channels	t _{PSKCD}			8	ns	
Opposing Directional Channels	t _{PSKOD}			15	ns	
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Common-Mode Transient Immunity						V _{CM} = 1000 V, transient magnitude = 800 V
At Logic High Output	CM _H	25	35		kV/μs	$V_{lx} = V_{DD1}$ or V_{ISO}
At Logic Low Output	CML	25	35		kV/μs	$V_{lx} = 0 V$
Refresh Rate	f _r		1.0		Mbps	

¹ The contributions of supply current values for all four channels are combined at identical data rates.

² The V_{ISO} supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the V_{ISO} power budget.

³ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

⁴ This current is available for driving external loads at the V_{ISO} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

 $3.0~V \le V_{DD1} = V_{DDA} \le 3.6~V; V_{DD2} = V_{REG} = V_{ISO} = 3.3~V; f_{SW} = 500~kHz;$ all voltages are relative to their respective grounds (see the application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DDA} = 3.3~V$, $V_{DD2} = V_{REG} = V_{ISO} = 3.3~V$.

Table 2.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DC-TO-DC CONVERTER POWER SUPPLY						
Isolated Output Voltage	V _{ISO}	3.0	3.3	3.6	V	$I_{ISO} = 0 \text{ mA}, V_{ISO} = V_{FB} \times (R1 + R2)/R2$
Feedback Voltage Setpoint	V_{FB}	1.125	1.25	1.375	V	$I_{ISO} = 0 \text{ mA}$
Line Regulation	V _{ISO (LINE)}		1	10	mV/V	$I_{ISO} = 50 \text{ mA}, V_{DD1} = 3.0 \text{ V to } 3.6 \text{ V}$
Load Regulation	V _{ISO (LOAD)}		1	2	%	I _{ISO} = 20 mA to 100 mA
Output Ripple	VISO (RIP)		50		mV p-p	20 MHz bandwidth, $C_{OUT} = 0.1 \mu F 47 \mu F, I_{ISO} = 100 \text{ mA}$
Output Noise	V _{ISO (N)}		100		mV p-p	20 MHz bandwidth, $C_{OUT} = 0.1 \mu F 47 \mu F, I_{ISO} = 100 \text{ mA}$
Switching Frequency	f_{SW}		1000		kHz	$R_{OC} = 50 \text{ k}\Omega$
			200		kHz	$R_{OC} = 270 \text{ k}\Omega$
		192	318	515	kHz	$V_{OC} = V_{DD2}$ (open loop)
Switch On Resistance	Ron		0.6		Ω	
Undervoltage Lockout, V _{DD1} , V _{DD2} Supplies						
Positive Going Threshold	$V_{\text{UV+}}$		2.8		V	
Negative Going Threshold	V_{UV-}		2.6		V	
Hysteresis	V _{UVH}		0.2		V	
DC to 2 Mbps Data Rate ¹						f ≤ 1 MHz,
Maximum Output Supply Current ²	I _{ISO (MAX)}	250			mA	$V_{ISO} = 3.3 \text{ V}$
Efficiency at Maximum Output Supply Current ³			70		%	$I_{ISO} = I_{ISO (MAX)}$
<i>i</i> COUPLER DATA CHANNELS						
DC to 2 Mbps Data Rate ¹						
IDD1 Supply Current, No VISO Load	I _{DD1 (Q)}					$I_{ISO} = 0 \text{ mA, } f \le 1 \text{ MHz}$
ADuM3470			9	20	mA	
ADuM3471			10	20	mA	
ADuM3472			11	20	mA	
ADuM3473			11	20	mA	
ADuM3474			12	20	mA	
25 Mbps Data Rate (C Grade Only)						
IDD1 Supply Current, No VISO Load	I _{DD1 (D)}					$I_{ISO} = 0$ mA, $C_L = 15$ pF, $f = 12.5$ MHz
ADuM3470			28		mA	
ADuM3471			29		mA	
ADuM3472			31		mA	
ADuM3473			32		mA	
ADuM3474			34		mA	
Available V _{ISO} Supply Current ⁴	I _{ISO (LOAD)}					$C_L = 15 \text{ pF, } f = 12.5 \text{ MHz}$
ADuM3470			244		mA	
ADuM3471			243		mA	
ADuM3472			241		mA	
ADuM3473			240		mA	
ADuM3474			238		mA	
I _{DD1} Supply Current, Full V _{ISO} Load	I _{DD1 (MAX)}		350		mA	$C_L = 0 \text{ pF, } f = 0 \text{ MHz, } V_{DD1} = 3.3 \text{ V,}$ $I_{ISO} = 250 \text{ mA}$
I/O Input Currents	I _{IA} , I _{IB} , I _{IC} , I _{ID}	-10	+0.01	+10	μΑ	

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Logic High Input Threshold	V _{IH}	1.6	•		V	
Logic Low Input Threshold	V _{IL}			0.4	V	
Logic High Output Voltages	Voah, Vobh, Voch, Vodh	$V_{DD1} - 0.3,$ $V_{ISO} - 0.3$	5.0		V	$I_{Ox} = -20 \ \mu\text{A}, V_{Ix} = V_{IxH}$
		$V_{DD1} - 0.5$, $V_{ISO} - 0.5$	4.8		V	$I_{Ox} = -4 \text{ mA, } V_{lx} = V_{lxH}$
Logic Low Output Voltages	V _{OAL} , V _{OBL} , V _{OCL} , V _{ODL}		0.0	0.1	V	$I_{Ox}=20~\mu\text{A, }V_{ix}=V_{ixL}$
			0.0	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
AC SPECIFICATIONS						
A Grade						C _L = 15 pF, CMOS signal levels
Minimum Pulse Width	PW			1000	ns	
Maximum Data Rate		1			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}		60	100	ns	
Pulse Width Distortion, $ t_{PLH} - t_{PHL} $	PWD			40	ns	
Propagation Delay Skew	t _{PSK}			50	ns	
Channel-to-Channel Matching	t _{PSKCD} /t _{PSKOD}			50	ns	
C Grade						$C_L = 15 \text{ pF, CMOS signal levels}$
Minimum Pulse Width	PW			40	ns	
Maximum Data Rate		25			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}	30	60	75	ns	
Pulse Width Distortion, $ t_{PLH} - t_{PHL} $	PWD			8	ns	
Change vs. Temperature			5		ps/°C	
Propagation Delay Skew	t _{PSK}			45	ns	
Channel-to-Channel Matching						
Codirectional Channels	t _{PSKCD}			8	ns	
Opposing Directional Channels	t _{PSKOD}			15	ns	
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Common-Mode Transient Immunity						$V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
At Logic High Output	CM _H	25	35		kV/μs	$V_{Ix} = V_{DD1} \text{ or } V_{ISO}$
At Logic Low Output	CM _L	25	35		kV/μs	$V_{lx} = 0 V$
Refresh Rate	fr		1.0		Mbps	

¹ The contributions of supply current values for all four channels are combined at identical data rates.

² The V_{ISO} supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the V_{ISO} power budget.

³ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

⁴ This current is available for driving external loads at the V_{ISO} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

 $4.5~V \le V_{DD1} = V_{DDA} \le 5.5~V; V_{DD2} = V_{REG} = V_{ISO} = 3.3~V; f_{SW} = 500~kHz;$ all voltages are relative to their respective grounds (see the application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DDA} = 5.0~V$, $V_{DD2} = V_{REG} = V_{ISO} = 3.3~V$.

Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DC-TO-DC CONVERTER POWER SUPPLY				_		
Isolated Output Voltage	V _{ISO}	3.0	3.3	3.6	V	$I_{ISO} = 0 \text{ mA}, V_{ISO} = V_{FB} \times (R1 + R2)/R2$
Feedback Voltage Setpoint	V_{FB}	1.125	1.25	1.375	V	$I_{ISO} = 0 \text{ mA}$
Line Regulation	V _{ISO (LINE)}		1	10	mV/V	$I_{ISO} = 50 \text{ mA}, V_{DD1} = 4.5 \text{ V to } 5.5 \text{ V}$
Load Regulation	V _{ISO (LOAD)}		1	2	%	I _{ISO} = 50 mA to 200 mA
Output Ripple	VISO (RIP)		50		mV p-p	20 MHz bandwidth, $C_{OUT} = 0.1 \mu F 47 \mu F, I_{ISO} = 100 \text{ mA}$
Output Noise	V _{ISO (N)}		100		mV p-p	20 MHz bandwidth, $C_{OUT} = 0.1 \mu F 47 \mu F, I_{ISO} = 100 \text{ mA}$
Switching Frequency	f _{SW}		1000		kHz	$R_{OC} = 50 \text{ k}\Omega$
			200		kHz	$R_{OC} = 270 \text{ k}\Omega$
		192	318	515	kHz	$V_{OC} = V_{DD2}$ (open loop)
Switch On Resistance	Ron		0.5		Ω	
Undervoltage Lockout, V _{DD1} , V _{DD2} Supplies						
Positive Going Threshold	$V_{\text{UV+}}$		2.8		V	
Negative Going Threshold	V_{UV-}		2.6		V	
Hysteresis	V _{UVH}		0.2		V	
DC to 2 Mbps Data Rate ¹						f≤1 MHz
Maximum Output Supply Current ²	I _{ISO (MAX)}	400			mA	$V_{ISO} = 3.3 \text{ V}$
Efficiency at Maximum Output Supply Current ³			70		%	$I_{ISO} = I_{ISO (MAX)}$
<i>i</i> COUPLER DATA CHANNELS						
DC to 2 Mbps Data Rate ¹						
IDD1 Supply Current, No VISO Load	I _{DD1 (Q)}					$I_{ISO} = 0 \text{ mA, } f \le 1 \text{ MHz}$
ADuM3470			9	30	mA	
ADuM3471			9	30	mA	
ADuM3472			10	30	mA	
ADuM3473			10	30	mA	
ADuM3474			10	30	mA	
25 Mbps Data Rate (C Grade Only)						
IDD1 Supply Current, No VISO Load	I _{DD1 (D)}					$I_{ISO} = 0$ mA, $C_L = 15$ pF, $f = 12.5$ MHz
ADuM3470			33		mA	
ADuM3471			33		mA	
ADuM3472			33		mA	
ADuM3473			33		mA	
ADuM3474			33		mA	
Available V _{ISO} Supply Current ⁴	I _{ISO (LOAD)}					C _L = 15 pF, f = 12.5 MHz
ADuM3470			393		mA	
ADuM3471			392		mA	
ADuM3472			390		mA	
ADuM3473			389		mA	
ADuM3474			388		mA	
I _{DD1} Supply Current, Full V _{ISO} Load	I _{DD1 (MAX)}		375		mA	$C_L = 0 \text{ pF, } f = 0 \text{ MHz, } V_{DD1} = 5 \text{ V,}$
	IDDT (WAX)					$I_{ISO} = 400 \text{ mA}$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Logic High Input Threshold	V _{IH}	2.0	•		V	
Logic Low Input Threshold	V _{IL}			0.8	V	
Logic High Output Voltages	Voah, Vobh, Voch, Vodh	$V_{DD1} - 0.3,$ $V_{ISO} - 0.3$	5.0		V	$I_{Ox} = -20 \ \mu\text{A}, V_{Ix} = V_{IxH}$
		$V_{DD1} - 0.5,$ $V_{ISO} - 0.5$	4.8		V	$I_{Ox} = -4 \text{ mA, } V_{lx} = V_{lxH}$
Logic Low Output Voltages	V _{OAL} , V _{OBL} , V _{OCL} , V _{ODL}		0.0	0.1	V	$I_{Ox}=20~\mu\text{A, }V_{Ix}=V_{IxL}$
			0.0	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
AC SPECIFICATIONS						
A Grade						$C_L = 15$ pF, CMOS signal levels
Minimum Pulse Width	PW			1000	ns	
Maximum Data Rate		1			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}		55	100	ns	
Pulse Width Distortion, $ t_{PLH} - t_{PHL} $	PWD			40	ns	
Propagation Delay Skew	t _{PSK}			50	ns	
Channel-to-Channel Matching	t _{PSKCD} /t _{PSKOD}			50	ns	
C Grade						$C_L = 15 \text{ pF, CMOS signal levels}$
Minimum Pulse Width	PW			40	ns	
Maximum Data Rate		25			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}	30	50	70	ns	
Pulse Width Distortion, tplh - tphl	PWD			8	ns	
Change vs. Temperature			5		ps/°C	
Propagation Delay Skew	t _{PSK}			15	ns	
Channel-to-Channel Matching						
Codirectional Channels	t _{PSKCD}			8	ns	
Opposing Directional Channels	t _{PSKOD}			15	ns	
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	C _L = 15 pF, CMOS signal levels
Common-Mode Transient Immunity						$V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
At Logic High Output	CM _H	25	35		kV/μs	$V_{Ix} = V_{DD1} \text{ or } V_{ISO}$
At Logic Low Output	CM _L	25	35		kV/μs	$V_{lx} = 0 V$
Refresh Rate	fr		1.0		Mbps	

¹ The contributions of supply current values for all four channels are combined at identical data rates.

² The V_{ISO} supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the V_{ISO} power budget.

³ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

⁴ This current is available for driving external loads at the V_{ISO} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/15 V SECONDARY ISOLATED SUPPLY

 $4.5~V \le V_{DD1} = V_{DDA} \le 5.5~V$; $V_{REG} = V_{ISO} = 15~V$; $V_{DD2} = 5.0~V$; $f_{SW} = 500~kHz$; all voltages are relative to their respective grounds (see the application schematic in Figure 39). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DDA} = 5.0~V$, $V_{REG} = V_{ISO} = 15~V$, $V_{DD2} = 5.0~V$.

Table 4.

Table 4.						
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DC-TO-DC CONVERTER POWER SUPPLY						
Isolated Output Voltage	V _{ISO}	13.5	15	16.5	V	$I_{ISO} = 0 \text{ mA}, V_{ISO} = V_{FB} \times (R1 + R2)/R2$
Feedback Voltage Setpoint	V_{FB}	1.125	1.25	1.375	٧	$I_{ISO} = 0 \text{ mA}$
V _{DD2} Linear Regulator						
Regulator Voltage	V_{DD2}	4.6	5.0	5.7	V	$V_{REG} = 7 \text{ V to } 15 \text{ V, } I_{DD2} = 0 \text{ mA}$ to 50 mA
Dropout Voltage	V _{DD2 (DO)}		0.5	1.5	٧	$I_{DD2} = 50 \text{ mA}$
Line Regulation	V _{ISO (LINE)}		1	20	mV/V	$I_{ISO} = 50 \text{ mA}, V_{DD1} = 4.5 \text{ V to } 5.5 \text{ V}$
Load Regulation	VISO (LOAD)		1	3	%	I _{ISO} = 20 mA to 100 mA
Output Ripple	V _{ISO (RIP)}		200		mV p-p	20 MHz bandwidth, C _{OUT} = 0.1 μF 47 μF, I _{ISO} = 100 mA
Output Noise	V _{ISO (N)}		500		mV p-p	20 MHz bandwidth, $C_{OUT} = 0.1 \mu F 47 \mu F, I_{ISO} = 100 \text{ mA}$
Switching Frequency	f _{sw}		1000		kHz	$R_{OC} = 50 \text{ k}\Omega$
5 , ,			200		kHz	$R_{OC} = 270 \text{ k}\Omega$
		192	318	515	kHz	$V_{OC} = V_{DD2}$ (open loop)
Switch On Resistance	Ron		0.5		Ω	
Undervoltage Lockout, V _{DD1} , V _{DD2} Supplies						
Positive Going Threshold	V_{UV+}		2.8		V	
Negative Going Threshold	V _{UV}		2.6		V	
Hysteresis	Vuvh		0.2		V	
DC to 2 Mbps Data Rate ¹						f ≤ 1 MHz
Maximum Output Supply Current ²	I _{ISO (MAX)}	100			mA	$V_{ISO} = 5.0 \text{ V}$
Efficiency at Maximum Output Supply Current ³	130 (11111)		70		%	$I_{ISO} = I_{ISO (MAX)}$
<i>i</i> COUPLER DATA CHANNELS						
DC to 2 Mbps Data Rate ¹						
I _{DD1} Supply Current, No V _{ISO} Load	I _{DD1 (Q)}					$I_{ISO} = 0 \text{ mA, } f \le 1 \text{ MHz}$
ADuM3470	1001(Q)		25	45	mA	150 0 111 4 1 2 1 111 2
ADuM3471			27	45	mA	
ADuM3472			29	45	mA	
ADuM3473			31	45	mA	
ADuM3474			33	45	mA	
25 Mbps Data Rate (C Grade Only)				.5		
I _{DD1} Supply Current, No V _{ISO} Load	I _{DD1 (D)}					$I_{ISO} = 0$ mA, $C_L = 15$ pF, $f = 12.5$ MHz
ADuM3470	1001(0)		73		mA	1.55 0 1.11 (0.5 1.5 1.11 1.11 1.11 1.11 1.11 1.11 1
ADuM3471			83		mA	
ADuM3472			93		mA	
ADuM3473			102		mA	
ADuM3474			112		mA	
Available V _{Iso} Supply Current ⁴	I _{ISO (LOAD)}		112		11171	C _L = 15 pF, f = 12.5 MHz
ADuM3470	TISO (LOAD)		91		mA	CL = 15 p1,1 = 12.5 WHZ
ADuM3470 ADuM3471			89		mA	
ADuM3471 ADuM3472			86		mA	
ADuM3472 ADuM3473			83		mA	
ADuM3473 ADuM3474			83 80		mA mA	
I _{DD1} Supply Current, Full V _{Iso} Load	Inn		425		mA	$C_L = 0 \text{ pF, } f = 0 \text{ MHz, } V_{DD1} = 5 \text{ V,}$
וטטו Supply Current, rull viso Load	I _{DD1} (MAX)		423		IIIA	$L_{L} = 0 \text{ pr, } I = 0 \text{ MHz, } V_{DD1} = 5 \text{ V,}$ $I_{ISO} = 100 \text{ mA}$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
I/O Input Currents	I _{IA} , I _{IB} , I _{IC} , I _{ID}	-20	+0.01	+20	μΑ	
Logic High Input Threshold	V _{IH}	2.0			V	
Logic Low Input Threshold	VIL			0.8	V	
Logic High Output Voltages	V _{OAH} , V _{OBH} , V _{OCH} , V _{ODH}	$V_{DD1} - 0.3,$ $V_{ISO} - 0.3$	5.0		V	$I_{Ox} = -20 \ \mu\text{A}, V_{Ix} = V_{IxH}$
		$V_{DD1} - 0.5,$ $V_{ISO} - 0.5$	4.8		V	$I_{Ox} = -4 \text{ mA, } V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V _{OAL} , V _{OBL} , V _{OCL} , V _{ODL}		0.0	0.1	V	$I_{Ox}=20~\mu\text{A, }V_{Ix}=V_{IxL}$
			0.0	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
AC SPECIFICATIONS						
A Grade						$C_L = 15 \text{ pF, CMOS signal levels}$
Minimum Pulse Width	PW			1000	ns	
Maximum Data Rate		1			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}		55	100	ns	
Pulse Width Distortion, tplh - tphl	PWD			40	ns	
Propagation Delay Skew	t _{PSK}			50	ns	
Channel-to-Channel Matching	t _{PSKCD} /t _{PSKOD}			50	ns	
C Grade						$C_L = 15 \text{ pF, CMOS signal levels}$
Minimum Pulse Width	PW			40	ns	
Maximum Data Rate		25			Mbps	
Propagation Delay	t _{PHL} , t _{PLH}	30	45	60	ns	
Pulse Width Distortion, $ t_{PLH} - t_{PHL} $	PWD			8	ns	
Change vs. Temperature			5		ps/°C	
Propagation Delay Skew	t _{PSK}			15	ns	
Channel-to-Channel Matching						
Codirectional Channels	t _{PSKCD}			8	ns	
Opposing Directional Channels	t _{PSKOD}			15	ns	
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Common-Mode Transient Immunity						$V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
At Logic High Output	CM _H	25	35		kV/μs	$V_{lx} = V_{DD1} \text{ or } V_{ISO}$
At Logic Low Output	CM _L	25	35		kV/μs	$V_{lx} = 0 V$
Refresh Rate	f _r		1.0		Mbps	

¹ The contributions of supply current values for all four channels are combined at identical data rates.

² The V_{ISO} supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the V_{ISO} power budget.

³ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

⁴ This current is available for driving external loads at the V_{ISO} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

PACKAGE CHARACTERISTICS

Table 5.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
RESISTANCE AND CAPACITANCE						
Resistance (Input to Output) ¹	R _{I-O}		1012		Ω	
Capacitance (Input to Output) ¹	C _{I-O}		2.2		pF	f = 1 MHz
Input Capacitance ²	Cı		4.0		pF	
IC Junction to Ambient Thermal Resistance	θJA		50.5		°C/W	Thermocouple is located at the center of the package underside; test conducted on a 4-layer board with thin traces ³
THERMAL SHUTDOWN						
Thermal Shutdown Threshold	TS_SD		150		°C	T _J rising
Thermal Shutdown Hysteresis	TS _{SD-HYS}		20		°C	

¹ The device is considered a 2-terminal device: Pin 1 to Pin 10 are shorted together, and Pin 11 to Pin 20 are shorted together.

REGULATORY APPROVALS

The ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 are approved by the organizations listed in Table 6. Refer to Table 11 and the Insulation Lifetime section for more information about the recommended maximum working voltages for specific cross-insulation waveforms and insulation levels.

Table 6.

UL	CSA	VDE
Recognized under the UL 1577 component recognition program ¹	Approved under CSA Component Acceptance Notice #5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ²
Single protection, 2500 V rms isolation voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 600 V rms (848 V peak) maximum working voltage	Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

¹ In accordance with UL 1577, each ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 is proof tested by applying an insulation test voltage of ≥3000 V rms for 1 sec (current leakage detection limit = 10 μA).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 7.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(I01)	>5.1	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	>5.1	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Distance (Internal Clearance)		0.017 min	mm	Distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>400	V	DIN IEC 112/VDE 0303, Part 1
Isolation Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

² Input capacitance is from any input data pin to ground.

³ See the Thermal Analysis section for thermal model definitions.

² In accordance with DIN V VDE V 0884-10 (VDE V 0884-10):2006-12, each ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 is proof tested by applying an insulation test voltage of ≥1050 V peak for 1 sec (partial discharge detection limit = 5 pC). The asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval.

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking branded on the component denotes DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval.

Table 8.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			l to III	
For Rated Mains Voltage ≤ 400 V rms			l to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		V _{IORM}	560	V peak
Input-to-Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{PR}$, 100% production test, $t_m = 1$ sec, partial discharge < 5 pC	V _{PR}	1050	V peak
Input-to-Output Test Voltage, Method A		V_{PR}		
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.6 = V_{PR}$, $t_m = 60$ sec, partial discharge < 5 pC		896	V peak
After Input and/or Safety Tests Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{PR}$, $t_m = 60$ sec, partial discharge < 5 pC		672	V peak
Highest Allowable Overvoltage	Transient overvoltage, $t_{TR} = 10$ sec	V_{TR}	4000	V peak
Safety Limiting Values	Maximum value allowed in the event of a failure			
	(see Figure 3)			
Case Temperature		Ts	150	°C
Side 1 Current		I _{S1}	1.25	Α
Insulation Resistance at Ts	$V_{10} = 500 \text{ V}$	Rs	>109	Ω

Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2

RECOMMENDED OPERATING CONDITIONS

Table 9.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	+105	°C
Supply Voltages ¹				
V_{DD1} at $V_{ISO} = 3.3 \text{ V}$	V_{DD1}	3.0	3.6	V
V_{DD1} at $V_{ISO} = 5.0 \text{ V}$	V_{DD1}	3.0	3.6	V
V_{DD1} at $V_{ISO} = 5.0 \text{ V}$	V_{DD1}	4.5	5.5	V
Minimum Load	I _{ISO (MIN)}	10		mA

¹ All voltages are relative to their respective grounds.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 10.

Parameter	Rating
Storage Temperature Range (T _{ST})	−55°C to +150°C
Ambient Operating Temperature Range (T _A)	−40°C to +105°C
Supply Voltages ¹	
V_{DD1} , $^2V_{DDA}$, V_{DD2}	-0.5 V to +7.0 V
V _{REG} , X1, X2	-0.5 V to +20.0 V
Input Voltage (V _{IA} , V _{IB} , V _{IC} , V _{ID}) ^{1, 3}	$-0.5 \text{ V to V}_{DDI} + 0.5 \text{ V}$
Output Voltage $(V_{OA}, V_{OB}, V_{OC}, V_{OD})^{1,3}$	$-0.5 \text{ V to V}_{DDO} + 0.5 \text{ V}$
Average Output Current per Pin⁴	-10 mA to +10 mA
Common-Mode Transients ⁵	–100 kV/μs to +100 kV/μs

¹ All voltages are relative to their respective grounds.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 11. Maximum Continuous Working Voltage Supporting 50-Year Minimum Lifetime¹

Parameter	Max	Unit	Applicable Certification
AC Voltage, Bipolar Waveform	565	V peak	All certifications
AC Voltage, Unipolar Waveform			
Basic Insulation	848	V peak	Working voltage per IEC 60950-1
DC Voltage			
Basic Insulation	848	V peak	Working voltage per IEC 60950-1

¹ Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² V_{DD1} is the power supply for the push-pull transformer.

³ V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of a given channel, respectively. See the Printed Circuit Board (PCB) Layout section.

⁴ See Figure 3 for maximum rated current values for various temperatures.

⁵ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

- NOTES
 1. NC = NO INTERNAL CONNECTION.
 2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.
 PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

Figure 4. ADuM3470 Pin Configuration

Table 12. ADuM3470 Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	X1	Transformer Driver Output 1.			
2, 10	GND ₁	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.			
3	NC	No Internal Connection.			
4	X2	Transformer Driver Output 2.			
5	V_{IA}	Logic Input A.			
6	V_{IB}	Logic Input B.			
7	V_{IC}	Logic Input C.			
8	V_{ID}	Logic Input D.			
9	V_{DDA}	Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 µF bypass capacitor from V _{DDA} to GND ₁ .			
11, 19	GND ₂	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.			
12	OC	Oscillator Control Pin. When the OC pin is connected high to the V_{DD2} pin, the secondary controller runs in oper loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND ₂ ; the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.			
13	V_{OD}	Logic Output D.			
14	Voc	Logic Output C.			
15	V _{OB}	Logic Output B.			
16	Voa	Logic Output A.			
17	FB	Feedback Input from the Secondary Output Voltage, V_{ISO} . Use a resistor divider from the V_{ISO} output to the FB pir to set the V_{FB} voltage equal to the 1.25 V internal reference level using the formula $V_{ISO} = V_{FB} \times (R1 + R2)/R2$. The resistor divider is required even in open-loop mode to provide soft start.			
18	V _{DD2}	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to V_{REG} , the internal regulator regulates the V_{DD2} pin to 5.0 V. Otherwise, V_{DD2} should be in the 3.0 V to 5.5 V range. Connect a 0.1 μ F bypass capacitor from V_{DD2} to GND ₂ .			
20	V _{REG}	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. V_{REG} should be in the 5.5 V to 15 V range to regulate the V_{DD2} output to 5.0 V.			

NOTES

1. NC = NO INTERNAL CONNECTION.

2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

Figure 5. ADuM3471 Pin Configuration

Table 13. ADuM3471 Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	X1	Transformer Driver Output 1.			
2, 10	GND ₁	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.			
3	NC	No Internal Connection.			
4	X2	Transformer Driver Output 2.			
5	V_{IA}	Logic Input A.			
6	V_{IB}	Logic Input B.			
7	V_{IC}	Logic Input C.			
8	V _{OD}	Logic Output D.			
9	V_{DDA}	Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μ F bypass capacitor from V_{DDA} to GND ₁ .			
11, 19	GND₂	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.			
12	OC	Oscillator Control Pin. When the OC pin is connected high to the V_{DD2} pin, the secondary controller runs in open-loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND ₂ ; the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.			
13	V_{ID}	Logic Input D.			
14	Voc	Logic Output C.			
15	V _{OB}	Logic Output B.			
16	Voa	Logic Output A.			
17	FB	Feedback Input from the Secondary Output Voltage, V_{ISO} . Use a resistor divider from the V_{ISO} output to the FB pin to set the V_{FB} voltage equal to the 1.25 V internal reference level using the formula $V_{ISO} = V_{FB} \times (R1 + R2)/R2$. The resistor divider is required even in open-loop mode to provide soft start.			
18	V _{DD2}	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to V_{REG} , the internal regulator regulates the V_{DD2} pin to 5.0 V. Otherwise, V_{DD2} should be in the 3.0 V to 5.5 V range. Connect a 0.1 μ F bypass capacitor from V_{DD2} to GND ₂ .			
20	V _{REG}	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. V_{REG} should be in the 5.5 V to 15 V range to regulate the V_{DD2} output to 5.0 V.			

- NOTES

 1. NC = NO INTERNAL CONNECTION.
 2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.
 PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

Figure 6. ADuM3472 Pin Configuration

Table 14. ADuM3472 Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	X1	Transformer Driver Output 1.			
2, 10	GND ₁	iround Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; is recommended that both pins be connected to a common ground.			
3	NC	No Internal Connection.			
4	X2	Transformer Driver Output 2.			
5	V_{IA}	Logic Input A.			
6	V_{IB}	Logic Input B.			
7	Voc	Logic Output C.			
8	V _{OD}	Logic Output D.			
9	V_{DDA}	Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μ F bypass capacitor from V_{DDA} to GND ₁ .			
11, 19	GND ₂	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; t is recommended that both pins be connected to a common ground.			
12	ОС	Oscillator Control Pin. When the OC pin is connected high to the V_{DD2} pin, the secondary controller runs in open-loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND ₂ ; the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.			
13	V_{ID}	Logic Input D.			
14	V _{IC}	Logic Input C.			
15	V _{OB}	Logic Output B.			
16	V _{OA}	Logic Output A.			
17	FB	Feedback Input from the Secondary Output Voltage, V_{ISO} . Use a resistor divider from the V_{ISO} output to the FB pin to set the V_{FB} voltage equal to the 1.25 V internal reference level using the formula $V_{ISO} = V_{FB} \times (R1 + R2)/R2$. The resistor divider is required even in open-loop mode to provide soft start.			
18	V _{DD2}	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to V_{REG} , the internal regulator regulates the V_{DD2} pin to 5.0 V. Otherwise, V_{DD2} should be in the 3.0 V to 5.5 V range. Connect a 0.1 μ F bypass capacitor from V_{DD2} to GND ₂ .			
20	V_{REG}	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. V _{REG} should be in the 5.5 V to 15 V range to regulate the V _{DD2} output to 5.0 V.			

- NOTES

 1. NC = NO INTERNAL CONNECTION.
 2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.
 PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

Figure 7. ADuM3473 Pin Configuration

Table 15. ADuM3473 Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	X1	Transformer Driver Output 1.			
2, 10	GND ₁	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.			
3	NC	No Internal Connection.			
4	X2	Transformer Driver Output 2.			
5	V_{IA}	Logic Input A.			
6	V _{OB}	Logic Output B.			
7	V _{oc}	Logic Output C.			
8	V _{OD}	Logic Output D.			
9	V_{DDA}	Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μF bypass capacitor from V _{DDA} to GND ₁ .			
11, 19	GND ₂	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.			
12	ОС	Oscillator Control Pin. When the OC pin is connected high to the V_{DD2} pin, the secondary controller runs in open-loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND ₂ ; the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.			
13	V_{ID}	Logic Input D.			
14	V _{IC}	Logic Input C.			
15	V_{IB}	Logic Input B.			
16	V _{OA}	Logic Output A.			
17	FB	Feedback Input from the Secondary Output Voltage, V_{ISO} . Use a resistor divider from the V_{ISO} output to the FB pin to set the V_{FB} voltage equal to the 1.25 V internal reference level using the formula $V_{ISO} = V_{FB} \times (R1 + R2)/R2$. The resistor divider is required even in open-loop mode to provide soft start.			
18	V _{DD2}	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to V_{REG} , the internal regulator regulates the V_{DD2} pin to 5.0 V. Otherwise, V_{DD2} should be in the 3.0 V to 5.5 V range. Connect a 0.1 μ F bypass capacitor from V_{DD2} to GND ₂ .			
20	V _{REG}	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. V _{REG} should be in the 5.5 V to 15 V range to regulate the V _{DD2} output to 5.0 V.			

- NOTES

 1. NC = NO INTERNAL CONNECTION.
 2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.
 PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS
 RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

Figure 8. ADuM3474 Pin Configuration

Table 16. ADuM3474 Pin Function Descriptions

Pin No.	Mnemonic	Description		
1	X1	Transformer Driver Output 1.		
2, 10	GND ₁	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.		
3	NC	lo Internal Connection.		
4	X2	Transformer Driver Output 2.		
5	V _{OA}	Logic Output A.		
6	V _{OB}	Logic Output B.		
7	Voc	Logic Output C.		
8	V _{OD}	Logic Output D.		
9	V_{DDA}	Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μF bypass capacitor from V _{DDA} to GND ₁ .		
11, 19	GND ₂	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; t is recommended that both pins be connected to a common ground.		
12	ОС	Oscillator Control Pin. When the OC pin is connected high to the V_{DD2} pin, the secondary controller runs in open-loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND_2 ; the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.		
13	V_{ID}	Logic Input D.		
14	V _{IC}	Logic Input C.		
15	V _{IB}	Logic Input B.		
16	VIA	Logic Input A.		
17	FB	Feedback Input from the Secondary Output Voltage, V_{ISO} . Use a resistor divider from the V_{ISO} output to the FB pin to set the V_{FB} voltage equal to the 1.25 V internal reference level using the formula $V_{ISO} = V_{FB} \times (R1 + R2)/R2$. The resistor divider is required even in open-loop mode to provide soft start.		
18	V _{DD2}	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to V_{REG} , the internal regulator regulates the V_{DD2} pin to 5.0 V. Otherwise, V_{DD2} should be in the 3.0 V to 5.5 V range. Connect a 0.1 μ F bypass capacitor from V_{DD2} to GND ₂ .		
20	V_{REG}	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. V_{REG} should be in the 5.5 V to 15 V range to regulate the V_{DD2} output to 5.0 V.		

Table 17. Truth Table (Positive Logic)

V _{Ix} Input ¹	V _{DD1} State	V _{DD2} State	V _{0x} Output ¹	Notes
High	Powered	Powered	High	Normal operation, data is high
Low	Powered	Powered	Low	Normal operation, data is low

 $^{^{1}}$ V_{lx} and V_{Ox} refer to the input and output signals of a given channel (A, B, C, or D).

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. Switching Frequency (fsw) vs. Roc Resistance

Figure 10. Typical Efficiency at Various Switching Frequencies with Coilcraft Transformer, 5 V Input to 5 V Output

Figure 11. Typical Efficiency at Various Switching Frequencies with Halo Transformer, 5 V Input to 5 V Output

Figure 12. Typical Efficiency over Temperature with Coilcraft Transformer, $f_{SW} = 500 \text{ kHz}$, 5 V Input to 5 V Output

Figure 13. Single-Supply Efficiency with Coilcraft Transformer, f_{SW} = 500 kHz

Figure 14. Typical Efficiency at Various Switching Frequencies with Coilcraft Transformer, 5 V Input to 15 V Output

Figure 15. Typical Efficiency at Various Switching Frequencies with Halo Transformer, 5 V Input to 15 V Output

Figure 16. Typical Efficiency over Temperature with Coilcraft Transformer, $f_{SW} = 500$ kHz, 5 V Input to 15 V Output

Figure 17. Double-Supply Efficiency with Coilcraft Transformer, $f_{SW} = 500 \text{ kHz}$

Figure 18. Typical Single-Supply I_{CH} Supply Current per Forward Data Channel (15 pF Output Load)

Figure 19. Typical Single-Supply I_{CH} Supply Current per Reverse Data Channel (15 pF Output Load)

Figure 20. Typical Single-Supply I_{ISO (D)} Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 21. Typical Single-Supply I_{ISO (D)} Dynamic Supply Current per Input Channel

Figure 22. Typical Double-Supply I_{CH} Supply Current per Forward Data Channel (15 pF Output Load)

Figure 23. Typical Double-Supply I_{CH} Supply Current per Reverse Data Channel (15 pF Output Load)

Figure 24. Typical Double-Supply I_{ISO (D)} Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 25. Typical Double-Supply I_{ISO (D)} Dynamic Supply Current per Input Channel

Figure 26. Typical $V_{\rm ISO}$ Startup with 10 mA, 50 mA, and 400 mA Output Load, 5 V Input to 5 V Output

Figure 27. Typical $V_{\rm ISO}$ Startup with 10 mA, 50 mA, and 400 mA Output Load, 5 V Input to 3.3 V Output

Figure 28. Typical $V_{\rm ISO}$ Startup with 10 mA, 50 mA, and 250 mA Output Load, 3.3 V Input to 3.3 V Output

Figure 29. Typical $V_{\rm ISO}$ Startup with 10 mA, 20 mA, and 100 mA Output Load, 5 V Input to 15 V Output

Figure 30. Typical V_{ISO} Load Transient Response at 10% to 90% of 400 mA Load, $f_{SW} = 500$ kHz, 5 V Input to 5 V Output

Figure 31. Typical V_{ISO} Load Transient Response at 10% to 90% of 400 mA Load, $f_{SW} = 500 \text{ kHz}$, 5 V Input to 3.3 V Output

Figure 32. Typical V_{ISO} Load Transient Response at 10% to 90% of 250 mA Load, $f_{SW} = 500$ kHz, 3.3 V Input to 3.3 V Output

Figure 33. Typical V_{ISO} Load Transient Response at 10% to 90% of 100 mA Load, $f_{SW} = 500$ kHz, 5 V Input to 15 V Output

Figure 34. Typical V_{ISO} Output Voltage Ripple at 400 mA Load, $f_{SW} = 500$ kHz, 5 V Input to 5 V Output

Figure 35. Typical V_{ISO} Output Voltage Ripple at 400 mA Load, $f_{SW} = 500$ kHz, 5 V Input to 3.3 V Output

Figure 36. Typical V_{ISO} Output Voltage Ripple at 250 mA Load, $f_{SW} = 500$ kHz, 3.3 V Input to 3.3 V Output

Figure 37. Typical V_{ISO} Output Voltage Ripple at 100 mA Load, $f_{SW} = 500$ kHz, 5 V Input to 15 V Output

TERMINOLOGY

IDD1 (O

 $I_{\rm DD1\,(Q)}$ is the minimum operating current drawn at the $V_{\rm DD1}$ power input when there is no external load at $V_{\rm ISO}$ and the I/O pins are operating below 2 Mbps, requiring no additional dynamic supply current.

$I_{DD1 (D)}$

 $I_{\rm DD1\,(D)}$ is the typical input supply current with all channels simultaneously driven at a maximum data rate of 25 Mbps with the full capacitive load representing the maximum dynamic load conditions. Treat resistive loads on the outputs separately from the dynamic load.

$I_{DD1\,(MAX)}$

 $I_{\rm DD1\,(MAX)}$ is the input current under full dynamic and $V_{\rm ISO}$ load conditions.

tPHL Propagation Delay

The t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal.

tplh Propagation Delay

The t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the rising edge of the V_{Ox} signal.

Propagation Delay Skew (tpsk)

 t_{PSK} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

Channel-to-Channel Matching

Channel-to-channel matching is the absolute value of the difference in propagation delays between two channels when operated with identical loads.

Minimum Pulse Width

The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.

Maximum Data Rate

The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.

APPLICATIONS INFORMATION

The dc-to-dc converter section of the ADuM347x uses a secondary side controller architecture with isolated pulse-width modulation (PWM) feedback. $V_{\rm DD1}$ power is supplied to an oscillating circuit that switches current to the primary side of an external power transformer using internal push-pull switches at the X1 and X2 pins. Power transferred to the secondary side of the transformer is full wave rectified with external Schottky diodes (D1 and D2), filtered with the L1 inductor and $C_{\rm OUT}$ capacitor, and regulated to the isolated power supply voltage from 3.3 V to 15 V.

The secondary ($V_{\rm ISO}$) side controller regulates the output using a feedback voltage, $V_{\rm FB}$, from a resistor divider on the output to create a PWM control signal that is sent to the primary ($V_{\rm DDI}$) side by a dedicated iCoupler data channel labeled $V_{\rm FB}$. The primary side PWM converter varies the duty cycle of the X1 and X2 switches to modulate the oscillator circuit and control the power being sent to the secondary side. This feedback allows for significantly higher power and efficiency.

The ADuM347x devices implement undervoltage lockout (UVLO) with hysteresis on the $V_{\rm DDA}$ power input. This feature ensures that the converter does not go into oscillation due to noisy input power or slow power-on ramp rates.

A minimum load current of 10 mA is recommended to ensure optimum load regulation. Smaller loads can generate excess noise on the output due to short or erratic PWM pulses. Excess noise generated in this way can cause regulation problems in some circumstances.

APPLICATION SCHEMATICS

The ADuM347x devices have three main application schematics, as shown in Figure 38 to Figure 40. Figure 38 has a center-tapped secondary and two Schottky diodes that provide full wave rectification for a single output, typically for power supplies of 3.3 V, 5 V, 12 V, and 15 V. For single supplies when $V_{\rm ISO}=3.3~{\rm V}$ or 5 V, $V_{\rm REG}$, $V_{\rm DD2}$, and $V_{\rm ISO}$ can be connected together.

Figure 39 shows a voltage doubling circuit that can be used for a single supply with an output that exceeds 15 V; 15 V is the largest supply that can be connected to the regulator input, V_{REG} (Pin 20). In the circuit shown in Figure 39, the output voltage can be as high as 24 V, and the voltage at the V_{REG} pin can be as high as 12 V. When using the circuit shown in Figure 39 to obtain an output voltage lower than 10 V (for example, $V_{\text{DD1}} = 3.3$ V, $V_{\text{ISO}} = 5$ V), connect V_{REG} to V_{ISO} directly.

Figure 40, which also uses a voltage doubling secondary circuit, is an example of a coarsely regulated, positive power supply and an unregulated, negative power supply for outputs of approximately ± 5 V, ± 12 V, and ± 15 V.

For all the circuits shown in Figure 38 to Figure 40, the isolated output voltage (V $_{\rm ISO}$) can be set with the voltage dividers, R1 and R2 (values 1 $k\Omega$ to 100 $k\Omega$) using the following equation:

$$V_{ISO} = V_{FB} \times (R1 + R2)/R2$$

where V_{FB} is the internal feedback voltage (approximately 1.25 V).

Figure 38. Single Power Supply

Figure 39. Doubling Power Supply

Figure 40. Positive Supply and Unregulated Negative Supply