: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

FEATURES

Isolated PWM controller

Integrated transformer driver
Regulated adjustable output: 3.3 V to 24 V
2 W output power
70\% efficiency at guaranteed load of 400 mA at 5.0 V output Quad dc-to-25 Mbps (NRZ) signal isolation channels
20-lead SSOP package
High temperature operation: $105^{\circ} \mathrm{C}$ maximum
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{k V} / \mu \mathrm{s}$
200 kHz to $1 \mathbf{~ M H z}$ adjustable oscillator frequency
Soft start function at power-up
Pulse-by-pulse overcurrent protection
Thermal shutdown
Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE certificate of conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
$V_{\text {IORM }}=560$ V peak
Qualified for automotive applications

APPLICATIONS

RS-232/RS-422/RS-485 transceivers

Industrial field bus isolation
Power supply start-up bias and gate drives
Isolated sensor interfaces
Process controls
Automotive

GENERAL DESCRIPTION

The ADuM3470/ADuM3471/ADuM3472/ADuM3473/
ADuM3474 devices ${ }^{1}$ are quad-channel digital isolators with an integrated PWM controller and transformer driver for an isolated dc-to-dc converter. Based on the Analog Devices, Inc., i Coupler ${ }^{\oplus}$ technology, the dc-to-dc converter provides up to 2 W of regulated, isolated power at 3.3 V to 24 V from a 5.0 V input supply or from a 3.3 V supply. This eliminates the need for a separate, isolated dc-to-dc converter in 2 W isolated designs. The i Coupler chip scale transformer technology is used to isolate the logic signals, and the integrated transformer driver with isolated secondary side control provides higher efficiency for the isolated dc-to-dc converter. The result is a small form factor, total isolation solution. The ADuM347x isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide).

[^0]
Rev. B

TABLE OF CONTENTS

Features 1
Applications
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Primary Input Supply/ 5 V Secondary Isolated Supply 3
Electrical Characteristics-3.3 V Primary Input Supply/ 3.3 V Secondary Isolated Supply 5
Electrical Characteristics-5 V Primary Input Supply/ 3.3 V Secondary Isolated Supply 7
Electrical Characteristics-5 V Primary Input Supply/ 15 V Secondary Isolated Supply 9
Package Characteristics 11
Regulatory Approvals. 11
Insulation and Safety-Related Specifications 11
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation Characteristics. 12
Recommended Operating Conditions 12
Absolute Maximum Ratings 13
ESD Caution 13
Pin Configurations and Function Descriptions 14
REVISION HISTORY
5/14-Rev. A to Rev. B9
7/13-Rev. 0 to Rev. A
Changed VDd Pin to NC Pin
\qquad Throughout
Changes to Features Section, Applications Section, General Description Section, and Figure 1 1
Created Hyperlink for Safety and Regulatory Approvals Entry in Features Section 1
Changes to Table 1 3
Changes to Table 2 5
Changes to Table 3 7
Changes to Table 4 9
Changes to Regulatory Approvals Section 11
Changes to Figure 3 and Table 9 12
Changes to Figure 4 and Table 12 14
Changes to Figure 5 and Table 13 15
Typical Performance Characteristics. 19
Terminology 24
Applications Information 25
Application Schematics 25
Transformer Design 26
Transformer Turns Ratio 26
Transformer ET Constant 27
Transformer Primary Inductance and Resistance 27
Transformer Isolation Voltage 27
Switching Frequency 27
Transient Response 27
Component Selection 27
Printed Circuit Board (PCB) Layout 28
Thermal Analysis 28
Propagation Delay-Related Parameters. 28
DC Correctness and Magnetic Field Immunity 29
Power Consumption 30
Power Considerations 30
Insulation Lifetime. 31
Outline Dimensions 32
Ordering Guide 33
Automotive Products 33
Changes to Figure 6 and Table 14. 16
Changes to Figure 7 and Table 15. 17
Changes to Figure 8, Table 16, and Table 17 18
Change to Figure 9 19
Changes to Terminology Section 24
Changes to Applications Information Section, Application Schematics Section, Figure 38, Figure 39, and Figure 40 25
Changes to Transformer Turns Ratio Section 26
Changes to Transformer ET Constant Section, Transient Response Section, and Table 19 27
Changes to Figure 41 28
Changes to Power Consumption Section and Figure 45 30
Changes to Insulation Lifetime Section and Figure 48 31
Changes to Ordering Guide 33
Added Automotive Products Section 33
10/10—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY
$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}} \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds (see the application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER POWER SUPPLY							
Isolated Output Voltage	Viso	4.5	5.0	5.5	V	$\mathrm{I}_{150}=0 \mathrm{~mA}, \mathrm{~V}_{150}=\mathrm{V}_{\text {FB }} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$	
Feedback Voltage Setpoint	$V_{\text {Fb }}$	1.125	1.25	1.375	V	$\mathrm{l}_{\text {so }}=0 \mathrm{~mA}$	
Line Regulation	$V_{\text {ISO (LINE) }}$		1	10	mV / V	$\mathrm{I}_{\text {ISO }}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$ to 5.5 V	
Load Regulation	$\mathrm{V}_{\text {ISO (LOAD) }}$		1	2	\%	$\mathrm{l}_{\text {so }}=50 \mathrm{~mA}$ to 200 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		50		mV p-p	20 MHz bandwidth, $C_{\text {OUT }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Output Noise	$\mathrm{V}_{\text {ISO (}}$ ($)$		100		mV p-p	20 MHz bandwidth, $C_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Switching Frequency	fsw		1000		kHz	Roc $=50 \mathrm{k} \Omega$	
			200		kHz	$\mathrm{Roc}=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{DD} 2}$ (open loop)	
Switch On Resistance	Ron		0.5		Ω		
Undervoltage Lockout, $V_{D D 1}, V_{D D 2}$ Supplies							
Positive Going Threshold	Vuv+		2.8		V		
Negative Going Threshold	Vuv-		2.6		V		
Hysteresis	Vuvh		0.2		V		
DC to 2 Mbps Data Rate ${ }^{1}$						$\mathrm{f} \leq 1 \mathrm{MHz}$	
Maximum Output Supply Current ${ }^{2}$	Iso (max)	400			mA	$\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$	
Efficiency at Maximum Output Supply Current ${ }^{3}$			70		\%	$\mathrm{I}_{\text {SOO }}=\mathrm{I}_{\text {ISO }}(\mathrm{max})$	
i COUPLER DATA CHANNELS							
DC to 2 Mbps Data Rate ${ }^{1}$							
IDD1 Supply Current, No Viso Load	$\operatorname{loD1}$ (0)					IIso $=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM3470			14	30	mA		
ADuM3471			15	30	mA		
ADuM3472			16	30	mA		
ADuM3473			17	30	mA		
ADuM3474			18	30	mA		
25 Mbps Data Rate (C Grade Only)							
Idd1 Supply Current, No Viso Load	$\operatorname{ldD1}$ (D)					IIso $=0 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			44		mA		
ADuM3471			46		mA		
ADuM3472			48		mA		
ADuM3473			50		mA		
ADuM3474			52		mA		
Available Viso Supply Current ${ }^{4}$	IISO (LOAD)					$\mathrm{CL}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			390		mA		
ADuM3471			388		mA		
ADuM3472			386		mA		
ADuM3473			384		mA		
ADuM3474			382		mA		
IdD1 Supply Current, Full Viso Load	l D11 (max)		550		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SO}}=400 \mathrm{~mA} \end{aligned}$	

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
I/O Input Currents	liA, IIB, lic, lid	-20	+0.01	+20	$\mu \mathrm{A}$	
Logic High Input Threshold	V_{IH}	2.0			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.8	V	
Logic High Output Voltages	Voah, Vobh, $\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {OdH }}$	$\begin{aligned} & V_{D D 1}-0.3 \\ & V_{I S O}-0.3 \end{aligned}$	5.0		V	$\mathrm{I}_{\mathrm{Ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
		$\begin{aligned} & V_{\mathrm{DD} 1}-0.5, \\ & \mathrm{~V}_{150}-0.5 \end{aligned}$	4.8		V	$\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IXH}}$
Logic Low Output Voltages	$V_{\text {OAL, }} V_{\text {ObL, }}$ Vocl, $\mathrm{V}_{\text {ODL }}$		0.0	0.1	V	$l_{0 x}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
			0.0	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
AC SPECIFICATIONS						
A Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Minimum Pulse Width	PW			1000	ns	
Maximum Data Rate		1			Mbps	
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLL }}$		55	100	ns	
Pulse Width Distortion, \|tplh - tphl	PWD			40	ns	
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	
C Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Minimum Pulse Width	PW			40	ns	
Maximum Data Rate		25			Mbps	
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLL }}$	30	45	60	ns	
Pulse Width Distortion, \|tPLH - tPHL \mid	PWD			8	ns	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {PSK }}$			15	ns	
Channel-to-Channel Matching						
Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$				ns	
Opposing Directional Channels	tpskod			15	ns	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity						$\begin{aligned} & \mathrm{V}_{\text {СM }}=1000 \mathrm{~V} \text {, transient } \\ & \text { magnitude }=800 \mathrm{~V} \end{aligned}$
At Logic High Output	$\left\|C M_{H}\right\|$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\text {ISO }}$
At Logic Low Output	\|CM ${ }^{\text {L }}$	25	35		kV/ $/$ s	$\mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}$
Refresh Rate	fr_{r}		1.0		Mbps	

[^1]
Data Sheet

ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds (see the application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD1}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\text {REG }}=\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER POWER SUPPLY							
Isolated Output Voltage	$V_{\text {ISO }}$	3.0	3.3	3.6	V	$\mathrm{I}_{\text {so }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {ISO }}=\mathrm{V}_{\text {FB }} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$	
Feedback Voltage Setpoint	$V_{\text {FB }}$	1.125	1.25	1.375	V	$\mathrm{I}_{\text {so }}=0 \mathrm{~mA}$	
Line Regulation	$V_{\text {ISO (LINE) }}$		1	10	mV / V	$\mathrm{I}_{\text {SO }}=50 \mathrm{~mA}, \mathrm{~V} \mathrm{VD1}=3.0 \mathrm{~V}$ to 3.6 V	
Load Regulation	VISO (LOAD)		1	2	\%	$\mathrm{I}_{\text {so }}=20 \mathrm{~mA}$ to 100 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		50		mV p-p	20 MHz bandwidth, $C_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {SOO }}=100 \mathrm{~mA}$	
Output Noise	V_{150} (N)		100		mV p-p	20 MHz bandwidth, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {lso }}=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {sw }}$		1000		kHz	Roc $=50 \mathrm{k} \Omega$	
			200		kHz	Roc $=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{DD} 2}$ (open loop)	
Switch On Resistance	Ron		0.6		Ω		
Undervoltage Lockout, VDD1, VDD2 Supplies							
Positive Going Threshold	Vuv+		2.8		V		
Negative Going Threshold	Vuv-		2.6		V		
Hysteresis	VuvH		0.2		V		
DC to 2 Mbps Data Rate ${ }^{1}$						$\mathrm{f} \leq 1 \mathrm{MHz}$,	
Maximum Output Supply Current ${ }^{2}$	$1 I_{\text {S }}$ (max)	250			mA	$\mathrm{V}_{150}=3.3 \mathrm{~V}$	
Efficiency at Maximum Output Supply Current ${ }^{3}$			70		\%	$\mathrm{I}_{150}=\mathrm{I}_{\text {SOO }}$ (max)	
i COUPLER DATA CHANNELS							
DC to 2 Mbps Data Rate ${ }^{1}$							
IDD1 Supply Current, No Viso Load	$\mathrm{ldD1} \mathrm{(Q)}$					$\mathrm{l}_{\text {so }}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM3470			9	20	mA		
ADuM3471			10	20	mA		
ADuM3472			11	20	mA		
ADuM3473			11	20	mA		
ADuM3474			12	20	mA		
25 Mbps Data Rate (C Grade Only)							
Ido1 Supply Current, No Viso Load	$\mathrm{ldD1}$ (D)					$\mathrm{I}_{\text {so }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			28		mA		
ADuM3471			29		mA		
ADuM3472			31		mA		
ADuM3473			32		mA		
ADuM3474			34		mA		
Available Viso Supply Current ${ }^{4}$	IISO (LIAD)					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			244		mA		
ADuM3471			243		mA		
ADuM3472			241		mA		
ADuM3473			240		mA		
ADuM3474			238		mA		
IDD1 Supply Current, Full Viso Load	IDD1 (max)		350		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ISO}}=250 \mathrm{~mA} \end{aligned}$	
I/O Input Currents	$l_{\text {A }}, l_{1 B}, l_{I_{1},}, l_{\text {l }}$	-10	+0.01	+10	$\mu \mathrm{A}$		

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
Logic High Input Threshold	V_{H}	1.6			V		
Logic Low Input Threshold	VIL			0.4	V		
Logic High Output Voltages	$\mathrm{V}_{\text {оah, }} \mathrm{V}_{\text {obh, }}$ Vосн, Vодн	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}-0.3, \\ & \mathrm{~V}_{150}-0.3 \end{aligned}$	5.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{lxH}}$	
		$\begin{aligned} & V_{D D 1}-0.5, \\ & V_{I S O}-0.5 \end{aligned}$	4.8		V	$\mathrm{l}_{\mathrm{x}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{lxH}}$	
Logic Low Output Voltages	Voal, Vobl, Vocl, Vodl		0.0	0.1	V	$\mathrm{I}_{\mathrm{xx}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxL }}$	
			0.0	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xL}}$	
AC SPECIFICATIONS							
A Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Minimum Pulse Width	PW			1000	ns		
Maximum Data Rate		1			Mbps		
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$		60	100	ns		
Pulse Width Distortion, \|ttpl - tphl	PWD			40	ns		
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns		
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSkco }} / \mathrm{t}_{\text {PSKOD }}$			50	ns		
C Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Minimum Pulse Width	PW			40	ns		
Maximum Data Rate		25			Mbps		
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$	30	60	75	ns		
Pulse Width Distortion, $\left\|t_{\text {tLH }}-t_{\text {PHL }}\right\|$	PWD			8			
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$		
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			45	ns		
Channel-to-Channel Matching							
Codirectional Channels	tPskcd			8	ns		
Opposing Directional Channels	$\mathrm{t}_{\text {PSKod }}$			15	ns		
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity						$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V} \text {, transient } \\ & \text { magnitude }=800 \mathrm{~V} \end{aligned}$	
At Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		kV/ $/ \mathrm{s}$	$\mathrm{V}_{11}=\mathrm{V}_{\mathrm{DD} 1}$ or V_{150}	
At Logic Low Output	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{1 \mathrm{x}}=0 \mathrm{~V}$
Refresh Rate	fr_{r}		1.0		Mbps		

${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates.
${ }^{2}$ The $\mathrm{V}_{\text {ISO }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the Viso power budget.
${ }^{3}$ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
${ }^{4}$ This current is available for driving external loads at the V_{150} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

Data Sheet

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}} \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds (see the application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER POWER SUPPLY							
Isolated Output Voltage	VISO	3.0	3.3	3.6	V	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{~V}_{150}=\mathrm{V}_{\text {FB }} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$	
Feedback Voltage Setpoint	$V_{\text {FB }}$	1.125	1.25	1.375	V	$\mathrm{I}_{\text {Iso }}=0 \mathrm{~mA}$	
Line Regulation	$V_{\text {ISO (LINE) }}$		1	10	mV / V	$\mathrm{I}_{\text {SO }}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$ to 5.5 V	
Load Regulation	$\mathrm{V}_{\text {ISO (}}^{\text {(LOAD) }}$		1	2	\%	$\mathrm{l}_{\text {Iso }}=50 \mathrm{~mA}$ to 200 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		50		mV p-p	20 MHz bandwidth, $C_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{l}_{\text {lso }}=100 \mathrm{~mA}$	
Output Noise	$V_{\text {ISO (}}$ ($)$		100		mV p-p	20 MHz bandwidth, $C_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {sw }}$		1000		kHz	$\mathrm{Roc}=50 \mathrm{k} \Omega$	
			200		kHz	Roc $=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\mathrm{DD} 2}$ (open loop)	
Switch On Resistance	Ron		0.5		Ω		
Undervoltage Lockout, VDD1, VDD2 Supplies							
Positive Going Threshold	Vuv+		2.8		V		
Negative Going Threshold	Vuv-		2.6		V		
Hysteresis	VuvH		0.2		V		
DC to 2 Mbps Data Rate ${ }^{1}$						$\mathrm{f} \leq 1 \mathrm{MHz}$	
Maximum Output Supply Current ${ }^{2}$	$1 I S O_{\text {(max) }}$	400			mA	$\mathrm{V}_{150}=3.3 \mathrm{~V}$	
Efficiency at Maximum Output Supply Current ${ }^{3}$			70		\%	$\mathrm{I}_{150}=\mathrm{I}_{\text {SOO }}($ max $)$	
i COUPLER DATA CHANNELS							
DC to 2 Mbps Data Rate ${ }^{1}$							
IDD1 Supply Current, No Viso Load	$\mathrm{IDD1}_{\text {(0) }}$					$\mathrm{l}_{\text {so }}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM3470			9	30	mA		
ADuM3471			9	30	mA		
ADuM3472			10	30	mA		
ADuM3473			10	30	mA		
ADuM3474			10	30	mA		
25 Mbps Data Rate (C Grade Only) IDD1 Supply Current, No Viso Load	lodi (D)					$\mathrm{I}_{\text {so }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			33		mA		
ADuM3471			33		mA		
ADuM3472			33		mA		
ADuM3473			33		mA		
ADuM3474			33		mA		
Available Viso Supply Current ${ }^{4}$	IISO (LIAD)					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			393		mA		
ADuM3471			392		mA		
ADuM3472			390		mA		
ADuM3473			389		mA		
ADuM3474			388		mA		
IDD1 Supply Current, Full Viso Load	$\mathrm{ldD1}$ (maX)		375		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V} \mathrm{VD}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SO}}=400 \mathrm{~mA} \end{aligned}$	
I/O Input Currents	$I_{\text {A }}, l_{\text {IB }}, l_{1 C}, l_{\text {l }}$	-20	+0.01	+20	$\mu \mathrm{A}$		

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
Logic High Input Threshold	V_{H}	2.0			V		
Logic Low Input Threshold	VIL			0.8	V		
Logic High Output Voltages	$\mathrm{V}_{\text {оah, }} \mathrm{V}_{\text {obh, }}$ Vосн, Vодн	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}-0.3, \\ & \mathrm{~V}_{150}-0.3 \end{aligned}$	5.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{lxH}}$	
		$\begin{aligned} & V_{D D 1}-0.5, \\ & V_{I S O}-0.5 \end{aligned}$	4.8		V	$\mathrm{l}_{\mathrm{x}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{lxH}}$	
Logic Low Output Voltages	Voal, Vobl, Vocl, Vodl		0.0	0.1	V	$\mathrm{I}_{\mathrm{xx}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxL }}$	
			0.0	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xL}}$	
AC SPECIFICATIONS							
A Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Minimum Pulse Width	PW			1000	ns		
Maximum Data Rate		1			Mbps		
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$		55	100	ns		
Pulse Width Distortion, \|ttpl - tphl	PWD			40	ns		
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns		
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSkco }} / \mathrm{t}_{\text {PSKOD }}$			50	ns		
C Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Minimum Pulse Width	PW			40	ns		
Maximum Data Rate		25			Mbps		
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$	30	50	70	ns		
Pulse Width Distortion, $\left\|t_{\text {tLH }}-t_{\text {PHL }}\right\|$	PWD			8			
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$		
Propagation Delay Skew	$t_{\text {Psk }}$			15	ns		
Channel-to-Channel Matching							
Codirectional Channels	tPskcd			8	ns		
Opposing Directional Channels	$\mathrm{t}_{\text {PSKod }}$			15	ns		
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity						$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V} \text {, transient } \\ & \text { magnitude }=800 \mathrm{~V} \end{aligned}$	
At Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		kV/ $/ \mathrm{s}$	$\mathrm{V}_{11}=\mathrm{V}_{\mathrm{DD} 1}$ or V_{150}	
At Logic Low Output	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{1 \mathrm{x}}=0 \mathrm{~V}$
Refresh Rate	fr_{r}		1.0		Mbps		

${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates.
${ }^{2}$ The $\mathrm{V}_{\text {ISO }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the Viso power budget.
${ }^{3}$ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
${ }^{4}$ This current is available for driving external loads at the V_{150} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/15 V SECONDARY ISOLATED SUPPLY

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}} \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds (see the application schematic in Figure 39). All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DDI}}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REG }}=\mathrm{V}_{\text {ISO }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DD2 }}=5.0 \mathrm{~V}$.

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER POWER SUPPLY 13.5							
Isolated Output Voltage	Viso	13.5	15	16.5	V	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{~V}_{150}=\mathrm{V}_{\text {FB }} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$	
Feedback Voltage Setpoint	$V_{\text {fb }}$	1.125	1.25	1.375	V	$\mathrm{l}_{\text {so }}=0 \mathrm{~mA}$	
$V_{\text {DD2 } 2}$ Linear Regulator							
Regulator Voltage	VDD2	4.6	5.0	5.7	V	$\begin{aligned} & \mathrm{V}_{\text {REG }}=7 \mathrm{~V} \text { to } 15 \mathrm{~V}, \operatorname{ldD2}=0 \mathrm{~mA} \\ & \text { to } 50 \mathrm{~mA} \end{aligned}$	
Dropout Voltage	$V_{\text {DD2 (}}$ (D)		0.5	1.5	V	$\mathrm{l}_{\mathrm{DD} 2}=50 \mathrm{~mA}$	
Line Regulation	VISO (LINE)		1	20	mV / V	$\mathrm{I}_{\text {ISo }}=50 \mathrm{~mA}, \mathrm{~V} \mathrm{DD} 1=4.5 \mathrm{~V}$ to 5.5 V	
Load Regulation	$V_{\text {ISO (LOAD) }}$		1	3	\%	$\mathrm{I}_{\text {so }}=20 \mathrm{~mA}$ to 100 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		200		mV p-p	20 MHz bandwidth, $\text { Cout }=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F} \text {, } \text { liso }=100 \mathrm{~mA}$	
Output Noise	$\mathrm{V}_{\text {ISO (}}$ (500		mV p-p	20 MHz bandwidth, $\text { Cout }=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {sw }}$		1000		kHz	Roc $=50 \mathrm{k} \Omega$	
			200		kHz	$\mathrm{Roc}=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\mathrm{DD} 2}$ (open loop)	
Switch On Resistance	Ron		0.5		Ω		
Undervoltage Lockout, $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$ Supplies							
Positive Going Threshold	Vuv+		2.8		V		
Negative Going Threshold	Vuv-		2.6		V		
Hysteresis	Vuvh		0.2		V		
DC to 2 Mbps Data Rate ${ }^{1}$						$\mathrm{f} \leq 1 \mathrm{MHz}$	
Maximum Output Supply Current ${ }^{2}$	IISO (max)	100			mA	$\mathrm{V}_{150}=5.0 \mathrm{~V}$	
Efficiency at Maximum Output Supply Current ${ }^{3}$			70		\%	$I_{\text {ISO }}=l_{\text {ISO }}(\mathrm{max})$	
i COUPLER DATA CHANNELS							
DC to 2 Mbps Data Rate ${ }^{1}$							
IDD1 Supply Current, No V iso Load	$\mathrm{IDDI}_{\text {(Q) }}$					$\mathrm{I}_{\text {so }}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM3470			25	45	mA		
ADuM3471			27	45	mA		
ADuM3472			29	45	mA		
ADuM3473			31	45	mA		
ADuM3474			33	45	mA		
25 Mbps Data Rate (C Grade Only) IDD1 Supply Current, No Viso Load	l DD1 (D)					$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			73		mA		
ADuM3471			83		mA		
ADuM3472			93		mA		
ADuM3473			102		mA		
ADuM3474			112		mA		
Available Viso Supply Current ${ }^{4}$	IISO (LOAD)					$\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3470			91		mA		
ADuM3471			89		mA		
ADuM3472			86		mA		
ADuM3473			83		mA		
ADuM3474			80		mA		
IDD1 Supply Current, Full Viso Load	$\mathrm{IDD1}$ (max)		425		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SO}}=100 \mathrm{~mA} \end{aligned}$	

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
I/O Input Currents		-20	+0.01	+20	$\mu \mathrm{A}$	
Logic High Input Threshold	V_{IH}	2.0			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.8	V	
Logic High Output Voltages	Voah, $\mathrm{V}_{\text {obh, }}$ $\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {OdH }}$	$\begin{aligned} & V_{D D 1}-0.3, \\ & V_{\text {ISO }}-0.3 \end{aligned}$	5.0		V	$\mathrm{I}_{\mathrm{Ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
		$\begin{aligned} & V_{D D 1}-0.5, \\ & V_{I S O}-0.5 \end{aligned}$	4.8		V	$\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL, }} \mathrm{V}_{\text {OBL, }}$ Vocl, $\mathrm{V}_{\text {ODL }}$		0.0	0.1	V	$\mathrm{l}_{\mathrm{xx}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
			0.0	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
AC SPECIFICATIONS						
A Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Minimum Pulse Width	PW			1000		
Maximum Data Rate		1			Mbps	
Propagation Delay	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLL }}$		55	100	ns	
Pulse Width Distortion, \|tplh - tphl	PWD			40	ns	
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	
C Grade						$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Minimum Pulse Width	PW			40	ns	
Maximum Data Rate		25			Mbps	
Propagation Delay	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLL }}$	30	45	60	ns	
Pulse Width Distortion, \|tplh - tphl	PWD			8	ns	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			15	ns	
Channel-to-Channel Matching						
Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			8	ns	
Opposing Directional Channels	tPSKOD			15	ns	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity						$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V} \text {, transient } \\ & \text { magnitude }=800 \mathrm{~V} \end{aligned}$
At Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\text {ISO }}$
At Logic Low Output	\|CM ${ }^{\text {L }}$	25	35		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{1 \mathrm{x}}=0 \mathrm{~V}$
Refresh Rate	fr_{r}		1.0		Mbps	

[^2]
PACKAGE CHARACTERISTICS

Table 5.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
RESISTANCE AND CAPACITANCE						
Resistance (Input to Output) ${ }^{1}$	R.o		10^{12}		Ω	
Capacitance (Input to Output) ${ }^{1}$	$\mathrm{C}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction to Ambient Thermal Resistance	$\theta_{\text {JA }}$		50.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple is located at the center of the package underside; test conducted on a 4-layer board with thin traces ${ }^{3}$
THERMAL SHUTDOWN						
Thermal Shutdown Threshold	TS ${ }_{\text {SD }}$		150		${ }^{\circ} \mathrm{C}$	TJ rising
Thermal Shutdown Hysteresis	TSsD-hys		20		${ }^{\circ} \mathrm{C}$	

${ }^{1}$ The device is considered a 2-terminal device: Pin 1 to Pin 10 are shorted together, and Pin 11 to Pin 20 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.
${ }^{3}$ See the Thermal Analysis section for thermal model definitions.

REGULATORY APPROVALS

The ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 are approved by the organizations listed in Table 6. Refer to Table 11 and the Insulation Lifetime section for more information about the recommended maximum working voltages for specific cross-insulation waveforms and insulation levels.

Table 6.

UL	CSA	VDE
Recognized under the UL 1577 component recognition program ${ }^{1}$	Approved under CSA Component Acceptance Notice \#5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ${ }^{2}$
Single protection, 2500 V rms isolation voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 600 V rms (848 V peak) maximum working voltage	Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577, each ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 is proof tested by applying an insulation test voltage of $\geq 3000 \mathrm{~V}$ rms for 1 sec (current leakage detection limit $=10 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10 (VDE V 0884-10):2006-12, each ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 is proof tested by applying an insulation test voltage of $\geq 1050 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 7.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage	L(IO1)	2500	>5.1	Vrms
Minimum External Air Gap (Clearance)	$\mathrm{L}(102)$	>5.1	mm	1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)		0.017 min	mm	Distance through insulation
Minimum Internal Distance (Internal Clearance) VIN IEC 112/VDE 0303, Part 1				
Tracking Resistance (Comparative Tracking Index) Isolation Group	CTI	>400	V	DIN Material Group (DIN VDE 0110, 1/89, Table 1)

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking branded on the component denotes DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval.

Table 8.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1				
Maximum Working Insulation Voltage		$V_{\text {IORM }}$	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A		$V_{\text {PR }}$		
After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		896	\checkmark peak
After Input and/or Safety Tests Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10 \mathrm{sec}$	$V_{T R}$	4000	\checkmark peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{1}	1.25	A
Insulation Resistance at T_{s}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2

RECOMMENDED OPERATING CONDITIONS

Table 9.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
${\text { Supply } \text { Voltages }^{1}}$	$\mathrm{~V}_{\mathrm{DD} 1}$	3.0	3.6	V
$\mathrm{~V}_{\mathrm{DD} 1}$ at $\mathrm{V}_{150}=3.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DD} 1}$	3.0	3.6	V
$\mathrm{~V}_{\mathrm{DD} 1}$ at $\mathrm{V}_{150}=5.0 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DD} 1}$	4.5	5.5	V
$\mathrm{~V}_{\mathrm{DD} 1}$ at $\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{ISO}(\mathrm{MIN})}$	10	mA	
Minimum Load				

[^3]
ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 10.

Parameter	Rating
Storage Temperature Range ($\mathrm{T}_{\text {ST }}$)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature Range (T_{A})	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$	
$\mathrm{V}_{\mathrm{DD} 1}{ }^{2} \mathrm{~V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DD} 2}$	-0.5 V to +7.0 V
$\mathrm{V}_{\text {REG }}, \mathrm{X} 1$, X2	-0.5 V to +20.0 V
Input Voltage ($\left.\mathrm{V}_{\text {IA }}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{1 C}, \mathrm{~V}_{\text {ID }}\right)^{1,3}$	-0.5 V to $\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\text {OA, }}, \mathrm{V}_{\text {OB, }}, \mathrm{V}_{O C}, \mathrm{~V}_{\text {OD }}\right)^{1,3}$	-0.5 V to $\mathrm{V}_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current per Pin ${ }^{4}$	-10 mA to +10 mA
Common-Mode Transients ${ }^{5}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective grounds.
${ }^{2} \mathrm{~V}_{\mathrm{DD}}$ is the power supply for the push-pull transformer.
${ }^{3} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the Printed Circuit Board (PCB) Layout section.
${ }^{4}$ See Figure 3 for maximum rated current values for various temperatures.
${ }^{5}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 11. Maximum Continuous Working Voltage Supporting 50-Year Minimum Lifetime ${ }^{1}$

Parameter	Max	Unit	Applicable Certification
AC Voltage, Bipolar Waveform AC Voltage, Unipolar Waveform Basic Insulation	565	V peak	All certifications
DC Voltage Basic Insulation	848	V peak	Working voltage per IEC 60950-1

${ }^{1}$ Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

1. NC = NO INTERNAL CONNECTION.
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND. 犬 PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND. 䓞

Figure 4. ADuM3470 Pin Configuration

Table 12. ADuM3470 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.
3	NC	No Internal Connection.
4	X2	Transformer Driver Output 2.
5	$V_{\text {IA }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	VIC	Logic Input C.
8	VID	Logic Input D.
9	$V_{\text {DDA }}$	Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from V ${ }_{\text {dDA }}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.
12	OC	Oscillator Control Pin. When the OC pin is connected high to the $\mathrm{V}_{\mathrm{DD} 2}$ pin, the secondary controller runs in openloop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND ${ }_{2}$; the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	Vod	Logic Output D.
14	V oc	Logic Output C.
15	$\mathrm{V}_{\text {ов }}$	Logic Output B.
16	VoA	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {Iso }}$. Use a resistor divider from the $\mathrm{V}_{\text {Iso }}$ output to the FB pin to set the $\mathrm{V}_{F B}$ voltage equal to the 1.25 V internal reference level using the formula $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {ReG }}$	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. $\mathrm{V}_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

Figure 5. ADuM3471 Pin Configuration

Table 13. ADuM3471 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND 1	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.
3	NC	No Internal Connection.
4	X2	Transformer Driver Output 2.
5	$V_{\text {IA }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	VIC	Logic Input C.
8	$V_{\text {OD }}$	Logic Output D.
9	V DDA	Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from V ${ }_{\text {dDA }}$ to GND ${ }^{\text {a }}$.
11, 19	GND_{2}	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.
12	OC	Oscillator Control Pin. When the $O C$ pin is connected high to the $V_{D D 2}$ pin, the secondary controller runs in openloop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND 2 ; the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	VID	Logic Input D.
14	Voc	Logic Output C.
15	$\mathrm{V}_{\text {OB }}$	Logic Output B.
16	VoA	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {Iso }}$. Use a resistor divider from the $\mathrm{V}_{\text {Iso }}$ output to the FB pin to set the $\mathrm{V}_{F B}$ voltage equal to the 1.25 V internal reference level using the formula $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. The resistor divider is required even in open-loop mode to provide soft start.
18	VDD2	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\mathrm{REG}}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	V ${ }_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. $\mathrm{V}_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

NOTES

1. NC = NO INTERNAL CONNECTION.
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND. \% PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND. ${ }_{\circ}^{\circ}$

Figure 6. ADuM3472 Pin Configuration

Table 14. ADuM3472 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2, 10	GND_{1}	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.
3	NC	No Internal Connection.
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{\text {IA }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	Voc	Logic Output C.
8	$V_{\text {OD }}$	Logic Output D.
9	$V_{\text {DDA }}$	Supply Voltage for the Primary Side, 3.0 V to 5.5 V . Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\text {DDA }}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.
12	OC	Oscillator Control Pin. When the OC pin is connected high to the $\mathrm{V}_{\mathrm{DD} 2}$ pin, the secondary controller runs in openloop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND 2 ; the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$V_{\text {ID }}$	Logic Input D.
14	$V_{1 C}$	Logic Input C.
15	$\mathrm{V}_{\text {ов }}$	Logic Output B.
16	$V_{\text {OA }}$	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, Viso. Use a resistor divider from the $\mathrm{V}_{\text {Iso }}$ output to the FB pin to set the $\mathrm{V}_{F B}$ voltage equal to the 1.25 V internal reference level using the formula $\mathrm{V}_{I 50}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. The resistor divider is required even in open-loop mode to provide soft start.
18	$V_{\text {DD2 }}$	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {ReG }}$	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. $\mathrm{V}_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

Figure 7. ADuM3473 Pin Configuration

Table 15. ADuM3473 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.
3	NC	No Internal Connection.
4	X2	Transformer Driver Output 2.
5	$V_{\text {IA }}$	Logic Input A.
6	$V_{\text {ob }}$	Logic Output B.
7	Voc	Logic Output C.
8	Vod	Logic Output D.
9	$V_{\text {DDA }}$	Supply Voltage for the Primary Side, 3.0 V to 5.5 V . Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DDA}}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.
12	OC	Oscillator Control Pin. When the OC pin is connected high to the V_{DD} pin, the secondary controller runs in openloop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}; the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$V_{\text {ID }}$	Logic Input D.
14	V IC	Logic Input C.
15	$V_{\text {IB }}$	Logic Input B.
16	VoA	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, Viso. Use a resistor divider from the Viso output to the FB pin to set the $\mathrm{V}_{F B}$ voltage equal to the 1.25 V internal reference level using the formula $\mathrm{V}_{I 50}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG, }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, V_{DD} should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. $V_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

NOTES

1. $\mathrm{NC}=$ NO INTERNAL CONNECTION.
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND. \% PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND. ${ }_{\circ}^{\circ}$

Figure 8. ADuM3474 Pin Configuration

Table 16. ADuM3474 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2, 10	GND_{1}	Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other; it is recommended that both pins be connected to a common ground.
3	NC	No Internal Connection.
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{\text {OA }}$	Logic Output A.
6	$V_{\text {OB }}$	Logic Output B.
7	Voc	Logic Output C.
8	Vod	Logic Output D.
9	$V_{\text {DDA }}$	Supply Voltage for the Primary Side, 3.0 V to 5.5 V . Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\text {DDA }}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other; it is recommended that both pins be connected to a common ground.
12	OC	Oscillator Control Pin. When the OC pin is connected high to the $\mathrm{V}_{\mathrm{DD} 2}$ pin, the secondary controller runs in openloop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND2; the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$V_{\text {ID }}$	Logic Input D.
14	V IC	Logic Input C.
15	$V_{\text {IB }}$	Logic Input B.
16	$V_{\text {IA }}$	Logic Input A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {Iso }}$. Use a resistor divider from the $\mathrm{V}_{\text {Iso }}$ output to the FB pin to set the $\mathrm{V}_{F B}$ voltage equal to the 1.25 V internal reference level using the formula $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG, }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, V_{DD} should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. $\mathrm{V}_{\mathrm{REG}}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

Table 17. Truth Table (Positive Logic)

$\mathbf{V}_{\text {Ix }}$ Input 1	V $_{\text {DD } 1}$ State	$\mathbf{V}_{\text {DD2 }}$ State	$\mathbf{V}_{\text {ox }}$ Output ${ }^{1}$	Notes
High	Powered	Powered	High	Normal operation, data is high
Low	Powered	Powered	Low	Normal operation, data is low

[^4]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. Switching Frequency (fsw) vs. Roc Resistance

Figure 10. Typical Efficiency at Various Switching Frequencies with Coilcraft Transformer, 5 V Input to 5 V Output

Figure 11. Typical Efficiency at Various Switching Frequencies with Halo Transformer, 5 V Input to 5 V Output

Figure 12. Typical Efficiency over Temperature with Coilcraft Transformer, $f_{S W}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 5 V Output

Figure 13. Single-Supply Efficiency with Coilcraft Transformer, $f_{s w}=500 \mathrm{kHz}$

Figure 14. Typical Efficiency at Various Switching Frequencies with Coilcraft Transformer, 5 V Input to 15 V Output

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Figure 15. Typical Efficiency at Various Switching Frequencies with Halo Transformer, 5 V Input to 15 V Output

Figure 16. Typical Efficiency over Temperature with Coilcraft Transformer, $f_{s W}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 15 V Output

Figure 17. Double-Supply Efficiency with Coilcraft Transformer, $f_{S W}=500 \mathrm{kHz}$

Figure 18. Typical Single-Supply $I_{C H}$ Supply Current per Forward Data Channel (15 pF Output Load)

Figure 19. Typical Single-Supply Ich Supply Current per Reverse Data Channel (15 pF Output Load)

Figure 20. Typical Single-Supply IISO(D) Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 21. Typical Single-Supply IISO (D) Dynamic Supply Current per Input Channel

Figure 22. Typical Double-Supply I CH Supply Current per Forward Data Channel (15 pF Output Load)

Figure 23. Typical Double-Supply Icн Supply Current per Reverse Data Channel (15 pF Output Load)

Figure 24. Typical Double-Supply IISO (D) Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 25. Typical Double-Supply IISO (D) Dynamic Supply Current per Input Channel

Figure 26. Typical $V_{\text {Iso }}$ Startup with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 400 mA Output Load, 5 V Input to 5 V Output

Figure 27. Typical VIso Startup with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 400 mA Output Load, 5 V Input to 3.3 V Output

Figure 28. Typical Viso Startup with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 250 mA Output Load, 3.3 V Input to 3.3 V Output

Figure 29. Typical Viso Startup with $10 \mathrm{~mA}, 20 \mathrm{~mA}$, and 100 mA Output Load, 5 V Input to 15 V Output

Figure 30. Typical Viso Load Transient Response at 10% to 90% of 400 mA Load, $f_{S W}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 5 V Output

Figure 31. Typical Viso Load Transient Response at 10% to 90% of 400 mA Load, $f_{s w}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 3.3 V Output

Figure 32. Typical Viso Load Transient Response at 10% to 90% of 250 mA Load,
$f_{S W}=500 \mathrm{kHz}, 3.3 \mathrm{~V}$ Input to 3.3 V Output

Figure 33. Typical VIso Load Transient Response at 10% to 90% of 100 mA Load, $f_{s w}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 15 V Output

Figure 34. Typical Viso Output Voltage Ripple at 400 mA Load, $f_{s w}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 5 V Output

Figure 35. Typical Viso Output Voltage Ripple at 400 mA Load, $f_{\text {sw }}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 3.3 V Output

Figure 36. Typical Viso Output Voltage Ripple at 250 mA Load, $f_{s w}=500 \mathrm{kHz}, 3.3 \mathrm{~V}$ Input to 3.3 V Output

Figure 37. Typical Viso Output Voltage Ripple at 100 mA Load, $f_{s W}=500 \mathrm{kHz}, 5 \mathrm{~V}$ Input to 15 V Output

TERMINOLOGY

IDD1 (Q)
$\mathrm{I}_{\mathrm{DD1}(\mathrm{Q})}$ is the minimum operating current drawn at the $\mathrm{V}_{\mathrm{DD} 1}$ power input when there is no external load at $\mathrm{V}_{\text {ISO }}$ and the I/O pins are operating below 2 Mbps , requiring no additional dynamic supply current.
$\mathrm{I}_{\mathrm{DD1}}$ (D)
$\mathrm{I}_{\mathrm{DD1}(\mathrm{D})}$ is the typical input supply current with all channels
simultaneously driven at a maximum data rate of 25 Mbps with the full capacitive load representing the maximum dynamic load conditions. Treat resistive loads on the outputs separately from the dynamic load.
IDD1 (MAX)
$\mathrm{I}_{\mathrm{DDI}}$ (MAX) is the input current under full dynamic and $\mathrm{V}_{\text {ISo }}$ load conditions.

$t_{\text {PHL }}$ Propagation Delay

The $t_{\text {phi }}$ propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{ox} signal.

tpli Propagation Delay

The tplu propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the rising edge of the Vox signal.
Propagation Delay Skew ($\mathbf{t}_{\text {PSK }}$)
$t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or tpli $^{\text {that }}$ is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

Channel-to-Channel Matching

Channel-to-channel matching is the absolute value of the difference in propagation delays between two channels when operated with identical loads.

Minimum Pulse Width

The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.

Maximum Data Rate

The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.

APPLICATIONS INFORMATION

The dc-to-dc converter section of the ADuM347x uses a secondary side controller architecture with isolated pulse-width modulation (PWM) feedback. VDDI power is supplied to an oscillating circuit that switches current to the primary side of an external power transformer using internal push-pull switches at the X1 and X2 pins. Power transferred to the secondary side of the transformer is full wave rectified with external Schottky diodes (D1 and D2), filtered with the L1 inductor and Cout capacitor, and regulated to the isolated power supply voltage from 3.3 V to 15 V .
The secondary ($\mathrm{V}_{\text {ISO }}$) side controller regulates the output using a feedback voltage, V_{FB}, from a resistor divider on the output to create a PWM control signal that is sent to the primary $\left(\mathrm{V}_{\mathrm{DDI}}\right)$ side by a dedicated i Coupler data channel labeled V_{Fb}. The primary side PWM converter varies the duty cycle of the X1 and X2 switches to modulate the oscillator circuit and control the power being sent to the secondary side. This feedback allows for significantly higher power and efficiency.
The ADuM347x devices implement undervoltage lockout (UVLO) with hysteresis on the V $\mathrm{V}_{\text {DA }}$ power input. This feature ensures that the converter does not go into oscillation due to noisy input power or slow power-on ramp rates.
A minimum load current of 10 mA is recommended to ensure optimum load regulation. Smaller loads can generate excess noise on the output due to short or erratic PWM pulses. Excess noise generated in this way can cause regulation problems in some circumstances.

APPLICATION SCHEMATICS

The ADuM347x devices have three main application schematics, as shown in Figure 38 to Figure 40. Figure 38 has a center-tapped secondary and two Schottky diodes that provide full wave rectification for a single output, typically for power supplies of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and 15 V . For single supplies when $\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\text {REG }}, \mathrm{V}_{\mathrm{DD} 2}$, and $\mathrm{V}_{\text {ISO }}$ can be connected together.
Figure 39 shows a voltage doubling circuit that can be used for a single supply with an output that exceeds $15 \mathrm{~V} ; 15 \mathrm{~V}$ is the largest supply that can be connected to the regulator input, $\mathrm{V}_{\text {REG }}$ (Pin 20). In the circuit shown in Figure 39, the output voltage can be as high as 24 V , and the voltage at the $\mathrm{V}_{\text {Reg }}$ pin can be as high as 12 V . When using the circuit shown in Figure 39 to obtain an output voltage lower than 10 V (for example, $\mathrm{V}_{\mathrm{DDI}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {ISO }}=5 \mathrm{~V}$), connect $V_{\text {reg }}$ to VIso directly.
Figure 40 , which also uses a voltage doubling secondary circuit, is an example of a coarsely regulated, positive power supply and an unregulated, negative power supply for outputs of approximately $\pm 5 \mathrm{~V}, \pm 12 \mathrm{~V}$, and $\pm 15 \mathrm{~V}$.
For all the circuits shown in Figure 38 to Figure 40, the isolated output voltage ($\mathrm{V}_{\text {ISO }}$) can be set with the voltage dividers, R1 and R2 (values $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$) using the following equation:

$$
V_{I S O}=V_{F B} \times(R 1+R 2) / R 2
$$

where $V_{F B}$ is the internal feedback voltage (approximately 1.25 V).

Figure 40. Positive Supply and Unregulated Negative Supply

[^0]: ${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending.

[^1]: ${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates.
 ${ }^{2}$ The $V_{\text {ISO }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {ISO }}$ power budget.
 ${ }^{3}$ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
 ${ }^{4}$ This current is available for driving external loads at the V_{150} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

[^2]: ${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates.
 ${ }^{2}$ The $V_{\text {ISO }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {ISO }}$ power budget.
 ${ }^{3}$ The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
 ${ }^{4}$ This current is available for driving external loads at the V_{150} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.

[^3]: ${ }^{1}$ All voltages are relative to their respective grounds.

[^4]: ${ }^{1} V_{\text {Ix }}$ and $V_{\text {ox }}$ refer to the input and output signals of a given channel (A, B, C, or D).

