## imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





# Isolated Switching Regulator with Quad-Channel Isolators

Data Sheet ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

#### **FEATURES**

Isolated PWM feedback with built in compensation Primary side transformer driver for up to 2.5 W output power with 5 V input voltage Regulated adjustable output: 3.3 V to 24 V Up to 80% efficiency Quad dc-to-25 Mbps (NRZ) signal isolation channels 200 kHz to 1 MHz adjustable oscillator Soft start function at power-up Pulse-by-pulse overcurrent protection Thermal shutdown 5000 V rms isolation High common-mode transient immunity: >25 kV/µs 20-lead SOIC package with 8.3 mm creepage High temperature operation: 105°C

#### APPLICATIONS

Power supply start-up bias and gate drives Isolated sensor interfaces Process controls RS-232/RS-422/RS-485 transceivers

#### **GENERAL DESCRIPTION**

#### The ADuM4470/ADuM4471/ADuM4472/ADuM4473/

ADuM4474<sup>1</sup> are quad-channel, digital isolators with a regulated dc-to-dc isolated power supply controller and an internal MOSFET driver. The dc-to-dc controller has an internal isolated PWM feedback from the secondary side, based on the *i*Coupler<sup>\*</sup> chip scale transformer technology and complete loop compensation. This eliminates the need to use an optocoupler for feedback and compensates the loop for stability.

The ADuM447x isolators provide a more stable output voltage and higher efficiency compared to unregulated isolated dcto-dc power supplies. The fully integrated feedback and loop compensation in a wide-body SOIC package provide a smaller form factor and 8.3 mm creepage distance solution.

#### FUNCTIONAL BLOCK DIAGRAM



The regulated feedback provides a relatively flat efficiency curve over the full output power range. The ADuM447x enable a dcto-dc converter with a 3.3 V to 24 V isolated output voltage range from either a 5.0 V or a 3.3 V input voltage, with an output power of up to 2.5 W.

The ADuM447x isolators provide four independent isolation channels in a variety of channel configurations and data rates. (The x in ADuM447x throughout this data sheet stands for the ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474.)

<sup>1</sup> Protected by U.S. Patents 5,952,849; 6,873,065; and 7075 329 B2. Other patents pending.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

### TABLE OF CONTENTS

| Features                                                                                  | 1  |
|-------------------------------------------------------------------------------------------|----|
| Applications                                                                              | 1  |
| Functional Block Diagram                                                                  | 1  |
| General Description                                                                       | 1  |
| Revision History                                                                          | 2  |
| Block Diagrams of I/O Channels                                                            | 3  |
| Specifications                                                                            | 4  |
| Electrical Characteristics—5 V Primary Input Supply/<br>5 V Secondary Isolated Supply     | 4  |
| Electrical Characteristics—3.3 V Primary Input Supply/<br>3.3 V Secondary Isolated Supply | 6  |
| Electrical Characteristics—5 V Primary Input Supply/<br>3.3 V Secondary Isolated Supply   | 8  |
| Electrical Characteristics—5 V Primary Input Supply/<br>15 V Secondary Isolated Supply    | 10 |
| Package Characteristics                                                                   | 12 |
| Regulatory Approvals (Pending)                                                            | 12 |
| Insulation and Safety-Related Specifications                                              | 12 |
| DIN V VDE V 0884-10 (VDE V 0884-10) Insulation<br>Characteristics                         | 13 |
| Recommended Operating Conditions                                                          | 13 |
| Absolute Maximum Ratings                                                                  | 14 |
| ESD Caution                                                                               | 14 |
|                                                                                           |    |

#### **REVISION HISTORY**

12/12—Revision 0: Initial Version

| Pin Configurations and Function Descriptions 15 |
|-------------------------------------------------|
| Typical Performance Characteristics             |
| Applications Information                        |
| Theory of Operation                             |
| Application Schematics                          |
| Transformer Design                              |
| Transformer Turns Ratio27                       |
| Transformer ET Constant                         |
| Transformer Primary Inductance and Resistance   |
| Transformer Isolation Voltage                   |
| Switching Frequency                             |
| Transient Response                              |
| Component Selection                             |
| Printed Circuit Board (PCB) Layout              |
| Thermal Analysis                                |
| Propagation Delay-Related Parameters            |
| DC Correctness and Magnetic Field Immunity      |
| Power Consumption                               |
| Power Considerations                            |
| Insulation Lifetime                             |
| Outline Dimensions                              |
| Ordering Guide                                  |

#### **BLOCK DIAGRAMS OF I/O CHANNELS**



Figure 2. ADuM4470



Figure 3. ADuM4471



Figure 4. ADuM4472



Figure 5. ADuM4473



Figure 6. ADuM4474

### **SPECIFICATIONS**

#### ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY

 $4.5 \text{ V} \le (\text{V}_{\text{DD1}} = \text{V}_{\text{DDA}}) \le 5.5 \text{ V}; \text{ V}_{\text{DD2}} = \text{V}_{\text{REG}} = \text{V}_{\text{ISO}} = 5.0 \text{ V}; \text{f}_{\text{SW}} = 500 \text{ kHz}; \text{ all voltages are relative to their respective grounds; see the application schematic in Figure 48. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T_A = 25^{\circ}\text{C}, \text{ V}_{\text{DD1}} = \text{V}_{\text{DDA}} = 5.0 \text{ V}, \text{V}_{\text{DD2}} = \text{V}_{\text{REG}} = \text{V}_{\text{ISO}} = 5.0 \text{ V}.$ 

#### Table 1. DC-to-DC Converter Static Specifications

| Parameter                                                 | Symbol                                                                | Min  | Тур   | Мах  | Unit   | <b>Test Conditions/Comments</b>                                                                    |
|-----------------------------------------------------------|-----------------------------------------------------------------------|------|-------|------|--------|----------------------------------------------------------------------------------------------------|
| DC-TO-DC CONVERTER SUPPLY                                 |                                                                       |      |       |      |        |                                                                                                    |
| Isolated Output Voltage                                   | V <sub>ISO</sub>                                                      | 4.5  | 5.0   | 5.5  | V      | $I_{ISO} = 0 \text{ mA},$                                                                          |
|                                                           |                                                                       |      |       |      |        | $V_{\rm ISO} = V_{\rm FB} \times (\rm R1 + \rm R2)/\rm R2$                                         |
| Feedback Voltage Setpoint                                 | V <sub>FB</sub>                                                       | 1.15 | 1.25  | 1.37 | V      | $I_{ISO} = 0 \text{ mA}$                                                                           |
| Line Regulation                                           | V <sub>ISO (LINE)</sub>                                               |      | 1     | 10   | mV/V   | $I_{ISO} = 50 \text{ mA},$<br>$V_{DD1}^{1} = V_{DDA}^{2} = 4.5 \text{ V to } 5.5 \text{ V}$        |
| Load Regulation                                           | VISO (LOAD)                                                           |      | 1     | 2    | %      | $I_{ISO} = 50 \text{ mA to } 200 \text{ mA}$                                                       |
| Output Ripple                                             | $V_{\text{ISO (RIP)}}$                                                |      | 50    |      | mV p-p | 20 MHz bandwidth, $C_{OUT} = 0.1 \ \mu F    47 \ \mu F$ , $I_{ISO} = 100 \ mA$                     |
| Output Noise                                              | V <sub>ISO (NOISE)</sub>                                              |      | 100   |      | mV p-p | 20 MHz bandwidth,<br>$C_{OUT} = 0.1 \ \mu F    47 \ \mu F$ , $I_{ISO} = 100 \ mA$                  |
| Switching Frequency                                       | f <sub>sw</sub>                                                       |      | 1000  |      | kHz    | $R_{oc} = 50 \text{ k}\Omega$                                                                      |
|                                                           |                                                                       |      | 200   |      | kHz    | $R_{oc} = 270 \ k\Omega$                                                                           |
|                                                           |                                                                       | 192  | 318   | 515  | kHz    | $V_{OC} = V_{DD2}$ (open-loop)                                                                     |
| Switch On-Resistance                                      | R <sub>on</sub>                                                       |      | 0.5   |      | Ω      |                                                                                                    |
| Undervoltage Lockout, $V_{DDA}$ , $V_{DD2}$ Supplies      |                                                                       |      |       |      |        |                                                                                                    |
| Positive Going Threshold                                  | V <sub>UV+</sub>                                                      |      | 2.8   |      | V      |                                                                                                    |
| Negative Going Threshold                                  | V <sub>UV-</sub>                                                      |      | 2.6   |      | V      |                                                                                                    |
| Hysteresis                                                | V <sub>UVH</sub>                                                      |      | 0.2   |      | V      |                                                                                                    |
| DC to 2 Mbps Data Rate <sup>3</sup>                       |                                                                       |      |       |      |        |                                                                                                    |
| Maximum Output Supply Current <sup>4</sup>                | IISO (MAX)                                                            | 400  | 500   |      | mA     | $f \le 1 \text{ MHz}, V_{ISO} = 5.0 \text{ V}$                                                     |
| Efficiency at Maximum Output Current⁵                     |                                                                       |      | 72    |      | %      | $I_{ISO} = I_{ISO (MAX)}, f \le 1 MHz$                                                             |
| Coupler DATA CHANNELS                                     |                                                                       |      |       |      |        |                                                                                                    |
| DC to 2 Mbps Data Rate                                    |                                                                       |      |       |      |        |                                                                                                    |
| I <sub>DD1</sub> Supply Current, No V <sub>ISO</sub> Load | I <sub>DD1 (Q)</sub>                                                  |      |       |      |        | $I_{ISO} = 0 \text{ mA}, f \le 1 \text{ MHz}$                                                      |
| ADuM4470                                                  |                                                                       |      | 14    | 30   | mA     |                                                                                                    |
| ADuM4471                                                  |                                                                       |      | 15    | 30   | mA     |                                                                                                    |
| ADuM4472                                                  |                                                                       |      | 16    | 30   | mA     |                                                                                                    |
| ADuM4473                                                  |                                                                       |      | 17    | 30   | mA     |                                                                                                    |
| ADuM4474                                                  |                                                                       |      | 18    | 30   | mA     |                                                                                                    |
| 25 Mbps Data Rate (CRIZ Grade Only)                       |                                                                       |      |       |      |        |                                                                                                    |
| I <sub>DD1</sub> Supply Current, No V <sub>ISO</sub> Load | I <sub>DD1 (D)</sub>                                                  |      |       |      |        |                                                                                                    |
| ADuM4470                                                  |                                                                       |      | 44    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                              |
| ADuM4471                                                  |                                                                       |      | 46    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                |
| ADuM4472                                                  |                                                                       |      | 48    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                              |
| ADuM4473                                                  |                                                                       |      | 50    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                |
| ADuM4474                                                  |                                                                       |      | 52    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                |
| Available V <sub>ISO</sub> Supply Current <sup>6</sup>    | IISO (LOAD)                                                           |      |       |      |        | $f_{sw} = 500 \text{ kHz}$                                                                         |
| ADuM4470                                                  |                                                                       |      | 390   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| ADuM4471                                                  |                                                                       |      | 388   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| ADuM4472                                                  |                                                                       |      | 386   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| ADuM4473                                                  |                                                                       |      | 384   |      | mA     | $C_1 = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                        |
| ADuM4474                                                  |                                                                       |      | 382   |      | mA     | $C_1 = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                        |
| $I_{DD1}$ Supply Current, Full V <sub>ISO</sub> Load      |                                                                       |      | 550   |      | mA     | $C_L = 0 \text{ pF}, f = 0 \text{ MHz}, V_{DD1} = V_{DDA} = 5 \text{ V}, I_{ISO} = 400 \text{ mA}$ |
| I/O Input Currents                                        | I <sub>IA</sub> , I <sub>IB</sub> , I <sub>IC</sub> , I <sub>ID</sub> | -20  | +0.01 | +20  | μA     |                                                                                                    |
| Logic High Input Threshold                                | V <sub>IH</sub>                                                       | 2.0  |       |      | V      |                                                                                                    |
|                                                           | 1 10                                                                  |      |       |      | 1 7    | 1                                                                                                  |

**Data Sheet** 

### ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

| Parameter                                     | Symbol                                                                       | Min                                                                     | Тур | Max  | Unit  | Test Conditions/Comments                                             |
|-----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|------|-------|----------------------------------------------------------------------|
| Logic High Output Voltages                    | V <sub>oah</sub> , V <sub>obh</sub> ,<br>V <sub>och</sub> , V <sub>odh</sub> | $\begin{array}{c} V_{\text{DDA}}-0.3,\\ V_{\text{ISO}}-0.3 \end{array}$ | 5.0 |      | V     | $I_{0x} = -20 \ \mu A, V_{1x} = V_{1xH}$                             |
|                                               |                                                                              | $\begin{array}{l} V_{\text{DDA}}-0.5,\\ V_{\text{ISO}}-0.5 \end{array}$ | 4.8 |      | V     | $I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$                           |
| Logic Low Output Voltages                     | V <sub>OAL</sub> , V <sub>OBL</sub> ,<br>V <sub>OCL</sub> , V <sub>ODL</sub> |                                                                         | 0.0 | 0.1  | V     | $I_{\text{Ox}} = 20 \ \mu\text{A}, \ V_{\text{Ix}} = V_{\text{IxH}}$ |
|                                               |                                                                              |                                                                         | 0.0 | 0.4  | V     | $I_{\text{Ox}} = 4 \text{ mA}, V_{\text{Ix}} = V_{\text{IxH}}$       |
| AC SPECIFICATIONS                             |                                                                              |                                                                         |     |      |       |                                                                      |
| ADuM447xARIZ                                  |                                                                              |                                                                         |     |      |       |                                                                      |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |     | 1000 | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Maximum Data Rate                             |                                                                              | 1                                                                       |     |      | Mbps  | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          |                                                                         | 55  | 100  | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |     | 40   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |     | 50   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Channel-to-Channel Matching                   | $t_{PSKCD}/t_{PSKOD}$                                                        |                                                                         |     | 50   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| ADuM447xCRIZ                                  |                                                                              |                                                                         |     |      |       |                                                                      |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |     | 40   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Maximum Data Rate                             |                                                                              | 25                                                                      |     |      | Mbps  | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          | 30                                                                      | 45  | 60   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |     | 6    | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Change vs. Temperature                        |                                                                              |                                                                         | 5   |      | ps/°C | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |     | 15   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |     | 6    | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Codirectional Channels                        |                                                                              |                                                                         |     |      |       |                                                                      |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |     | 15   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Opposing Directional Channels                 |                                                                              |                                                                         |     |      |       |                                                                      |
| Output Rise/Fall Time (10% to 90%)            | t <sub>R</sub> /t <sub>F</sub>                                               |                                                                         | 2.5 |      | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Common-Mode Transient Immunity                | CM <sub>H</sub>                                                              | 25                                                                      | 35  |      | kV/μs | $V_{Ix} = V_{DDA}$ or $V_{ISO}$ , $V_{CM} = 1000$ V,                 |
| at Logic High Output                          |                                                                              |                                                                         |     |      |       | transient magnitude = 800 V                                          |
| Common-Mode Transient Immunity                | CM <sub>L</sub>                                                              | 25                                                                      | 35  |      | kV/μs | $V_{Ix} = 0 \text{ V or } V_{ISO}, V_{CM} = 1000 \text{ V},$         |
| at Logic Low Output                           |                                                                              |                                                                         |     |      |       | transient magnitude = 800 V                                          |
| Refresh Rate                                  | f <sub>r</sub>                                                               |                                                                         | 1.0 |      | Mbps  |                                                                      |

 $^1\,V_{\text{DD1}}$  is the power supply for the push-pull transformer.

 $^{2}$  V<sub>DDA</sub> is the power supply of Side 1 of the ADuM447x.

<sup>3</sup> The contributions of supply current values for all four channels are combined at identical data rates.

<sup>4</sup> The V<sub>Iso</sub> supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the V<sub>Iso</sub> power budget.

<sup>5</sup> The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

<sup>6</sup> This current is available for driving external loads at the V<sub>ISO</sub> output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

#### ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

 $3.0 \text{ V} \le \text{V}_{\text{DD1}} = \text{V}_{\text{DDA}} \le 3.6 \text{ V}; \text{V}_{\text{DD2}} = \text{V}_{\text{REG}} = \text{V}_{\text{ISO}} = 3.3 \text{ V}; \text{f}_{\text{SW}} = 500 \text{ kHz}; \text{ all voltages are relative to their respective grounds; see the application schematic in Figure 48. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T_A = 25°C, \text{V}_{\text{DD1}} = \text{V}_{\text{DDA}} = 3.3 \text{ V}, \text{V}_{\text{DD2}} = \text{V}_{\text{REG}} = \text{V}_{\text{ISO}} = 3.3 \text{ V}.$ 

#### Table 2. DC-to-DC Converter Static Specifications Parameter Symbol Min Max Unit **Test Conditions/Comments** Тур DC-TO-DC CONVERTER SUPPLY Isolated Output Voltage Viso 3.0 3.3 3.6 ٧ $I_{ISO} = 0 \text{ mA},$ $V_{\rm ISO} = V_{\rm FB} \times (\rm R1 + \rm R2)/\rm R2$ Feedback Voltage Setpoint $V_{FR}$ 1.15 1.25 1.37 ٧ $I_{ISO} = 0 \text{ mA}$ $I_{ISO} = 50 \text{ mA},$ $V_{DD1}^{1} = V_{DDA}^{2} = 4.5 \text{ V to } 5.5 \text{ V}$ Line Regulation $V_{\text{ISO}\,(\text{LINE})}$ 10 mV/V 1 Load Regulation VISO (LOAD) 2 % $I_{ISO} = 50 \text{ mA to } 200 \text{ mA}$ 1 20 MHz bandwidth, **Output Ripple** $V_{ISO(RIP)}$ 50 mV p-p $C_{OUT} = 0.1 \ \mu F || 47 \ \mu F$ , $I_{ISO} = 100 \ mA$ **Output Noise** $V_{\text{ISO}\,(\text{NOISE})}$ 100 mV p-p 20 MHz bandwidth, $C_{\text{out}}=0.1\;\mu\text{F}||47\;\mu\text{F},I_{\text{ISO}}=100\;\text{mA}$ Switching Frequency f<sub>sw</sub> 1000 kHz $R_{0c} = 50 \text{ k}\Omega$ 200 kHz $R_{oc} = 270 \text{ k}\Omega$ 192 515 $V_{OC} = V_{DD2}$ (open-loop) 318 kHz Switch On-Resistance Ω R<sub>ON</sub> 0.6 Undervoltage Lockout, V<sub>DDA</sub>, V<sub>DD2</sub> Supplies **Positive Going Threshold** $V_{UV+}$ 2.8 V Negative Going Threshold $V_{\text{UV}-}$ ٧ 2.6 Hysteresis V VUVH 0.2 DC to 2 Mbps Data Rate<sup>3</sup> Maximum Output Supply Current<sup>4</sup> 250 $f \le 1 \text{ MHz}, V_{ISO} = 5.0 \text{ V}$ mΑ IISO (MAX) Efficiency at Maximum Output Current<sup>5</sup> 68 % $I_{ISO} = I_{ISO (MAX)}, f \le 1 MHz$ iCoupler DATA CHANNELS DC to 2 Mbps Data Rate $I_{DD1}$ Supply Current, No $V_{ISO}$ Load $I_{ISO} = 0 \text{ mA}, f \le 1 \text{MHz}$ DD1 (Q) 9 20 ADuM4470 mA ADuM4471 10 20 mA ADuM4472 11 20 mΑ ADuM4473 11 20 mA ADuM4474 12 20 mΑ 25 Mbps Data Rate (CRIZ Grade Only) $I_{DD1}$ Supply Current, No V<sub>ISO</sub> Load IDD1 (D) ADuM4470 $I_{ISO} = 0 \text{ mA}, C_I = 15 \text{ pF}, f = 12.5 \text{ MHz}$ 28 mΑ ADuM4471 29 mA $I_{ISO} = 0 \text{ mA}, C_I = 15 \text{ pF}, f = 12.5 \text{ MHz}$ ADuM4472 31 mA $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$ ADuM4473 $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$ 32 mΑ $I_{ISO} = 0 \text{ mA}, C_I = 15 \text{ pF}, f = 12.5 \text{ MHz}$ ADuM4474 34 mΑ $f_{\text{sw}} = 500 \text{ kHz}$ Available V<sub>ISO</sub> Supply Current<sup>6</sup> ISO (LOAD) ADuM4470 244 $C_1 = 15 \text{ pF}, f = 12.5 \text{ MHz}$ mA ADuM4471 243 $C_1 = 15 \text{ pF}, f = 12.5 \text{ MHz}$ mΑ $C_1 = 15 \text{ pF}, f = 12.5 \text{ MHz}$ ADuM4472 241 mΑ $C_1 = 15 \text{ pF}, f = 12.5 \text{ MHz}$ ADuM4473 240 mΑ $C_1 = 15 \text{ pF}, f = 12.5 \text{ MHz}$ ADuM4474 238 mΑ I<sub>DD1</sub> Supply Current, Full V<sub>ISO</sub> Load 350 mA $C_{L} = 0 \text{ pF}, f = 0 \text{ MHz}, V_{DD1} = V_{DDA} = 5 \text{ V},$ $I_{ISO} = 400 \text{ mA}$ I/O Input Currents -10 +0.01+10μA $I_{IA}, I_{IB}, I_{IC}, I_{ID}$ Logic High Input Threshold VIH 1.6 ٧ Logic Low Input Threshold 0.4 V V,

**Data Sheet** 

### ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

| Parameter                                     | Symbol                                                                       | Min                                                                     | Тур | Max  | Unit  | Test Conditions/Comments                                             |
|-----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|------|-------|----------------------------------------------------------------------|
| Logic High Output Voltages                    | V <sub>oah</sub> , V <sub>obh</sub> ,<br>V <sub>och</sub> , V <sub>odh</sub> | $\begin{array}{c} V_{\text{DDA}}-0.3,\\ V_{\text{ISO}}-0.3 \end{array}$ | 3.3 |      | V     | $I_{0x} = -20 \ \mu A, \ V_{1x} = V_{1xH}$                           |
|                                               |                                                                              | $\begin{array}{l} V_{\text{DDA}}-0.5,\\ V_{\text{ISO}}-0.5 \end{array}$ | 3.1 |      | V     | $I_{0x} = -4 \text{ mA}, V_{1x} = V_{1xH}$                           |
| Logic Low Output Voltages                     | V <sub>OAL</sub> , V <sub>OBL</sub> ,<br>V <sub>OCL</sub> , V <sub>ODL</sub> |                                                                         | 0.0 | 0.1  | V     | $I_{\text{Ox}} = 20 \ \mu\text{A}, \ V_{\text{Ix}} = V_{\text{IxH}}$ |
|                                               |                                                                              |                                                                         | 0.0 | 0.4  | V     | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxH}$                            |
| AC SPECIFICATIONS                             |                                                                              |                                                                         |     |      |       |                                                                      |
| ADuM447xARIZ                                  |                                                                              |                                                                         |     |      |       |                                                                      |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |     | 1000 | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Maximum Data Rate                             |                                                                              | 1                                                                       |     |      | Mbps  | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          |                                                                         | 60  | 100  | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |     | 40   | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                         |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |     | 50   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Channel-to-Channel Matching                   | t <sub>PSKCD</sub> /t <sub>PSKOD</sub>                                       |                                                                         |     | 50   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| ADuM447xCRIZ                                  |                                                                              |                                                                         |     |      |       |                                                                      |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |     | 40   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Maximum Data Rate                             |                                                                              | 25                                                                      |     |      | Mbps  | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          | 30                                                                      | 60  | 70   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |     | 8    | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Change vs. Temperature                        |                                                                              |                                                                         | 5   |      | ps/°C | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |     | 45   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |     | 8    | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Codirectional Channels                        |                                                                              |                                                                         |     |      |       |                                                                      |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |     | 15   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Opposing Directional Channels                 |                                                                              |                                                                         |     |      |       |                                                                      |
| Output Rise/Fall Time (10% to 90%)            | t <sub>R</sub> /t <sub>F</sub>                                               |                                                                         | 2.5 |      | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                           |
| Common-Mode Transient Immunity                | CM <sub>H</sub>                                                              | 25                                                                      | 35  |      | kV/μs | $V_{ix} = V_{DDA} \text{ or } V_{ISO}, V_{CM} = 1000 \text{ V},$     |
| at Logic High Output                          |                                                                              |                                                                         |     |      |       | transient magnitude = 800 V                                          |
| Common-Mode Transient Immunity                | CM <sub>L</sub>                                                              | 25                                                                      | 35  |      | kV/μs | $V_{Ix} = 0 V \text{ or } V_{ISO}, V_{CM} = 1000 V,$                 |
| at Logic Low Output                           |                                                                              |                                                                         |     |      |       | transient magnitude = 800 V                                          |
| Refresh Rate                                  | f <sub>r</sub>                                                               |                                                                         | 1.0 |      | Mbps  |                                                                      |

 $^1\,V_{\text{DD1}}$  is the power supply for the push-pull transformer.

 $^{2}$  V<sub>DDA</sub> is the power supply of Side 1 of the ADuM447x.

<sup>3</sup> The contributions of supply current values for all four channels are combined at identical data rates.

<sup>4</sup> The V<sub>ISO</sub> supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the V<sub>ISO</sub> power budget.

<sup>5</sup> The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

<sup>6</sup> This current is available for driving external loads at the V<sub>ISO</sub> output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

#### ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

 $4.5 \text{ V} \le \text{V}_{\text{DD1}} = \text{V}_{\text{DDA}} \le 5.5 \text{ V}; \text{V}_{\text{DD2}} = \text{V}_{\text{REG}} = \text{V}_{\text{ISO}} = 3.3 \text{ V}; \text{f}_{\text{SW}} = 500 \text{ kHz};$  all voltages are relative to their respective grounds; see the application schematic in Figure 48. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T<sub>A</sub> = 25°C, V<sub>DD1</sub> = V<sub>DDA</sub> = 5.0 V, V<sub>DD2</sub> = V<sub>REG</sub> = V<sub>ISO</sub> = 3.3 V.

#### Table 3. DC-to-DC Converter Static Specifications

| Parameter                                                          | Symbol                                                                                                   | Min  | Тур   | Max  | Unit   | <b>Test Conditions/Comments</b>                                                                    |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|-------|------|--------|----------------------------------------------------------------------------------------------------|
| DC-TO-DC CONVERTER SUPPLY                                          |                                                                                                          |      |       |      |        |                                                                                                    |
| Isolated Output Voltage                                            | V <sub>ISO</sub>                                                                                         | 3.0  | 3.3   | 3.6  | V      | $I_{ISO} = 0 \text{ mA},$                                                                          |
|                                                                    |                                                                                                          |      |       |      |        | $V_{ISO} = V_{FB} \times (R1 + R2)/R2$                                                             |
| Feedback Voltage Setpoint                                          | V <sub>FB</sub>                                                                                          | 1.15 | 1.25  | 1.37 | V      | $I_{ISO} = 0 \text{ mA}$                                                                           |
| Line Regulation                                                    | $V_{\text{ISO (LINE)}}$                                                                                  |      | 1     | 10   | mV/V   | $I_{ISO} = 50 \text{ mA},$<br>$V_{DD1}^{1} = V_{DDA}^{2} = 4.5 \text{ V to } 5.5 \text{ V}$        |
| Load Regulation                                                    | VISO (LOAD)                                                                                              |      | 1     | 2    | %      | I <sub>ISO</sub> = 50 mA to 200 mA                                                                 |
| Output Ripple                                                      | $V_{\text{ISO}(\text{RIP})}$                                                                             |      | 50    |      | mV p-p | 20 MHz bandwidth,<br>$C_{OUT} = 0.1 \ \mu\text{F}  47 \ \mu\text{F}, I_{ISO} = 100 \ \text{mA}$    |
| Output Noise                                                       | $V_{\text{ISO}(\text{NOISE})}$                                                                           |      | 100   |      | mV p-p | 20 MHz bandwidth,<br>$C_{OUT} = 0.1 \ \mu F    47 \ \mu F$ , $I_{ISO} = 100 \ mA$                  |
| Switching Frequency                                                | f <sub>sw</sub>                                                                                          |      | 1000  |      | kHz    | $R_{oc} = 50 \text{ k}\Omega$                                                                      |
|                                                                    |                                                                                                          |      | 200   |      | kHz    | $R_{oc} = 270 \text{ k}\Omega$                                                                     |
|                                                                    |                                                                                                          | 192  | 318   | 515  | kHz    | $V_{OC} = V_{DD2}$ (open-loop)                                                                     |
| Switch On-Resistance                                               | R <sub>ON</sub>                                                                                          |      | 0.5   |      | Ω      |                                                                                                    |
| Undervoltage Lockout, V <sub>DDA</sub> , V <sub>DD2</sub> Supplies |                                                                                                          |      |       |      |        |                                                                                                    |
| Positive Going Threshold                                           | V <sub>UV+</sub>                                                                                         |      | 2.8   |      | V      |                                                                                                    |
| Negative Going Threshold                                           | V <sub>UV-</sub>                                                                                         |      | 2.6   |      | V      |                                                                                                    |
| Hysteresis                                                         | V <sub>UVH</sub>                                                                                         |      | 0.2   |      | V      |                                                                                                    |
| DC to 2 Mbps Data Rate <sup>3</sup>                                | 0011                                                                                                     |      |       |      |        |                                                                                                    |
| Maximum Output Supply Current <sup>4</sup>                         | IISO (MAX)                                                                                               | 400  |       |      | mA     | $f \le 1 MHz$ , $V_{ISO} = 5.0 V$                                                                  |
| Efficiency at Maximum Output Current <sup>5</sup>                  | -ISO (MAX)                                                                                               |      | 70    |      | %      | $I_{ISO} = I_{ISO (MAX)}, f \le 1 \text{ MHz}$                                                     |
| Coupler DATA CHANNELS                                              |                                                                                                          |      |       |      | ,,,    | 150 150 (MAX)/ · - · · · · · · -                                                                   |
| DC to 2 Mbps Data Rate                                             |                                                                                                          |      |       |      |        |                                                                                                    |
| I <sub>DD1</sub> Supply Current, No V <sub>ISO</sub> Load          | I <sub>DD1 (Q)</sub>                                                                                     |      |       |      |        | $I_{ISO} = 0 \text{ mA}, f \le 1 \text{ MHz}$                                                      |
| ADuM4470                                                           | 'DD1 (Q)                                                                                                 |      | 9     | 30   | mA     |                                                                                                    |
| ADuM4471                                                           |                                                                                                          |      | 10    | 30   | mA     |                                                                                                    |
| ADuM4472                                                           |                                                                                                          |      | 10    | 30   | mA     |                                                                                                    |
| ADuM4473                                                           |                                                                                                          |      | 11    | 30   | mA     |                                                                                                    |
| ADuM4474                                                           |                                                                                                          |      | 12    | 30   | mA     |                                                                                                    |
|                                                                    |                                                                                                          |      | 12    | 30   | IIIA   |                                                                                                    |
| 25 Mbps Data Rate (CRIZ Grade Only)                                |                                                                                                          |      |       |      |        |                                                                                                    |
| I <sub>DD1</sub> Supply Current, No V <sub>ISO</sub> Load          | I <sub>DD1 (D)</sub>                                                                                     |      | 22    |      |        |                                                                                                    |
| ADuM4470                                                           |                                                                                                          |      | 33    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MH}$                                 |
| ADuM4471                                                           |                                                                                                          |      | 33    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MH}$                                 |
| ADuM4472                                                           |                                                                                                          |      | 33    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                |
| ADuM4473                                                           |                                                                                                          |      | 33    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                |
| ADuM4474                                                           | 1.                                                                                                       |      | 33    |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                |
| Available V <sub>ISO</sub> Supply Current <sup>6</sup>             | I <sub>ISO (LOAD)</sub>                                                                                  |      |       |      |        | $f_{sw} = 500 \text{ kHz}$                                                                         |
| ADuM4470                                                           |                                                                                                          |      | 393   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| ADuM4471                                                           |                                                                                                          |      | 392   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| ADuM4472                                                           |                                                                                                          |      | 390   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| ADuM4473                                                           |                                                                                                          |      | 389   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| ADuM4474                                                           |                                                                                                          |      | 375   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                      |
| I <sub>DD1</sub> Supply Current, Full V <sub>ISO</sub> Load        |                                                                                                          |      | 350   |      | mA     | $C_L = 0 \text{ pF}, f = 0 \text{ MHz}, V_{DD1} = V_{DDA} = 5 \text{ V}, I_{ISO} = 400 \text{ mA}$ |
| I/O Input Currents                                                 | $\mathbf{I}_{\mathrm{IA}}, \mathbf{I}_{\mathrm{IB}}, \mathbf{I}_{\mathrm{IC}}, \mathbf{I}_{\mathrm{ID}}$ | -20  | +0.01 | +20  | μΑ     |                                                                                                    |
| Logic High Input Threshold                                         | V <sub>IH</sub>                                                                                          | 2.0  |       |      | V      |                                                                                                    |
| Logic Low Input Threshold                                          | V <sub>IL</sub>                                                                                          |      |       | 0.8  | V      |                                                                                                    |

**Data Sheet** 

### ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

| Parameter                                     | Symbol                                                                       | Min                                                                     | Тур | Мах  | Unit  | Test Conditions/Comments                                         |
|-----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|------|-------|------------------------------------------------------------------|
| Logic High Output Voltages                    | V <sub>oah</sub> , V <sub>obh</sub> ,<br>V <sub>och</sub> , V <sub>odh</sub> | $\begin{array}{c} V_{\text{DDA}}-0.3,\\ V_{\text{ISO}}-0.3 \end{array}$ | 3.3 |      | V     | $I_{Ox} = -20 \ \mu A, \ V_{Ix} = V_{IxH}$                       |
|                                               |                                                                              | $\begin{array}{l} V_{\text{DDA}}-0.5,\\ V_{\text{ISO}}-0.5 \end{array}$ | 3.1 |      | V     | $I_{\text{Ox}} = -4 \text{ mA}, V_{\text{Ix}} = V_{\text{IxH}}$  |
| Logic Low Output Voltages                     | V <sub>OAL</sub> , V <sub>OBL</sub> ,<br>V <sub>OCL</sub> , V <sub>ODL</sub> |                                                                         | 0.0 | 0.1  | V     | $I_{\rm Ox}=20~\mu\text{A},~V_{\rm Ix}=V_{\rm IxH}$              |
|                                               |                                                                              |                                                                         | 0.0 | 0.4  | V     | $I_{0x} = 4 \text{ mA}, V_{1x} = V_{1xH}$                        |
| AC SPECIFICATIONS                             |                                                                              |                                                                         |     |      |       |                                                                  |
| ADuM447xARIZ                                  |                                                                              |                                                                         |     |      |       |                                                                  |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |     | 1000 | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Maximum Data Rate                             |                                                                              | 1                                                                       |     |      | Mbps  | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          |                                                                         | 55  | 100  | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |     | 40   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |     | 50   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Channel-to-Channel Matching                   | t <sub>PSKCD</sub> /t <sub>PSKOD</sub>                                       |                                                                         |     | 50   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| ADuM447xCRIZ                                  |                                                                              |                                                                         |     |      |       |                                                                  |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |     | 40   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Maximum Data Rate                             |                                                                              | 25                                                                      |     |      | Mbps  | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          | 30                                                                      | 50  | 70   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |     | 8    | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Change vs. Temperature                        |                                                                              |                                                                         | 5   |      | ps/°C | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |     | 15   | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                     |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |     | 8    | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                     |
| Codirectional Channels                        |                                                                              |                                                                         |     |      |       |                                                                  |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |     | 15   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Opposing Directional Channels                 |                                                                              |                                                                         |     |      |       |                                                                  |
| Output Rise/Fall Time (10% to 90%)            | t <sub>R</sub> /t <sub>F</sub>                                               |                                                                         | 2.5 |      | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                       |
| Common-Mode Transient Immunity                | CM <sub>H</sub>                                                              | 25                                                                      | 35  |      | kV/μs | $V_{ix} = V_{DDA} \text{ or } V_{ISO}, V_{CM} = 1000 \text{ V},$ |
| at Logic High Output                          |                                                                              |                                                                         |     |      |       | transient magnitude = 800 V                                      |
| Common-Mode Transient Immunity                | CM <sub>L</sub>                                                              | 25                                                                      | 35  |      | kV/μs | $V_{ix} = 0 \text{ V or } V_{ISO}, V_{CM} = 1000 \text{ V},$     |
| at Logic Low Output                           |                                                                              |                                                                         |     |      |       | transient magnitude = 800 V                                      |
| Refresh Rate                                  | f <sub>r</sub>                                                               |                                                                         | 1.0 |      | Mbps  |                                                                  |

 $^1\,V_{\text{DD1}}$  is the power supply for the push-pull transformer.

 $^{2}$  V<sub>DDA</sub> is the power supply of Side 1 of the ADuM447x.

<sup>3</sup> The contributions of supply current values for all four channels are combined at identical data rates.

<sup>4</sup> The V<sub>ISO</sub> supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the V<sub>ISO</sub> power budget.

<sup>5</sup> The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

<sup>6</sup> This current is available for driving external loads at the V<sub>ISO</sub> output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

#### ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/15 V SECONDARY ISOLATED SUPPLY

 $4.5 \text{ V} \le \text{V}_{\text{DD1}} = \text{V}_{\text{DDA}} \le 5.5 \text{ V}; \text{V}_{\text{REG}} = \text{V}_{\text{ISO}} = 15 \text{ V}; \text{V}_{\text{DD2}} = 5.0 \text{ V}; \text{f}_{\text{SW}} = 500 \text{ kHz}; all voltages are relative to their respective grounds; see the application schematic in Figure 49. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T<sub>A</sub> = 25°C, \text{V}_{\text{DD1}} = \text{V}_{\text{DDA}} = 5.0 \text{ V}, \text{V}_{\text{REG}} = \text{V}_{\text{ISO}} = 15 \text{ V}, \text{V}_{\text{DD2}} = 5.0 \text{ V}.$ 

| Parameter                                                          | Symbol                   | Min  | Тур  | Max  | Unit   | <b>Test Conditions/Comments</b>                                                             |
|--------------------------------------------------------------------|--------------------------|------|------|------|--------|---------------------------------------------------------------------------------------------|
| DC-TO-DC CONVERTER SUPPLY                                          |                          |      |      |      |        |                                                                                             |
| Isolated Output Voltage                                            | V <sub>ISO</sub>         | 13.8 | 15   | 16.2 | V      | $I_{ISO} = 0 \text{ mA},$<br>$V_{ISO} = V_{FB} \times (R1 + R2)/R2$                         |
| Feedback Voltage Setpoint                                          | V <sub>FB</sub>          | 1.15 | 1.25 | 1.37 | V      | $I_{ISO} = 0 \text{ mA}$                                                                    |
| V <sub>DD2</sub> Linear Regulator                                  |                          |      |      |      |        |                                                                                             |
| Regulator Voltage                                                  |                          | 4.5  | 5.0  | 5.5  | V      | $V_{REG} = 7 V \text{ to } 15 V,$<br>$I_{DD2} = 0 \text{ mA to } 50 \text{ mA}$             |
| Dropout Voltage                                                    |                          |      | 0.5  | 1.5  |        | $I_{DD2} = 50 \text{ mA}$                                                                   |
| Line Regulation                                                    | $V_{\text{ISO (LINE)}}$  |      | 1    | 20   | mV/V   | $I_{ISO} = 50 \text{ mA},$<br>$V_{DD1}^{1} = V_{DDA}^{2} = 4.5 \text{ V to } 5.5 \text{ V}$ |
| Load Regulation                                                    | VISO (LOAD)              |      | 1    | 3    | %      | $I_{ISO} = 20 \text{ mA to } 80 \text{ mA}$                                                 |
| Output Ripple                                                      | V <sub>ISO (RIP)</sub>   |      | 200  |      | mV p-p | 20 MHz bandwidth,<br>$C_{out} = 0.1 \ \mu F    47 \ \mu F$ , $I_{lso} = 100 \ m A$          |
| Output Noise                                                       | $V_{\text{ISO (NOISE)}}$ |      | 500  |      | mV p-p | 20 MHz bandwidth,<br>$C_{OUT} = 0.1 \ \mu F    47 \ \mu F$ , $I_{ISO} = 100 \ mA$           |
| Switching Frequency                                                | f <sub>sw</sub>          |      | 1000 |      | kHz    | $R_{oc} = 50 \text{ k}\Omega$                                                               |
|                                                                    |                          |      | 200  |      | kHz    | $R_{oc} = 270 \text{ k}\Omega$                                                              |
|                                                                    |                          | 192  | 318  | 515  | kHz    | $V_{OC} = V_{DD2}$ (open-loop)                                                              |
| Switch On-Resistance                                               | R <sub>ON</sub>          |      | 0.5  |      | Ω      |                                                                                             |
| Undervoltage Lockout, V <sub>DDA</sub> , V <sub>DD2</sub> Supplies |                          |      |      |      |        |                                                                                             |
| Positive Going Threshold                                           | $V_{UV+}$                |      | 2.8  |      | V      |                                                                                             |
| Negative Going Threshold                                           | $V_{UV-}$                |      | 2.6  |      | V      |                                                                                             |
| Hysteresis                                                         | V <sub>UVH</sub>         |      | 0.2  |      | V      |                                                                                             |
| DC to 2 Mbps Data Rate <sup>3</sup>                                |                          |      |      |      |        |                                                                                             |
| Maximum Output Supply Current <sup>4</sup>                         | IISO (MAX)               | 100  |      |      | mA     | $f \le 1 \text{ MHz}, V_{ISO} = 5.0 \text{ V}$                                              |
| Efficiency at Maximum Output Current⁵                              |                          |      | 78   |      | %      | $I_{ISO} = I_{ISO (MAX)}$ , $f \le 1 \text{ MHz}$                                           |
| iCoupler DATA CHANNELS                                             |                          |      |      |      |        |                                                                                             |
| DC to 2 Mbps Data Rate                                             |                          |      |      |      |        |                                                                                             |
| I <sub>DD1</sub> Supply Current, No V <sub>ISO</sub> Load          | I <sub>DD1 (Q)</sub>     |      |      |      |        | $I_{ISO} = 0 \text{ mA}, f \le 1 \text{ MHz}$                                               |
| ADuM4470                                                           |                          |      | 25   | 45   | mA     |                                                                                             |
| ADuM4471                                                           |                          |      | 27   | 45   | mA     |                                                                                             |
| ADuM4472                                                           |                          |      | 29   | 45   | mA     |                                                                                             |
| ADuM4473                                                           |                          |      | 31   | 45   | mA     |                                                                                             |
| ADuM4474                                                           |                          |      | 33   | 45   | mA     |                                                                                             |
| 25 Mbps Data Rate (CRIZ Grade Only)                                |                          |      |      |      |        |                                                                                             |
| I <sub>DD1</sub> Supply Current, No V <sub>ISO</sub> Load          | I <sub>DD1 (D)</sub>     |      |      |      |        |                                                                                             |
| ADuM4470                                                           |                          |      | 73   |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                         |
| ADuM4471                                                           |                          |      | 83   |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                         |
| ADuM4472                                                           |                          |      | 93   |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                         |
| ADuM4473                                                           |                          |      | 102  |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                         |
| ADuM4474                                                           |                          |      | 112  |      | mA     | $I_{ISO} = 0 \text{ mA}, C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                         |
| Available V <sub>ISO</sub> Supply Current <sup>6</sup>             | IISO (LOAD)              |      |      |      |        | $f_{sw} = 500 \text{ kHz}$                                                                  |
| ADuM4470                                                           |                          |      | 91   |      | mA     | $C_L = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                                 |
| ADuM4471                                                           |                          |      | 89   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                               |
| ADuM4472                                                           |                          |      | 86   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                               |
| ADuM4473                                                           |                          |      | 83   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                               |
| ADuM4474                                                           |                          |      | 80   |      | mA     | $C_{L} = 15 \text{ pF}, f = 12.5 \text{ MHz}$                                               |
| $I_{DD1}$ Supply Current, Full V <sub>ISO</sub> Load               |                          |      | 425  |      | mA     | $C_{L} = 0 \text{ pF}, f = 0 \text{ MHz}, V_{DD1} = V_{DDA} =$                              |
|                                                                    |                          |      |      |      | 1      | 5 V, $I_{ISO} = 400 \text{ mA}$                                                             |

### **Data Sheet**

### ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

| Parameter                                     | Symbol                                                                       | Min                                                                     | Тур   | Max  | Unit  | <b>Test Conditions/Comments</b>                                       |
|-----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|------|-------|-----------------------------------------------------------------------|
| I/O Input Currents                            | $I_{IA}$ , $I_{IB}$ , $I_{IC}$ , $I_{ID}$                                    | -20                                                                     | +0.01 | +20  | μA    |                                                                       |
| Logic High Input Threshold                    | VIH                                                                          | 2.0                                                                     |       |      | V     |                                                                       |
| Logic Low Input Threshold                     | VIL                                                                          |                                                                         |       | 0.8  | V     |                                                                       |
| Logic High Output Voltages                    | V <sub>oah</sub> , V <sub>obh</sub> ,<br>V <sub>och</sub> , V <sub>odh</sub> | $\begin{array}{l} V_{\text{DDA}}-0.3,\\ V_{\text{ISO}}-0.3 \end{array}$ | 5.0   |      | V     | $I_{\text{Ox}} = -20 \ \mu\text{A}, \ V_{\text{Ix}} = V_{\text{IxH}}$ |
|                                               |                                                                              | $\begin{array}{l} V_{\text{DDA}}-0.5,\\ V_{\text{ISO}}-0.5 \end{array}$ | 4.8   |      | V     | $I_{0x} = -4 \text{ mA}, V_{1x} = V_{1xH}$                            |
| Logic Low Output Voltages                     | V <sub>OAL</sub> , V <sub>OBL</sub> ,<br>V <sub>OCL</sub> , V <sub>ODL</sub> |                                                                         | 0.0   | 0.1  | V     | $I_{\text{Ox}} = 20 \ \mu\text{A}, \ V_{\text{Ix}} = V_{\text{IxH}}$  |
|                                               |                                                                              |                                                                         | 0.0   | 0.4  | V     | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxH}$                             |
| AC SPECIFICATIONS                             |                                                                              |                                                                         |       |      |       |                                                                       |
| ADuM447xARIZ                                  |                                                                              |                                                                         |       |      |       |                                                                       |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |       | 1000 | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                            |
| Maximum Data Rate                             |                                                                              | 1                                                                       |       |      | Mbps  | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          |                                                                         | 55    | 100  | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |       | 40   | ns    | $C_L = 15 \text{ pF}$ , CMOS signal levels                            |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |       | 50   | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Channel-to-Channel Matching                   | $t_{PSKCD}/t_{PSKOD}$                                                        |                                                                         |       | 50   | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| ADuM447xCRIZ                                  |                                                                              |                                                                         |       |      |       |                                                                       |
| Minimum Pulse Width                           | PW                                                                           |                                                                         |       | 40   | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Maximum Data Rate                             |                                                                              | 25                                                                      |       |      | Mbps  | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Propagation Delay                             | t <sub>PLH</sub> , t <sub>PHL</sub>                                          | 30                                                                      | 45    | 60   | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                                                          |                                                                         |       | 6    | ns    | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Change vs. Temperature                        |                                                                              |                                                                         | 5     |      | ps/°C | $C_{L} = 15 \text{ pF}$ , CMOS signal levels                          |
| Propagation Delay Skew                        | t <sub>PSK</sub>                                                             |                                                                         |       | 15   | ns    | $C_1 = 15 \text{ pF}$ , CMOS signal levels                            |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |       | 6    | ns    | $C_1 = 15 \text{ pF}$ , CMOS signal levels                            |
| Codirectional Channels                        | T SILED                                                                      |                                                                         |       |      |       |                                                                       |
| Channel-to-Channel Matching,                  | t <sub>PSKCD</sub>                                                           |                                                                         |       | 15   | ns    | $C_1 = 15 \text{ pF}$ , CMOS signal levels                            |
| Opposing Directional Channels                 | T SILED                                                                      |                                                                         |       |      |       |                                                                       |
| Output Rise/Fall Time (10% to 90%)            | t <sub>R</sub> /t <sub>F</sub>                                               |                                                                         | 2.5   |      | ns    | $C_1 = 15 \text{ pF}$ , CMOS signal levels                            |
| Common-Mode Transient Immunity                | CM <sub>H</sub>                                                              | 25                                                                      | 35    |      | kV/μs | $V_{ix} = V_{DDA} \text{ or } V_{iso}, V_{CM} = 1000 \text{ V},$      |
| at Logic High Output                          |                                                                              |                                                                         |       |      |       | transient magnitude = $800 \text{ V}$                                 |
| Common-Mode Transient Immunity                | CM <sub>1</sub>                                                              | 25                                                                      | 35    |      | kV/µs | $V_{1x} = 0 \text{ V or } V_{1SO}, V_{CM} = 1000 \text{ V},$          |
| at Logic Low Output                           | 1 -1                                                                         |                                                                         |       |      |       | transient magnitude = $800 \text{ V}$                                 |
| Refresh Rate                                  | f,                                                                           |                                                                         | 1.0   |      | Mbps  |                                                                       |

 $^1\,V_{\text{DD1}}$  is the power supply for the push-pull transformer.

 $^{2}$  V<sub>DDA</sub> is the power supply of Side 1 of the ADuM447x.

<sup>3</sup> The contributions of supply current values for all four channels are combined at identical data rates. <sup>4</sup> The V<sub>Iso</sub> supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the Viso power budget.

<sup>5</sup> The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.

<sup>6</sup> This current is available for driving external loads at the V<sub>ISO</sub> output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

#### **PACKAGE CHARACTERISTICS**

#### Table 5.

| Parameter                                  | Symbol               | Min | Тур              | Max | Unit | Test Conditions/Comments                                                                                           |
|--------------------------------------------|----------------------|-----|------------------|-----|------|--------------------------------------------------------------------------------------------------------------------|
| Resistance (Input to Output) <sup>1</sup>  | R <sub>I-O</sub>     |     | 10 <sup>12</sup> |     | Ω    |                                                                                                                    |
| Capacitance (Input to Output) <sup>1</sup> | CI-O                 |     | 2.2              |     | pF   | f = 1 MHz                                                                                                          |
| IC Junction to Ambient Thermal Resistance  | $\theta_{JA}$        |     | 45               |     | °C/W | Thermocouple located at center of package underside, test conducted on 4-layer board with thin traces <sup>2</sup> |
| Thermal Shutdown                           |                      |     |                  |     |      |                                                                                                                    |
| Thermal Shutdown Threshold                 | TS <sub>SD</sub>     |     | 150              |     | °C   | T <sub>J</sub> rising                                                                                              |
| Thermal Shutdown Hysteresis                | TS <sub>SD-HYS</sub> |     | 20               |     | °C   |                                                                                                                    |

<sup>1</sup> The device is considered a 2-terminal device: Pin 1 to Pin 10 are shorted together; and Pin 11 to Pin 20 are shorted together.

<sup>2</sup> See the Thermal Analysis section for thermal model definitions.

#### **REGULATORY APPROVALS (PENDING)**

#### Table 6.

| UL                                                                      | CSA                                                                                                                                                                                                                                                                                                             | VDE                                                                                |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Recognized under the UL 1577 component recognition program <sup>1</sup> | Approved under CSA Component<br>Acceptance Notice #5A                                                                                                                                                                                                                                                           | Certified according to DIN V VDE V<br>0884-10 (VDE V 0884-10):2006-12 <sup>2</sup> |
| Single protection, 5000 V rms isolation voltage                         | Basic insulation per CSA 60950-1-03 and IEC 60950-1, 600 V<br>rms (848 V peak) maximum working voltage<br>Reinforced insulation per CSA60950-1-03 and IEC 60950-1,<br>400 V rms (565 V peak) maximum working voltage<br>Reinforced insulation per IEC 60601-1 250 V rms<br>(353 V peak) maximum working voltage | Reinforced insulation, 849 V peak                                                  |
| File E214100                                                            | File 205078                                                                                                                                                                                                                                                                                                     | File 2471900-4880-0001                                                             |

<sup>1</sup> In accordance with UL 1577, each ADuM447x is proof tested by applying an insulation test voltage of ≥6000 V rms for 1 sec (current leakage detection limit = 10 μA).
<sup>2</sup> In accordance with DIN V VDE V 0884-10, each of the ADuM447x is proof tested by applying an insulation test voltage of ≥1050 V peak for 1 sec (partial discharge detection limit = 5 pC). The asterisk (\*) marking branded on the component designates DIN V VDE V 0884-10 approval.

#### INSULATION AND SAFETY-RELATED SPECIFICATIONS

#### Table 7.

| Parameter                                        | Symbol | Value     | Unit  | Test Conditions/Comments                                                             |
|--------------------------------------------------|--------|-----------|-------|--------------------------------------------------------------------------------------|
| Rated Dielectric Insulation Voltage              |        | 5000      | V rms | 1-minute duration                                                                    |
| Minimum External Air Gap (Clearance)             | L(I01) | >8.0      | mm    | Measured from input terminals to output terminals, shortest distance through air     |
| Minimum External Tracking (Creepage)             | L(I02) | >8.3      | mm    | Measured from input terminals to output terminals, shortest distance path along body |
| Minimum Internal Gap (Internal Clearance)        |        | 0.017 min | mm    | Distance through insulation                                                          |
| Tracking Resistance (Comparative Tracking Index) | CTI    | >400      | V     | DIN IEC 112/VDE 0303 Part 1                                                          |
| Isolation Group                                  |        | II        |       | Material Group (DIN VDE 0110, 1/89, Table 1)                                         |

#### DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure maintenance of the safety data. The asterisk (\*) marking on packages denotes DIN V VDE V 0884-10 approval.

| Description                                                            | Test Conditions/Comments                                                                                          | Symbol               | Characteristic | Unit   |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|----------------|--------|
| Installation Classification per DIN VDE 0110                           |                                                                                                                   |                      |                |        |
| For Rated Mains Voltage ≤ 150 V rms                                    |                                                                                                                   |                      | l to IV        |        |
| For Rated Mains Voltage ≤ 300 V rms                                    |                                                                                                                   |                      | l to IV        |        |
| For Rated Mains Voltage ≤ 400 V rms                                    |                                                                                                                   |                      | l to III       |        |
| Climatic Classification                                                |                                                                                                                   |                      | 40/105/21      |        |
| Pollution Degree per DIN VDE 0110, Table 1                             |                                                                                                                   |                      | 2              |        |
| Maximum Working Insulation Voltage                                     |                                                                                                                   | VIORM                | 849            | V peak |
| Input-to-Output Test Voltage, Method B1                                | $V_{IORM} \times 1.875 = V_{pd (m)}$ , 100% production test,<br>$t_{ini} = t_m = 1$ sec, partial discharge < 5 pC | V <sub>pd (m)</sub>  | 1592           | V peak |
| Input-to-Output Test Voltage, Method A                                 | $V_{IORM} \times 1.5 = V_{pd (m)'} t_{ini} = 60 \text{ sec}, t_m = 10 \text{ sec},$<br>partial discharge < 5 pC   | V <sub>pd (m)</sub>  |                |        |
| After Environmental Tests Subgroup 1                                   |                                                                                                                   |                      | 1273           | V peak |
| After Input and/or Safety Test Subgroup 2<br>and Subgroup 3            | $V_{IORM} \times 1.2 = V_{pd (m)}, t_{ini} = 60 \text{ sec}, t_m = 10 \text{ sec},$<br>partial discharge < 5 pC   |                      | 1018           | V peak |
| Highest Allowable Overvoltage                                          |                                                                                                                   | VIOTM                | 6000           | V peak |
| Surge Isolation Voltage                                                | $V_{PEAK} = 10 \text{ kV}$ , 1.2 µs rise time, 50 µs, 50% fall time                                               | V <sub>IOSM</sub>    | 6000           | V peak |
| Safety Limiting Values                                                 | Maximum value allowed in the event of a failure (see Figure 7)                                                    |                      |                |        |
| Case Temperature                                                       |                                                                                                                   | Ts                   | 150            | °C     |
| Side 1, Side 2 P <sub>VDDA</sub> , P <sub>VREG</sub> Power Dissipation |                                                                                                                   | $P_{VDDA'} P_{VREG}$ | 2.78           | W      |
| Insulation Resistance at T <sub>s</sub>                                | $V_{10} = 500 V$                                                                                                  | R <sub>s</sub>       | >109           | Ω      |
| 600                                                                    |                                                                                                                   |                      |                |        |
| SAFE OPERATING V <sub>DD1</sub> CURRENT (mÅ)<br>00 00 000 000 000 000  |                                                                                                                   |                      |                |        |

 AMBIENT TEMPERATURE (°C)

 Figure 7. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN V VDE V 0884-10

50

100

150

700-1660

200

#### **RECOMMENDED OPERATING CONDITIONS**

0

0

| Parameter                              | Symbol                 | Min | Max  | Unit |
|----------------------------------------|------------------------|-----|------|------|
| Temperature                            |                        |     |      |      |
| Operating Temperature                  | T <sub>A</sub>         | -40 | +105 | °C   |
| Supply Voltage                         |                        |     |      |      |
| $V_{DD1}$ at $V_{ISO} = 3.3$ V         | V <sub>DD1</sub>       | 3.0 | 3.6  | V    |
| $V_{DD1}$ at $V_{ISO} = 3.3$ V         | V <sub>DD1</sub>       | 4.5 | 5.5  | V    |
| $V_{DD1}$ at $V_{ISO} = 5.0 \text{ V}$ | V <sub>DD1</sub>       | 4.5 | 5.5  | V    |
| Load                                   |                        |     |      |      |
| Minimum Load                           | I <sub>ISO (MIN)</sub> | 10  |      | mA   |

### **ABSOLUTE MAXIMUM RATINGS**

Ambient temperature = 25°C, unless otherwise noted.

#### Table 10.

| Parameter                                                    | Rating                              |
|--------------------------------------------------------------|-------------------------------------|
| Storage Temperature Range (T <sub>st</sub> )                 | –55°C to +150°C                     |
| Ambient Operating Temperature                                | -40°C to +105°C                     |
| Range (T <sub>A</sub> )                                      |                                     |
| Supply Voltages                                              |                                     |
| V <sub>DDA</sub> , V <sub>DD2</sub> <sup>1, 2</sup>          | –0.5 V to +7.0 V                    |
| V <sub>REG</sub> , X1, X2 <sup>1</sup>                       | –0.5 V to +20.0 V                   |
| Input Voltage ( $V_{IA}, V_{IB}, V_{IC}, V_{ID}$ )           | $-0.5$ V to $+V_{DDI}$ + 0.5 V      |
| Output Voltage ( $V_{OA}$ , $V_{OB}$ , $V_{OC}$ , $V_{OD}$ ) | -0.5 V to V <sub>DDO</sub> $+0.5$ V |
| Average Output Current per Pin                               | –10 mA to +10 mA                    |
| Common-Mode Transients <sup>3</sup>                          | –100 kV/µs to +100 kV/µs            |

<sup>1</sup> All voltages are relative to their respective ground.

 $^2$  V\_{DD1} is the power supply for the push-pull transformer, and V\_{DDA} is the power supply of Side 1 of the ADuM447x.

<sup>3</sup> Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latchup or permanent damage. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Table 11. Maximum Continuous Working Voltage Supporting |  |
|---------------------------------------------------------|--|
| 50-Year Minimum Lifetime <sup>1</sup>                   |  |

| Parameter                        | Max | Unit   | Constraint                  |
|----------------------------------|-----|--------|-----------------------------|
| AC Voltage, Bipolar<br>Waveform  | 848 | V peak | 50-year minimum<br>lifetime |
| AC Voltage, Unipolar<br>Waveform | 848 | V peak | 50-year minimum<br>lifetime |
| DC Voltage                       | 848 | V peak | 50-year minimum<br>lifetime |

<sup>1</sup> Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.

#### **ESD CAUTION**



**ESD (electrostatic discharge) sensitive device.** Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

### **PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS**



Figure 8. ADuM4470 Pin Configuration

Table 12. ADuM4470 Pin Function Descriptions

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | X1               | Transformer Driver Output 1.                                                                                                                                                                                                                                                                                                                       |
| 2, 10   | GND1             | Ground Reference for Isolator Primary.                                                                                                                                                                                                                                                                                                             |
| 3       | NC               | This pin is not connected internally (see Figure 8).                                                                                                                                                                                                                                                                                               |
| 4       | X2               | Transformer Driver Output 2.                                                                                                                                                                                                                                                                                                                       |
| 5       | VIA              | Logic Input A.                                                                                                                                                                                                                                                                                                                                     |
| 6       | VIB              | Logic Input B.                                                                                                                                                                                                                                                                                                                                     |
| 7       | VIC              | Logic Input C.                                                                                                                                                                                                                                                                                                                                     |
| 8       | VID              | Logic Input D.                                                                                                                                                                                                                                                                                                                                     |
| 9       | V <sub>DDA</sub> | Primary Supply Voltage 3.0 V to 5.5 V. Connect to $V_{DD1}$ . Connect a 0.1 $\mu$ F bypass capacitor from $V_{DDA}$ to GND1.                                                                                                                                                                                                                       |
| 11, 19  | GND <sub>2</sub> | Ground Reference for Isolator Side 2.                                                                                                                                                                                                                                                                                                              |
| 12      | ос               | Oscillator Control Pin. When OC = logic high = $V_{DD2}$ , the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND <sub>2</sub> , and the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.                                        |
| 13      | Vod              | Logic Output D.                                                                                                                                                                                                                                                                                                                                    |
| 14      | Voc              | Logic Output C.                                                                                                                                                                                                                                                                                                                                    |
| 15      | Vob              | Logic Output B.                                                                                                                                                                                                                                                                                                                                    |
| 16      | V <sub>OA</sub>  | Logic Output A.                                                                                                                                                                                                                                                                                                                                    |
| 17      | FB               | Feedback Input from the Secondary Output Voltage, $V_{ISO}$ . Use a resistor divider from $V_{ISO}$ to the FB pin to make the $V_{FB}$ voltage equal to the 1.25 V internal reference level using the $V_{ISO} = V_{FB} \times (R1 + R2)/R2$ formula. The resistor divider is required even in open-loop mode to provide soft start.               |
| 18      | V <sub>DD2</sub> | Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to V <sub>REG</sub> , the internal regulator regulates the V <sub>DD2</sub> pin to 5.0 V. Otherwise, V <sub>DD2</sub> should be in the 3.0 V to 5.5 V range. Connect a 0.1 $\mu$ F bypass capacitor from V <sub>DD2</sub> to GND <sub>2</sub> . |
| 20      | $V_{\text{REG}}$ | Input of the Internal Regulator to Power the Secondary Side Controller. $V_{REG}$ should be in the 5.5 V to 15 V range to regulate the $V_{DD2}$ output to 5.0 V.                                                                                                                                                                                  |

| X1 1<br>*GND1 2<br>NC 3<br>X2 4<br>V <sub>IA</sub> 5<br>V <sub>IA</sub> 5<br>V <sub>IC</sub> 7<br>V <sub>OD</sub> 8<br>V <sub>DD</sub> 9<br>*GND1 10<br>V <sub>ID</sub> 9<br>*GND2*<br>10 GND2*<br>10 GND2*<br>11 GND2*<br>11 V <sub>DD</sub><br>11 V <sub>DD</sub><br>11 V <sub>DD</sub><br>11 V <sub>DD</sub><br>11 V <sub>DD</sub><br>12 OC<br>11 GND2*<br>12 OC<br>11 GND2*<br>12 OC               |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| NOTES<br>1. THE PIN LABELED NC CAN BE ALLOWED TO FLO<br>BUT IT IS BETTER TO CONNECT THIS PIN TO GRC<br>AVOID ROUTING HIGH SPEED SIGNALS THROUGH<br>THESE PINS BECAUSE NOISE COUPLING MAY RE<br>*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED,<br>AND CONNECTING BOTH TO GND, IS<br>RECOMMENDED. PIN 11 AND PIN 19 ARE<br>INTERNALLY CONNECTED, AND CONNECTING<br>BOTH TO GND <sub>2</sub> IS RECOMMENDED. | duńd.<br>H |

Figure 9. ADuM4471 Pin Configuration

| Table 13. | ADuM4471 | Pin | Function | Descriptions |
|-----------|----------|-----|----------|--------------|
|-----------|----------|-----|----------|--------------|

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | X1               | Transformer Driver Output 1.                                                                                                                                                                                                                                                                                                                       |
| 2, 10   | $GND_1$          | Ground Reference for Isolator Primary.                                                                                                                                                                                                                                                                                                             |
| 3       | NC               | This pin is not connected internally (see Figure 9).                                                                                                                                                                                                                                                                                               |
| 4       | X2               | Transformer Driver Output 2.                                                                                                                                                                                                                                                                                                                       |
| 5       | V <sub>IA</sub>  | Logic Input A.                                                                                                                                                                                                                                                                                                                                     |
| 6       | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                                                                                                                                     |
| 7       | V <sub>IC</sub>  | Logic Input C.                                                                                                                                                                                                                                                                                                                                     |
| 8       | V <sub>OD</sub>  | Logic Output D.                                                                                                                                                                                                                                                                                                                                    |
| 9       | V <sub>DDA</sub> | Primary Supply Voltage 3.0 V to 5.5 V. Connect to $V_{DD1}$ . Connect a 0.1 $\mu$ F bypass capacitor from $V_{DDA}$ to GND <sub>1</sub> .                                                                                                                                                                                                          |
| 11, 19  | $GND_2$          | Ground Reference for Isolator Side 2.                                                                                                                                                                                                                                                                                                              |
| 12      | ос               | Oscillator Control Pin. When OC = logic high = $V_{DD2'}$ the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND <sub>2</sub> , and the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.                                         |
| 13      | V <sub>ID</sub>  | Logic Input D.                                                                                                                                                                                                                                                                                                                                     |
| 14      | V <sub>oc</sub>  | Logic Output C.                                                                                                                                                                                                                                                                                                                                    |
| 15      | V <sub>OB</sub>  | Logic Output B.                                                                                                                                                                                                                                                                                                                                    |
| 16      | V <sub>OA</sub>  | Logic Output A.                                                                                                                                                                                                                                                                                                                                    |
| 17      | FB               | Feedback Input from the Secondary Output Voltage, $V_{ISO}$ . Use a resistor divider from $V_{ISO}$ to the FB pin to make the $V_{FB}$ voltage equal to the 1.25 V internal reference level using the $V_{ISO} = V_{FB} \times (R1 + R2)/R2$ formula. The resistor divider is required even in open-loop mode to provide soft start.               |
| 18      | V <sub>DD2</sub> | Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to V <sub>REG</sub> , the internal regulator regulates the V <sub>DD2</sub> pin to 5.0 V. Otherwise, V <sub>DD2</sub> should be in the 3.0 V to 5.5 V range. Connect a 0.1 $\mu$ F bypass capacitor from V <sub>DD2</sub> to GND <sub>2</sub> . |
| 20      | V <sub>REG</sub> | Input of the Internal Regulator to Power the Secondary Side Controller. $V_{REG}$ should be in the 5.5 V to 15 V range to regulate the $V_{DD2}$ output to 5.0 V.                                                                                                                                                                                  |

10991-010

| · [                                                                               | \                                                                                            |                                           |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|
| X1 1                                                                              | •                                                                                            | 20 V <sub>REG</sub>                       |
| *GND <sub>1</sub> 2                                                               |                                                                                              | 19 GND <sub>2</sub> *                     |
| NC 3                                                                              | ADuM4472                                                                                     | 18 V <sub>DD2</sub>                       |
| X2 4                                                                              | TOP VIEW                                                                                     | 17 FB                                     |
| VIA 5                                                                             | (Not to Scale)                                                                               | 16 V <sub>OA</sub>                        |
| V <sub>IB</sub> 6                                                                 |                                                                                              | 15 V <sub>OB</sub>                        |
| V <sub>OC</sub> 7                                                                 |                                                                                              | 14 V <sub>IC</sub>                        |
| V <sub>OD</sub> 8                                                                 |                                                                                              | 13 V <sub>ID</sub>                        |
| V <sub>DDA</sub> 9                                                                |                                                                                              | 12 OC                                     |
| *GND <sub>1</sub> 10                                                              |                                                                                              | 11 GND <sub>2</sub> *                     |
| BUT IT IS BET<br>AVOID ROUTIN<br>THESE PINS B<br>*PIN 2 AND PIN 1<br>AND CONNECTI | TER TO CONNECT<br>NG HIGH SPEED SI<br>ECAUSE NOISE CO<br>10 ARE INTERNALL<br>ING BOTH TO GND | DUPLING MAY RESULT.<br>Y CONNECTED,<br>IS |
| INTERNALLY CO                                                                     | D. PIN 11 AND PIN<br>ONNECTED, AND C<br>IS RECOMMENDE                                        | ONNECTING                                 |
| Figure                                                                            | e 10. ADuM4472 P                                                                             | in Configuration                          |

#### Table 14. ADuM4472 Pin Function Descriptions

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                                                                          |
|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | X1               | Transformer Driver Output 1.                                                                                                                                                                                                                                                                                                         |
| 2, 10   | $GND_1$          | Ground Reference for Isolator Primary.                                                                                                                                                                                                                                                                                               |
| 3       | NC               | This pin is not connected internally (see Figure 10).                                                                                                                                                                                                                                                                                |
| 4       | X2               | Transformer Driver Output 2.                                                                                                                                                                                                                                                                                                         |
| 5       | VIA              | Logic Input A.                                                                                                                                                                                                                                                                                                                       |
| 6       | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                                                                                                                       |
| 7       | V <sub>oc</sub>  | Logic Output C.                                                                                                                                                                                                                                                                                                                      |
| 8       | V <sub>OD</sub>  | Logic Output D.                                                                                                                                                                                                                                                                                                                      |
| 9       | V <sub>DDA</sub> | Primary Supply Voltage 3.0 V to 5.5 V. Connect to $V_{DD1}$ . Connect a 0.1 $\mu$ F bypass capacitor from $V_{DDA}$ to GND <sub>1</sub> .                                                                                                                                                                                            |
| 11, 19  | GND <sub>2</sub> | Ground Reference for Isolator Side 2.                                                                                                                                                                                                                                                                                                |
| 12      | ос               | Oscillator Control Pin. When OC = logic high = $V_{DD2}$ , the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND <sub>2</sub> , and the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.                          |
| 13      | V <sub>ID</sub>  | Logic Input D.                                                                                                                                                                                                                                                                                                                       |
| 14      | V <sub>IC</sub>  | Logic Input C.                                                                                                                                                                                                                                                                                                                       |
| 15      | V <sub>OB</sub>  | Logic Output B.                                                                                                                                                                                                                                                                                                                      |
| 16      | V <sub>OA</sub>  | Logic Output A.                                                                                                                                                                                                                                                                                                                      |
| 17      | FB               | Feedback Input from the Secondary Output Voltage, $V_{ISO}$ . Use a resistor divider from $V_{ISO}$ to the FB pin to make the $V_{FB}$ voltage equal to the 1.25 V internal reference level using the $V_{ISO} = V_{FB} \times (R1 + R2)/R2$ formula. The resistor divider is required even in open-loop mode to provide soft start. |
| 18      | V <sub>DD2</sub> | Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to $V_{REG}$ , the internal regulator regulates the $V_{DD2}$ pin to 5.0 V. Otherwise, $V_{DD2}$ should be in the 3.0 V to 5.5 V range. Connect a 0.1 $\mu$ F bypass capacitor from $V_{DD2}$ to GND <sub>2</sub> .               |
| 20      | $V_{\text{REG}}$ | Input of the Internal Regulator to Power the Secondary Side Controller. $V_{REG}$ should be in the 5.5 V to 15 V range to regulate the $V_{DD2}$ output to 5.0 V.                                                                                                                                                                    |

| X1 1<br>GND1 2<br>NC 3<br>X2 4<br>V <sub>IA</sub> 5<br>V <sub>OB</sub> 6<br>V <sub>OC</sub> 7<br>V <sub>OD</sub> 8<br>V <sub>DDA</sub> 9<br>GND1 10 | •<br>ADuM4473<br>TOP VIEW<br>(Not to Scale)                                                 | 20 V <sub>REG</sub><br>19 GND <sub>2</sub> *<br>18 V <sub>DD2</sub><br>17 FB<br>16 V <sub>OA</sub><br>15 V <sub>IB</sub><br>14 V <sub>IC</sub><br>13 V <sub>ID</sub><br>12 OC<br>11 GND <sub>2</sub> * |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| BUT IT IS BET<br>AVOID ROUTIN                                                                                                                       | TER TO CONNECT<br>NG HIGH SPEED S                                                           | ALLOWED TO FLOAT,<br>THIS PIN TO GROUND.<br>IGNALS THROUGH<br>OUPLING MAY RESULT.                                                                                                                      |           |
| AND CONNECTI<br>RECOMMENDEI<br>INTERNALLY CO                                                                                                        | 0 ARE INTERNALI<br>ING BOTH TO GNI<br>D. PIN 11 AND PIN<br>ONNECTED, AND (<br>IS RECOMMENDE | 0 <sub>1</sub> IS<br>19 ARE<br>CONNECTING                                                                                                                                                              | 10991-011 |

Figure 11. ADuM4473 Pin Configuration

| Table 15. | ADuM4473 Pin | Function | Descriptions |
|-----------|--------------|----------|--------------|
|-----------|--------------|----------|--------------|

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                                                                          |
|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | X1               | Transformer Driver Output 1.                                                                                                                                                                                                                                                                                                         |
| 2, 10   | $GND_1$          | Ground Reference for Isolator Primary.                                                                                                                                                                                                                                                                                               |
| 3       | NC               | This pin is not connected internally (see Figure 11).                                                                                                                                                                                                                                                                                |
| 4       | X2               | Transformer Driver Output 2.                                                                                                                                                                                                                                                                                                         |
| 5       | V <sub>IA</sub>  | Logic Input A.                                                                                                                                                                                                                                                                                                                       |
| 6       | V <sub>OB</sub>  | Logic Output B.                                                                                                                                                                                                                                                                                                                      |
| 7       | V <sub>oc</sub>  | Logic Output C.                                                                                                                                                                                                                                                                                                                      |
| 8       | V <sub>OD</sub>  | Logic Output D.                                                                                                                                                                                                                                                                                                                      |
| 9       | V <sub>DDA</sub> | Primary Supply Voltage 3.0 V to 5.5 V. Connect to $V_{DD1}$ . Connect a 0.1 $\mu$ F bypass capacitor from $V_{DDA}$ to GND <sub>1</sub> .                                                                                                                                                                                            |
| 11, 19  | $GND_2$          | Ground Reference for Isolator Side 2.                                                                                                                                                                                                                                                                                                |
| 12      | ос               | Oscillator Control Pin. When OC = logic high = $V_{DD2'}$ the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND <sub>2</sub> , and the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.                           |
| 13      | V <sub>ID</sub>  | Logic Input D.                                                                                                                                                                                                                                                                                                                       |
| 14      | V <sub>IC</sub>  | Logic Input C.                                                                                                                                                                                                                                                                                                                       |
| 15      | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                                                                                                                       |
| 16      | V <sub>OA</sub>  | Logic Output A.                                                                                                                                                                                                                                                                                                                      |
| 17      | FB               | Feedback Input from the Secondary Output Voltage, $V_{ISO}$ . Use a resistor divider from $V_{ISO}$ to the FB pin to make the $V_{FB}$ voltage equal to the 1.25 V internal reference level using the $V_{ISO} = V_{FB} \times (R1 + R2)/R2$ formula. The resistor divider is required even in open-loop mode to provide soft start. |
| 18      | V <sub>DD2</sub> | Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to $V_{REG}$ , the internal regulator regulates the $V_{DD2}$ pin to 5.0 V. Otherwise, $V_{DD2}$ should be in the 3.0 V to 5.5 V range. Connect a 0.1 $\mu$ F bypass capacitor from $V_{DD2}$ to GND <sub>2</sub> .               |
| 20      | V <sub>REG</sub> | Input of the Internal Regulator to Power the Secondary Side Controller. $V_{REG}$ should be in the 5.5 V to 15 V range to regulate the $V_{DD2}$ output to 5.0 V.                                                                                                                                                                    |

10991-012

| X1 1<br>*GND1 3<br>NC 3<br>X2 4<br>VOA 6<br>VOB 7<br>VOB 7<br>VOD 9<br>VDD 9<br>*GND1 10                                                                                                                            | •<br>ADuM4474<br>TOP VIEW<br>(Not to Scale) | 200 V <sub>REG</sub><br>191 GND <sub>2</sub> *<br>198 V <sub>DD2</sub><br>171 FB<br>171 FB<br>175 V <sub>IA</sub><br>175 V <sub>IB</sub><br>174 V <sub>IC</sub><br>173 V <sub>ID</sub><br>172 OC<br>111 GND <sub>2</sub> * |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NOTES<br>1. THE PIN LABELED NC CAN BE ALLOWED TO FLOAT,<br>BUT IT IS BETTER TO CONNECT THIS PIN TO GROUND.<br>AVOID ROUTING HIGH SPEED SIGNALS THROUGH<br>THESE PINS BECAUSE NOISE COUPLING MAY RESULT.             |                                             |                                                                                                                                                                                                                            |  |  |
| *PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED,<br>AND CONNECTING BOTH TO GND <sub>1</sub> IS<br>RECOMMENDED. PIN 11 AND PIN 19 ARE<br>INTERNALLY CONNECTED, AND CONNECTING<br>BOTH TO GND <sub>2</sub> IS RECOMMENDED. |                                             |                                                                                                                                                                                                                            |  |  |
| Figure 12. ADuM4474 Pin Configuration                                                                                                                                                                               |                                             |                                                                                                                                                                                                                            |  |  |

#### Table 16. ADuM4474 Pin Function Descriptions

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | X1               | Transformer Driver Output 1.                                                                                                                                                                                                                                                                                                                       |
| 2, 10   | $GND_1$          | Ground Reference for Isolator Primary.                                                                                                                                                                                                                                                                                                             |
| 3       | NC               | This pin is not connected internally (see Figure 12).                                                                                                                                                                                                                                                                                              |
| 4       | X2               | Transformer Driver Output 2.                                                                                                                                                                                                                                                                                                                       |
| 5       | V <sub>OA</sub>  | Logic Output A.                                                                                                                                                                                                                                                                                                                                    |
| 6       | V <sub>OB</sub>  | Logic Output B.                                                                                                                                                                                                                                                                                                                                    |
| 7       | V <sub>oc</sub>  | Logic Output C.                                                                                                                                                                                                                                                                                                                                    |
| 8       | V <sub>OD</sub>  | Logic Output D.                                                                                                                                                                                                                                                                                                                                    |
| 9       | V <sub>DDA</sub> | Primary Supply Voltage 3.0 V to 5.5 V. Connect to $V_{DD1}$ . Connect a 0.1 $\mu$ F bypass capacitor from $V_{DDA}$ to GND <sub>1</sub> .                                                                                                                                                                                                          |
| 11, 19  | $GND_2$          | Ground Reference for Isolator Side 2.                                                                                                                                                                                                                                                                                                              |
| 12      | oc               | Oscillator Control Pin. When OC = logic high = $V_{DD2'}$ the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and $GND_{2'}$ and the secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.                                                 |
| 13      | V <sub>ID</sub>  | Logic Input D.                                                                                                                                                                                                                                                                                                                                     |
| 14      | V <sub>IC</sub>  | Logic Input C.                                                                                                                                                                                                                                                                                                                                     |
| 15      | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                                                                                                                                     |
| 16      | V <sub>IA</sub>  | Logic Input A.                                                                                                                                                                                                                                                                                                                                     |
| 17      | FB               | Feedback Input from the Secondary Output Voltage, $V_{ISO}$ . Use a resistor divider from $V_{ISO}$ to the FB pin to make the $V_{FB}$ voltage equal to the 1.25 V internal reference level using the $V_{ISO} = V_{FB} \times (R1 + R2)/R2$ formula. The resistor divider is required even in open-loop mode to provide soft start.               |
| 18      | V <sub>DD2</sub> | Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to V <sub>REG</sub> , the internal regulator regulates the V <sub>DD2</sub> pin to 5.0 V. Otherwise, V <sub>DD2</sub> should be in the 3.0 V to 5.5 V range. Connect a 0.1 $\mu$ F bypass capacitor from V <sub>DD2</sub> to GND <sub>2</sub> . |
| 20      | V <sub>REG</sub> | Input of the Internal Regulator to Power the Secondary Side Controller. $V_{REG}$ should be in the 5.5 V to 15 V range to regulate the $V_{DD2}$ output to 5.0 V.                                                                                                                                                                                  |

### **TYPICAL PERFORMANCE CHARACTERISTICS**



Figure 13. Switching Frequency ( $f_{SW}$ ) vs.  $R_{OC}$  Resistance



Figure 14. Typical Efficiency at 5 V Input to 5 V Output at Various Switching Frequencies with 1:2 Coilcraft Transformer (CR7983-CL)



Figure 15. Typical Efficiency at 5 V Input to 5 V Output at Various Switching Frequencies with 1:2 Halo Transformer (TGSAD-260V8LF)



Figure 16. 5 V Input to 5 V Output Efficiency over Temperature with Coilcraft Transformer (CR7983-CL) at 500 kHz  $f_{\rm SW}$ 



Figure 17. Single-Supply Efficiency with Coilcraft Transformer (CR7983-CL) at 500 kHz  $f_{\rm SW}$ 



Figure 18. Typical Efficiency at 3.3 V Input to 5 V Output at Various Switching Frequencies with 1:3 Coilcraft Transformer (CR7984-CL)



Figure 19. Typical Efficiency at 3.3 V In to 5 V Out over Temperature with 1:3 Coilcraft Transformer (CR7984-CL) at 500 kHz f<sub>sw</sub>







Figure 21. 5 V Input to 15 V Output Enciency at Various Switching Frequencies with 1:3 Halo Transformer (TGSAD-290V8LF)



Figure 22.5 V Input to 15 V Output Efficiency over Temperature with Coilcraft Transformer (CR7984-CL) at 500 kHz f<sub>sw</sub>



Figure 23. Double-Supply Efficiency with Coilcraft Transformer (CR7985-CL) at 500 kHz f<sub>sw</sub>



Figure 24. Typical Single-Supply I<sub>CH</sub> Supply Current per Forward Data Channel (15 pF Output Load)



Figure 25. Typical Single-Supply I<sub>CH</sub> Supply Current per Reverse Data Channel (15 pF Output Load)



Figure 26. Typical Single-Supply I<sub>ISO(D)</sub> Dynamic Supply Current per Output Channel (15 pF Output Load)



Figure 27. Typical Single-Supply I<sub>ISO(D)</sub> Dynamic Supply Current per Input Channel (15 pF Output Load)



Figure 28. Typical Double-Supply Current I<sub>CH</sub> Per Forward Data Channel (15 pF Output Load)



Figure 29. Typical Double-Supply I<sub>CH</sub> Supply Current per Reverse Data Channel (15 pF Output Data)



Figure 30. Typical Double-Supply I<sub>ISO(D)</sub> Dynamic Supply Current per Output Channel (15 pF Output Load)



Figure 31. Typical Double-Supply I<sub>ISO(D)</sub> Dynamic Supply Current per Input Channel



Figure 32. Typical V<sub>ISO</sub> Startup 5 V Input to 5 V Output with 10 mA, 50 mA, and 400 mA Output Load



Figure 33. Typical V<sub>ISO</sub> Startup 5 V Input to 3.3 V Output with 10 mA, 50 mA, and 400 mA Output Load



Figure 34. Typical V<sub>ISO</sub> Startup 3.3 V Input to 3.3 V Output with 10 mA, 50 mA, and 250 mA Output Load



Figure 35. Typical V<sub>ISO</sub> Startup 5 V Input to 15 V Output with 10 mA, 20 mA, and 100 mA Output Load



Figure 36. Typical V<sub>ISO</sub> Load Transient Response 5 V Input to 5 V Output at 10% to 90% of 400 mA Load at 500 kHz  $f_{\rm SW}$ 



Figure 37. Typical V<sub>ISO</sub> Load Transient Response 5 V Input to 5 V Output at 10% to 90% of 400 mA Load at 500 kHz f<sub>SW</sub> with 0.1  $\mu$ F Feedback Capacitor



Figure 38. Typical V  $_{\rm ISO}$  Load Transient Response 5 V Input to 3.3 V Output at 10% to 90% of 400 mA Load at 500 kHz  $f_{\rm SW}$ 



Figure 39. Typical V<sub>ISO</sub> Load Transient Response 5 V Input to 3.3 V Output at 10% to 90% of 400 mA Load at 500 kHz f<sub>SW</sub> with 0.1  $\mu$ F Feedback Capacitor



Figure 40. Typical V<sub>ISO</sub> Load Transient Response 3.3 V Input to 3.3 V Output at 10% to 90% of 250 mA Load at 500 kHz f<sub>sw</sub>



Figure 41. Typical V<sub>ISO</sub> Load Transient Response 3.3 V Input to 3.3 V Output at 10% to 90% of 250 mA Load at 500 kHz f<sub>SW</sub> with 0.1  $\mu$ F Feedback Capacitor



Figure 42. Typical V<sub>ISO</sub> Load Transient Response 5 V Input to 15 V Output at 10% to 90% of 100 mA Load at 500 kHz f<sub>sw</sub>



Figure 43. Typical V<sub>ISO</sub> Load Transient Response 5 V Input to 15 V Output at 10% to 90% of 100 mA Load at 500 kHz f<sub>SW</sub> with 0.1  $\mu$ F Feedback Capacitor



Figure 44. Typical V\_{\rm ISO} Output Ripple, 5 V Input to 5 V Output at 400 mA Load at 500 kHz  $f_{\rm SW}$ 



Figure 45. Typical V  $_{\rm ISO}$  Output Ripple, 5 V Input to 3.3 V Output at 400 mA Load at 500 kHz  $\rm f_{SW}$ 



Figure 46. Typical V  $_{\rm ISO}$  Output Ripple, 3.3 V Input to 3.3 V Output at 250 mA Load at 500 kHz  $f_{\rm SW}$ 



Figure 47. Typical V<sub>ISO</sub> Output Ripple, 5 V Input to 15 V Output at 100 mA Load at 500 kHz  $f_{SW}$