: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

FEATURES

Isolated PWM feedback with built in compensation
Primary side transformer driver for up to 2.5 W output power with 5 V input voltage
Regulated adjustable output: 3.3 V to $\mathbf{2 4} \mathrm{V}$
Up to 80\% efficiency
Quad dc-to-25 Mbps (NRZ) signal isolation channels
200 kHz to 1 MHz adjustable oscillator
Soft start function at power-up
Pulse-by-pulse overcurrent protection
Thermal shutdown
5000 V rms isolation
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
20-lead SOIC package with 8.3 mm creepage
High temperature operation: $105^{\circ} \mathrm{C}$

APPLICATIONS

Power supply start-up bias and gate drives Isolated sensor interfaces
Process controls
RS-232/RS-422/RS-485 transceivers

GENERAL DESCRIPTION

The ADuM4470/ADuM4471/ADuM4472/ADuM4473/ ADuM4474 ${ }^{1}$ are quad-channel, digital isolators with a regulated dc-to-dc isolated power supply controller and an internal MOSFET driver. The dc-to-dc controller has an internal isolated PWM feedback from the secondary side, based on the i Coupler ${ }^{\bullet}$ chip scale transformer technology and complete loop compensation. This eliminates the need to use an optocoupler for feedback and compensates the loop for stability.
The ADuM447x isolators provide a more stable output voltage and higher efficiency compared to unregulated isolated dc-to-dc power supplies. The fully integrated feedback and loop compensation in a wide-body SOIC package provide a smaller form factor and 8.3 mm creepage distance solution.

Figure 1.

The regulated feedback provides a relatively flat efficiency curve over the full output power range. The ADuM447x enable a dc-to-dc converter with a 3.3 V to 24 V isolated output voltage range from either a 5.0 V or a 3.3 V input voltage, with an output power of up to 2.5 W .
The ADuM447x isolators provide four independent isolation channels in a variety of channel configurations and data rates. (The x in ADuM447x throughout this data sheet stands for the ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474.)

TABLE OF CONTENTS

Features1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Block Diagrams of I/O Channels. 3
Specifications 4
Electrical Characteristics-5 V Primary Input Supply/ 5 V Secondary Isolated Supply 4
Electrical Characteristics-3.3 V Primary Input Supply/ 3.3 V Secondary Isolated Supply 6
Electrical Characteristics-5 V Primary Input Supply/ 3.3 V Secondary Isolated Supply 8
Electrical Characteristics-5 V Primary Input Supply/ 15 V Secondary Isolated Supply 10
Package Characteristics 12
Regulatory Approvals (Pending) 12
Insulation and Safety-Related Specifications 12
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 13
Recommended Operating Conditions 13
Absolute Maximum Ratings 14
ESD Caution 14
Pin Configurations and Function Descriptions 15
Typical Performance Characteristics 20
Applications Information 26
Theory of Operation 26
Application Schematics 26
Transformer Design 27
Transformer Turns Ratio 27
Transformer ET Constant 27
Transformer Primary Inductance and Resistance 28
Transformer Isolation Voltage 28
Switching Frequency 28
Transient Response 28
Component Selection 29
Printed Circuit Board (PCB) Layout 29
Thermal Analysis 30
Propagation Delay-Related Parameters 30
DC Correctness and Magnetic Field Immunity 30
Power Consumption 31
Power Considerations 32
Insulation Lifetime 33
Outline Dimensions 34
Ordering Guide 34

REVISION HISTORY

12/12—Revision 0: Initial Version

BLOCK DIAGRAMS OF I/O CHANNELS

Figure 2. ADuM4470

Figure 3. ADuM4471

Figure 5. ADuM4473

Figure 6. ADuM4474

Figure 4. ADuM4472

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS-5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY

$4.5 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}\right) \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=5.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 48. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD1}}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\text {REG }}=\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$.

Table 1. DC-to-DC Converter Static Specifications

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER SUPPLY Isolated Output Voltage	$\mathrm{V}_{\text {ISO }}$	4.5	5.0	5.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{ISO}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ISO}}=\mathrm{V}_{\mathrm{FB}} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2 \end{aligned}$	
Feedback Voltage Setpoint	$V_{\text {FB }}$	1.15	1.25	1.37	V	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}$	
Line Regulation	$\mathrm{V}_{\text {ISO (LINE) }}$		1	10	mV / V	$\begin{aligned} & \mathrm{I}_{\mathrm{SO}}=50 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD} 1}{ }^{1}=\mathrm{V}_{\mathrm{DDA}}{ }^{2}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	
Load Regulation	$\mathrm{V}_{\text {ISO (LOAD) }}$		1	2	\%	$\mathrm{I}_{150}=50 \mathrm{~mA}$ to 200 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		50		mV p-p	20 MHz bandwidth, $\mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Output Noise	$\mathrm{V}_{\text {ISO (NOISE) }}$		100		mV p-p	20 MHz bandwidth, $C_{\text {OUT }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ISO}}=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {sw }}$		1000		kHz	$\mathrm{R}_{\text {OC }}=50 \mathrm{k} \Omega$	
			200		kHz	$\mathrm{R}_{\mathrm{OC}}=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\text {OC }}=\mathrm{V}_{\text {DD2 }}$ (open-loop)	
Switch On-Resistance	$\mathrm{R}_{\text {on }}$		0.5		Ω		
Undervoltage Lockout, $\mathrm{V}_{\mathrm{DDA}} \mathrm{V}_{\mathrm{DD2}}$ Supplies							
Positive Going Threshold	$\mathrm{V}_{\mathrm{UV}+}$		2.8		V		
Negative Going Threshold	$\mathrm{V}_{\text {uv- }}$		2.6		V		
Hysteresis	$\mathrm{V}_{\text {UVH }}$		0.2		V		
DC to 2 Mbps Data Rate ${ }^{3}$ Maximum Output Supply Current ${ }^{4}$ Efficiency at Maximum Output Current ${ }^{5}$	$1 \mathrm{I}_{\text {SO (max) }}$	400	$\begin{aligned} & 500 \\ & 72 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{f} \leq 1 \mathrm{MHz}, \mathrm{~V}_{150}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\text {ISO }}=\mathrm{I}_{\text {ISO (MAX) }} \mathrm{f} \leq 1 \mathrm{MHz} \end{aligned}$	
iCoupler DATA CHANNELS							
DC to 2 Mbps Data Rate							
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, No V ISO $^{\text {Load }}$	$\mathrm{IDD1}_{\text {(0) }}$					$\mathrm{I}_{\mathrm{sc}}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM4470			14	30	mA		
ADuM4471			15	30	mA		
ADuM4472			16	30	mA		
ADuM4473			17	30	mA		
ADuM4474			18	30	mA		
25 Mbps Data Rate (CRIZ Grade Only)							
$\mathrm{I}_{\text {DD } 1}$ Supply Current, No V ISO $^{\text {Load }}$	${\mathrm{IDD1} \mathrm{(})}$						
ADuM4470			44		mA	$\mathrm{I}_{\text {SSO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			46		mA	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			48		mA	$\mathrm{I}_{150}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			50		mA	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			52		mA	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
Available $\mathrm{V}_{\text {ISO }}$ Supply Current ${ }^{6}$	$\mathrm{I}_{\text {ISO (LOAD) }}$					$\mathrm{f}_{\text {SW }}=500 \mathrm{kHz}$	
ADuM4470			390		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			388		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			386		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			384		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			382		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
$\mathrm{I}_{\text {D1 } 1}$ Supply Current, Full $\mathrm{V}_{\text {ISO }}$ Load			550		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}= \\ & 5 \mathrm{~V}, \mathrm{I}_{\mathrm{ISO}}=400 \mathrm{~mA} \end{aligned}$	
I/O Input Currents	$I_{\text {A }}, I_{13}, I_{1 C}, I_{\text {ID }}$	-20	+0.01	+20	$\mu \mathrm{A}$		
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	2.0			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.8	V		

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Logic High Output Voltages	$\begin{aligned} & \mathrm{V}_{\text {OAH, }} \mathrm{V}_{\mathrm{OBH}} \\ & \mathrm{~V}_{\mathrm{OCH}}, \mathrm{~V}_{\mathrm{ODH}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DDA}}-0.3, \\ & \mathrm{~V}_{\text {ISO }}-0.3 \end{aligned}$	5.0		V	$\mathrm{I}_{\mathrm{Ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
		$\begin{aligned} & V_{\mathrm{DDA}}-0.5, \\ & \mathrm{~V}_{150}-0.5 \end{aligned}$	4.8		V	$\mathrm{I}_{\mathrm{Ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }}, \mathrm{V}_{\text {OBL }}$ $\mathrm{V}_{\mathrm{OCL}}, \mathrm{V}_{\mathrm{ODL}}$		0.0	0.1	V	$I_{O x}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
			0.0	0.4	V	$\mathrm{I}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
AC SPECIFICATIONS						
ADuM447xARIZ						
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }}$		55	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM447xCRIZ						
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		25			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }}$	30	45	60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing Directional Channels	$\mathrm{t}_{\text {PSKCD }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDA}} \text { or } \mathrm{V}_{\mathrm{ISO}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output	\| $\mathrm{CM}_{\mathrm{L}}{ }^{\text {\| }}$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{ISO}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	f_{r}		1.0		Mbps	

[^0]
ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 48. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD1}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V}$.

Table 2. DC-to-DC Converter Static Specifications

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER SUPPLY Isolated Output Voltage	$\mathrm{V}_{\text {ISO }}$	3.0	3.3	3.6	V	$\begin{aligned} & \mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {ISO }}=\mathrm{V}_{\mathrm{FB}} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2 \end{aligned}$	
Feedback Voltage Setpoint	$V_{\text {FB }}$	1.15	1.25	1.37	V	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}$	
Line Regulation	$\mathrm{V}_{\text {ISO (LINE) }}$		1	10	mV / V	$\begin{aligned} & \mathrm{I}_{\mathrm{ISO}}=50 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD} 1}{ }^{1}=\mathrm{V}_{\mathrm{DDA}}{ }^{2}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	
Load Regulation	$\mathrm{V}_{\text {ISO (LOAD) }}$		1	2	\%	$\mathrm{I}_{\text {ISO }}=50 \mathrm{~mA}$ to 200 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		50		mV p-p	20 MHz bandwidth, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Output Noise	$\mathrm{V}_{\text {ISO }}$ (NOISE)		100		mV p-p	20 MHz bandwidth, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {S }}$		1000		kHz	$\mathrm{R}_{\text {OC }}=50 \mathrm{k} \Omega$	
			200		kHz	$\mathrm{R}_{\mathrm{oc}}=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\text {OC }}=\mathrm{V}_{\mathrm{DD} 2}$ (open-loop)	
Switch On-Resistance	$\mathrm{R}_{\text {ON }}$		0.6		Ω		
Undervoltage Lockout, $\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DD} 2}$ Supplies							
Positive Going Threshold	$\mathrm{V}_{\mathrm{UV}+}$		2.8		V		
Negative Going Threshold	$\mathrm{V}_{\text {UV- }}$		2.6		V		
Hysteresis	$\mathrm{V}_{\text {UVH }}$		0.2		V		
DC to 2 Mbps Data Rate ${ }^{3}$							
Maximum Output Supply Current ${ }^{4}$	$\mathrm{I}_{\text {ISO (MAX) }}$	250			mA	$\mathrm{f} \leq 1 \mathrm{MHz}, \mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$	
Efficiency at Maximum Output Current ${ }^{5}$			68		\%	$\mathrm{I}_{\text {ISO }}=\mathrm{l}_{\text {ISO (MAX) }}, \mathrm{f} \leq 1 \mathrm{MHz}$	
iCoupler DATA CHANNELS							
DC to 2 Mbps Data Rate							
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, No V ${ }_{\text {ISo }}$ Load	$\mathrm{I}_{\mathrm{DD1} \text { (Q) }}$					$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM4470			9	20	mA		
ADuM4471			10	20	mA		
ADuM4472			11	20	mA		
ADuM4473			11	20	mA		
ADuM4474			12	20	mA		
25 Mbps Data Rate (CRIZ Grade Only)							
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, No V ${ }_{\text {ISo }}$ Load	$\mathrm{I}_{\mathrm{DD1} \text { (D) }}$						
ADuM4470			28		mA	$\mathrm{I}_{\text {SOO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			29		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			31		$m A$	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			32		$m A$	$\mathrm{I}_{\text {SOO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			34		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
Available V $_{\text {so }}$ Supply Current ${ }^{6}$	$\mathrm{I}_{\text {ISO (LOAD) }}$					$\mathrm{f}_{\text {sw }}=500 \mathrm{kHz}$	
ADuM4470			244		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			243		$m A$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			241		$m A$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			240		$m A$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			238		$m A$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, Full $\mathrm{V}_{\text {ISO }}$ Load			350		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ISO}}=400 \mathrm{~mA} \end{aligned}$	
I/O Input Currents	$I_{1 A}, I_{I B}, I_{I C}, I_{I D}$	-10	+0.01	+10	$\mu \mathrm{A}$		
Logic High Input Threshold	V_{IH}	1.6			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.4	V		

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Logic High Output Voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{OAH}}, \mathrm{~V}_{\mathrm{OBH}}, \\ & \mathrm{~V}_{\mathrm{OCH}}, \mathrm{~V}_{\mathrm{ODH}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DDA}}-0.3, \\ & \mathrm{~V}_{\text {ISO }}-0.3 \end{aligned}$	3.3		V	$\mathrm{I}_{\mathrm{Ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
		$\begin{aligned} & V_{\mathrm{DDA}}-0.5, \\ & \mathrm{~V}_{\text {ISO }}-0.5 \end{aligned}$	3.1		V	$\mathrm{I}_{\mathrm{Ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{lxH}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }}, \mathrm{V}_{\text {ObL }}$ $\mathrm{V}_{\mathrm{OCL}}, \mathrm{V}_{\mathrm{ODL}}$		0.0	0.1	V	$\mathrm{I}_{\text {Ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$
			0.0	0.4	V	$\mathrm{I}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$
AC SPECIFICATIONS						
ADuM447xARIZ						
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$		60	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM447xCRIZ						
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		25			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	30	60	70	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			45	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing Directional Channels	$\mathrm{t}_{\text {PSKCD }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDA}} \text { or } \mathrm{V}_{\mathrm{ISO}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output	\|CM ${ }_{\text {L }}$ \|	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{ISO}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V} \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.0		Mbps	

[^1]
ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}} \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 48. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V}$.

Table 3. DC-to-DC Converter Static Specifications

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER SUPPLY Isolated Output Voltage	$\mathrm{V}_{\text {ISO }}$	3.0	3.3	3.6	V	$\begin{aligned} & \mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {ISO }}=\mathrm{V}_{\mathrm{FB}} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2 \end{aligned}$	
Feedback Voltage Setpoint	$V_{\text {FB }}$	1.15	1.25	1.37	V	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}$	
Line Regulation	$\mathrm{V}_{\text {ISO (LINE) }}$		1	10	mV / V	$\begin{aligned} & \mathrm{I}_{15 \mathrm{O}}=50 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD} 1}^{1}=\mathrm{V}_{\mathrm{DDA}}^{2}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	
Load Regulation	$\mathrm{V}_{\text {ISO (LOAD) }}$		1	2	\%	$\mathrm{I}_{\text {ISO }}=50 \mathrm{~mA}$ to 200 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		50		$m \vee p-p$	20 MHz bandwidth, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}\| \| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Output Noise	$\mathrm{V}_{\text {ISO (NOISE) }}$		100		$m \vee p-p$	20 MHz bandwidth, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {sw }}$		1000		kHz	$\mathrm{R}_{\text {OC }}=50 \mathrm{k} \Omega$	
			200		kHz	$\mathrm{R}_{\text {OC }}=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\text {OC }}=\mathrm{V}_{\mathrm{DD} 2}$ (open-loop)	
Switch On-Resistance	$\mathrm{R}_{\text {ON }}$		0.5		Ω		
Undervoltage Lockout, $\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\mathrm{DD} 2}$ Supplies							
Positive Going Threshold	$\mathrm{V}_{\mathrm{UV}+}$		2.8		V		
Negative Going Threshold	$\mathrm{V}_{\text {UV- }}$		2.6		V		
Hysteresis	$\mathrm{V}_{\text {UVH }}$		0.2		V		
DC to 2 Mbps Data Rate ${ }^{3}$							
Maximum Output Supply Current ${ }^{4}$ Efficiency at Maximum Output Current ${ }^{5}$	$\mathrm{I}_{\text {ISO (MAX) }}$	400	70		$\begin{aligned} & \mathrm{mA} \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{f} \leq 1 \mathrm{MHz}, \mathrm{~V}_{\text {ISO }}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\text {ISO }}=\mathrm{I}_{\text {ISO (MAX) }}, \mathrm{f} \leq 1 \mathrm{MHz} \end{aligned}$	
iCoupler DATA CHANNELS							
DC to 2 Mbps Data Rate							
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, No V ${ }_{\text {ISo }}$ Load	$\mathrm{I}_{\mathrm{DD1} \text { (Q) }}$					$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM4470			9	30	mA		
ADuM4471			10	30	mA		
ADuM4472			11	30	$m A$		
ADuM4473			11	30	mA		
ADuM4474			12	30	mA		
25 Mbps Data Rate (CRIZ Grade Only)							
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, No V $\mathrm{I}^{\text {c }}$ Load	$\mathrm{I}_{\mathrm{DD1} \text { (} \mathrm{D})}$						
ADuM4470			33		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			33		$m A$	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			33		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			33		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			33		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
Available V ISo $^{\text {Supply Current }}{ }^{6}$	$\mathrm{I}_{\text {SO (LOAD) }}$					$\mathrm{f}_{\mathrm{sw}}=500 \mathrm{kHz}$	
ADuM4470			393		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			392		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			390		$m A$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			389		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			375		$m A$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, Full $\mathrm{V}_{\text {ISO }}$ Load			350		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}= \\ & 5 \mathrm{~V}, \mathrm{I}_{\mathrm{ISO}}=400 \mathrm{~mA} \end{aligned}$	
I/O Input Currents	$I_{1 A}, I_{\text {IB }}, I_{I C}, I_{\text {ID }}$	-20	+0.01	+20	$\mu \mathrm{A}$		
Logic High Input Threshold	V_{IH}	2.0			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.8	V		

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Logic High Output Voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{OAH}}, \mathrm{~V}_{\mathrm{OBH}} \\ & \mathrm{~V}_{\mathrm{OCH}}, \mathrm{~V}_{\mathrm{ODH}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DDA}}-0.3, \\ & \mathrm{~V}_{150}-0.3 \end{aligned}$	3.3		V	$\mathrm{I}_{\mathrm{Ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IXH}}$
		$\begin{aligned} & V_{\text {DDA }}-0.5, \\ & V_{\text {ISO }}-0.5 \end{aligned}$	3.1		V	$\mathrm{I}_{\mathrm{Ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }} \mathrm{V}_{\text {OBL }}$ $\mathrm{V}_{\mathrm{OCL}}, \mathrm{V}_{\mathrm{ODL}}$		0.0	0.1	V	$I_{O x}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
			0.0	0.4	V	$\mathrm{I}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
AC SPECIFICATIONS						
ADuM447xARIZ						
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$		55	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM447xCRIZ						
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		25			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	30	50	70	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing Directional Channels	$\mathrm{t}_{\text {PSKCD }}$			15	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output	\| $\mathrm{CM}_{\mathrm{H}} \mid$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDA}} \text { or } \mathrm{V}_{\mathrm{ISO}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output	\| $\mathrm{CM}_{\mathrm{L}}{ }^{\text {\| }}$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & V_{\mathrm{Ix}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IS},}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	f_{r}		1.0		Mbps	

[^2]
ADuM4470/ADuM4471/ADuM4472/ADuM4473/ADuM4474

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/15 V SECONDARY ISOLATED SUPPLY

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}} \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 49. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$.

Table 4. DC-to-DC Converter Static Specifications

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER SUPPLY Isolated Output Voltage	$\mathrm{V}_{\text {ISO }}$	13.8	15	16.2	V	$\begin{aligned} & \mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {ISO }}=\mathrm{V}_{\mathrm{FB}} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2 \end{aligned}$	
Feedback Voltage Setpoint $V_{D D 2}$ Linear Regulator	$V_{\text {Fb }}$	1.15	1.25	1.37	V	$\mathrm{I}_{15 \mathrm{O}}=0 \mathrm{~mA}$	
Regulator Voltage		4.5	5.0	5.5	V	$\begin{aligned} & \mathrm{V}_{\text {REG }}=7 \mathrm{~V} \text { to } 15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{DD} 2}=0 \mathrm{~mA} \text { to } 50 \mathrm{~mA} \end{aligned}$	
Dropout Voltage			0.5	1.5		$\mathrm{I}_{\mathrm{DD} 2}=50 \mathrm{~mA}$	
Line Regulation	$\mathrm{V}_{\text {ISO (LINE) }}$		1	20	mV / V	$\begin{aligned} & \mathrm{I}_{\text {ISO }}=50 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}{ }^{1}=\mathrm{V}_{\mathrm{DDA}}{ }^{2}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	
Load Regulation	$\mathrm{V}_{\text {ISO (LOAD) }}$		1	3	\%	$\mathrm{I}_{\text {ISO }}=20 \mathrm{~mA}$ to 80 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		200		$m \vee p-p$	20 MHz bandwidth, $C_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Output Noise	$\mathrm{V}_{\text {ISO (NOISE) }}$		500		$m \vee p-p$	20 MHz bandwidth, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {sw }}$		1000		kHz	$\mathrm{R}_{\mathrm{OC}}=50 \mathrm{k} \Omega$	
			200		kHz	$\mathrm{R}_{\text {oc }}=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{DD} 2}$ (open-loop)	
Switch On-Resistance	$\mathrm{R}_{\text {ON }}$		0.5		Ω		
Undervoltage Lockout, $\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\mathrm{DD} 2}$ Supplies							
Positive Going Threshold	$\mathrm{V}_{\mathrm{UV}+}$		2.8		V		
Negative Going Threshold	$\mathrm{V}_{\text {UV- }}$		2.6		V		
Hysteresis	$\mathrm{V}_{\text {UVH }}$		0.2		V		
DC to 2 Mbps Data Rate ${ }^{3}$							
Maximum Output Supply Current ${ }^{4}$ Efficiency at Maximum Output Current ${ }^{5}$	$\mathrm{I}_{\text {ISO (MAX) }}$	100	78		$\begin{aligned} & m A \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{f} \leq 1 \mathrm{MHz}, \mathrm{~V}_{\text {ISO }}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\text {ISO }}=\mathrm{I}_{\text {ISO (MAX) }}, \mathrm{f} \leq 1 \mathrm{MHz} \end{aligned}$	
iCoupler DATA CHANNELS							
DC to 2 Mbps Data Rate							
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, No V ${ }_{\text {ISO }}$ Load	$\mathrm{I}_{\mathrm{DD1} \text { (Q) }}$					$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM4470			25	45	mA		
ADuM4471			27	45	mA		
ADuM4472			29	45	mA		
ADuM4473			31	45	mA		
ADuM4474			33	45	mA		
25 Mbps Data Rate (CRIZ Grade Only)							
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, No V $\mathrm{ISO}^{\text {Load }}$	$\mathrm{I}_{\mathrm{DD1} \text { (} \mathrm{D})}$						
ADuM4470			73		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			83		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			93		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			102		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			112		mA	$\mathrm{I}_{\text {SO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
Available V ISO $^{\text {S }}$ Supply Current ${ }^{6}$	$\mathrm{I}_{\text {SO (LOAD) }}$					$\mathrm{f}_{\mathrm{sw}}=500 \mathrm{kHz}$	
ADuM4470			91		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4471			89		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4472			86		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4473			83		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM4474			80		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
$\mathrm{I}_{\mathrm{DD} 1}$ Supply Current, Full $\mathrm{V}_{\text {ISO }}$ Load			425		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}= \\ & 5 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=400 \mathrm{~mA} \end{aligned}$	

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
I/O Input Currents	$I_{I A}, I_{I B}, I_{C C}, I_{\text {ID }}$	-20	+0.01	+20	$\mu \mathrm{A}$	
Logic High Input Threshold	V_{IH}	2.0			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.8	V	
Logic High Output Voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{OAH}}, \mathrm{~V}_{\mathrm{OBH}}, \\ & \mathrm{~V}_{\mathrm{OCH}}, \mathrm{~V}_{\mathrm{ODH}} \end{aligned}$	$\begin{aligned} & V_{\mathrm{DDA}}-0.3 \\ & \mathrm{~V}_{\text {ISO }}-0.3 \end{aligned}$	5.0		V	$\mathrm{I}_{0 \mathrm{x}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
		$\begin{aligned} & V_{\text {DDA }}-0.5, \\ & V_{I S O}-0.5 \end{aligned}$	4.8		V	$\mathrm{I}_{\mathrm{Ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
Logic Low Output Voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{OAL}}, \mathrm{~V}_{\mathrm{OBL}} \\ & \mathrm{~V}_{\mathrm{OCL}}, \mathrm{~V}_{\mathrm{ODL}} \end{aligned}$		0.0	0.1	V	$\mathrm{I}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IXH}}$
			0.0	0.4	V	$\mathrm{I}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$
AC SPECIFICATIONS						
ADuM447xARIZ						
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }}$		55	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM447xCRIZ						
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		25			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }}$	30	45	60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing Directional Channels	$\mathrm{t}_{\text {PSKCD }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDA}} \text { or } \mathrm{V}_{\mathrm{ISO}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output	\| $\mathrm{CM}_{\mathrm{L}}{ }^{\text {\| }}$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & V_{\text {Ix }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\text {ISo }}, \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	f_{r}		1.0		Mbps	

${ }^{1} V_{D D 1}$ is the power supply for the push-pull transformer.
${ }^{2} \mathrm{~V}_{\text {DDA }}$ is the power supply of Side 1 of the ADuM447x.
${ }^{3}$ The contributions of supply current values for all four channels are combined at identical data rates.
${ }^{4}$ The $\mathrm{V}_{\text {Iso }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {ISO }}$ power budget.
${ }^{5}$ The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
${ }^{6}$ This current is available for driving external loads at the $\mathrm{V}_{\text {ISO }}$ output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

PACKAGE CHARACTERISTICS

Table 5.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ${ }^{1}$	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	
Capacitance (Input to Output) ${ }^{1}$	$\mathrm{C}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
IC Junction to Ambient Thermal Resistance	θ_{JA}		45		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside, test conducted on 4-layer board with thin traces ${ }^{2}$
Thermal Shutdown						
Thermal Shutdown Threshold	TS ${ }_{\text {SD }}$		150		${ }^{\circ} \mathrm{C}$	T, rising
Thermal Shutdown Hysteresis	TS ${ }_{\text {SD-HYS }}$		20		${ }^{\circ} \mathrm{C}$	

${ }^{1}$ The device is considered a 2-terminal device: Pin 1 to $\operatorname{Pin} 10$ are shorted together; and Pin 11 to Pin 20 are shorted together.
${ }^{2}$ See the Thermal Analysis section for thermal model definitions.

REGULATORY APPROVALS (PENDING)

Table 6.

UL	CSA	VDE
Recognized under the UL 1577	Approved under CSA Component	Certified according to DIN V VDE V
component recognition program ${ }^{1}$	Acceptance Notice \#5A	$0884-10$ (VDE V 0884-10):2006-12 ${ }^{2}$
Single protection, 5000 V rms	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 600 V	Reinforced insulation, 849 V peak
isolation voltage	rms (848 V peak) maximum working voltage	
	Reinforced insulation per CSA60950-1-03 and IEC 60950-1,	
	400 V rms (565 V peak) maximum working voltage	
	Reinforced insulation per IEC 60601-1 250 V rms	
	(353 V peak) maximum working voltage	
File E214100	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577 , each ADuM447x is proof tested by applying an insulation test voltage of $\geq 6000 \mathrm{Vrms}$ for 1 sec (current leakage detection limit $=10 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each of the ADuM447x is proof tested by applying an insulation test voltage of $\geq 1050 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 7.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		5000	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(101)	>8.0	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	>8.3	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure maintenance of the safety data. The asterisk $\left(^{*}\right.$) marking on packages denotes DIN V VDE V 0884-10 approval.

Table 8.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			Ito IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to III	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		$\mathrm{V}_{\text {IORM }}$	849	\checkmark peak
Input-to-Output Test Voltage, Method B1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{pd}(\mathrm{m}),} 100 \%$ production test, $\mathrm{t}_{\text {ini }}=\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{pd}(\mathrm{m})}$	1592	\checkmark peak
Input-to-Output Test Voltage, Method A	$\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\text {pd }(\mathrm{m})}, \mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}, \mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{pd}(\mathrm{m})}$		
After Environmental Tests Subgroup 1			1273	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\mathrm{pd}(\mathrm{~m})}, \mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}, \mathrm{t}_{\mathrm{m}}=10 \mathrm{sec},$ $\text { partial discharge }<5 \mathrm{pC}$		1018	\checkmark peak
Highest Allowable Overvoltage		$\mathrm{V}_{\text {Iотм }}$	6000	\checkmark peak
Surge Isolation Voltage	$\mathrm{V}_{\text {PEAK }}=10 \mathrm{kV}, 1.2 \mu \mathrm{~s}$ rise time, $50 \mu \mathrm{~s}, 50 \%$ fall time	$\mathrm{V}_{\text {IOSM }}$	6000	\checkmark peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 7)			
Case Temperature		T_{S}	150	${ }^{\circ} \mathrm{C}$
Side 1, Side $2 \mathrm{P}_{\text {VIDAA }} \mathrm{P}_{\text {VREG }}$ Power Dissipation		$\mathrm{P}_{\text {VIdA }} \mathrm{P}_{\text {VREG }}$	2.78	W
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	R_{S}	$>10^{9}$	Ω

Figure 7. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 9.

Parameter	Symbol	Min	Max	Unit
Temperature Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltage				
$\mathrm{V}_{\text {DDI } 1}$ at $\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$	$V_{\text {DD1 }}$	3.0	3.6	V
$\mathrm{V}_{\text {DD1 }}$ at $\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$	$V_{\text {DD1 }}$	4.5	5.5	V
$\mathrm{V}_{\text {DD } 1}$ at $\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD} 1}$	4.5	5.5	V
Load Minimum Load	$\mathrm{I}_{\text {ISO (MIN) }}$	10		mA

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 10.

Parameter	Rating
Storage Temperature Range (T_{ST})	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature Range (T_{A})	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages	
$\mathrm{V}_{\text {DDA }} \mathrm{V}_{\mathrm{DD} 2}{ }^{1,2}$	-0.5 V to +7.0 V
$\mathrm{V}_{\text {REG }}{ }^{\text {X }}$ 1, X2 ${ }^{1}$	-0.5 V to +20.0 V
Input Voltage ($\left.\mathrm{V}_{\text {IA }}, \mathrm{V}_{1 B}, \mathrm{~V}_{1 \mathrm{IC}}, \mathrm{V}_{\text {ID }}\right)$	-0.5 V to $+\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}, \mathrm{V}_{\mathrm{OC}}, \mathrm{V}_{\mathrm{OD}}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Average Output Current per Pin	-10 mA to +10 mA
Common-Mode Transients ${ }^{3}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$
${ }^{1}$ All voltages are relative to their respective ground.	
${ }^{2} \mathrm{~V}_{\mathrm{DD} 1}$ is the power supply for the push-pull transformer, and $\mathrm{V}_{\mathrm{DDA}}$ is the power supply of Side 1 of the ADuM447x.	
${ }^{3}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latchup or permanent damage.	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 11. Maximum Continuous Working Voltage Supporting 50-Year Minimum Lifetime ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar	848	V peak	50 -year minimum Waveform
AC Voltage, Unipolar Waveform	848	V peak	50 -year minimum lifetime
DC Voltage	848	V peak	50 -year minimum lifetime

${ }^{1}$ Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 8. ADuM4470 Pin Configuration

Table 12. ADuM4470 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2, 10	GND_{1}	Ground Reference for Isolator Primary.
3	NC	This pin is not connected internally (see Figure 8).
4	X2	Transformer Driver Output 2.
5	$V_{\text {IA }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	$V_{\text {IC }}$	Logic Input C.
8	$V_{\text {ID }}$	Logic Input D.
9	$\mathrm{V}_{\text {DDA }}$	Primary Supply Voltage 3.0 V to 5.5 V. Connect to V ${ }_{\text {DD } 1 .}$. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from V ${ }_{\text {dDA }}$ to GND_{1}.
11,19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $\mathrm{OC}=$ logic high $=\mathrm{V}_{\mathrm{DD} 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	Vod	Logic Output D.
14	Voc	Logic Output C.
15	$V_{\text {OB }}$	Logic Output B.
16	VoA	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {Iso. }}$. Use a resistor divider from $\mathrm{V}_{\text {ISo }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{\mathrm{ISO}}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller. $V_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

Figure 9. ADuM4471 Pin Configuration

Table 13. ADuM4471 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2, 10	GND_{1}	Ground Reference for Isolator Primary.
3	NC	This pin is not connected internally (see Figure 9).
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{1 \text { I }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	$V_{\text {IC }}$	Logic Input C.
8	$\mathrm{V}_{\text {OD }}$	Logic Output D.
9	$V_{\text {DDA }}$	Primary Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\mathrm{DDI}}$. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DDA}}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $\mathrm{OC}=$ logic high $=\mathrm{V}_{\mathrm{DD} 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$\mathrm{V}_{\text {ID }}$	Logic Input D.
14	$\mathrm{V}_{\text {oc }}$	Logic Output C.
15	$\mathrm{V}_{\text {OB }}$	Logic Output B.
16	$\mathrm{V}_{\text {OA }}$	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {ISO }}$. Use a resistor divider from $\mathrm{V}_{\text {ISO }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$\mathrm{V}_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller. $\mathrm{V}_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

NOTES

1. THE PIN LABELED NC CAN BE ALLOWED TO FLOAT

BUT IT IS BETTER TO CONNECT THIS PIN TO GROUND.
AVOID ROUTING HIGH SPEED SIGNALS THROUGH
THESE PINS BECAUSE NOISE COUPLING MAY RESULT.
*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED,
AND CONNECTING BOTH TO GND ${ }_{1}$ IS
RECOMMENDED. PIN 11 AND PIN 19 ARE
INTERNALLY CONNECTED, AND CONNECTING
BOTH TO GND 2 IS RECOMMENDED.

Figure 10. ADuM4472 Pin Configuration
Table 14. ADuM4472 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2, 10	GND_{1}	Ground Reference for Isolator Primary.
3	NC	This pin is not connected internally (see Figure 10).
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{\text {IA }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	$\mathrm{V}_{\text {OC }}$	Logic Output C.
8	$\mathrm{V}_{\text {OD }}$	Logic Output D.
9	$V_{\text {DDA }}$	Primary Supply Voltage 3.0 V to 5.5 V. Connect to $\mathrm{V}_{\mathrm{DD1}}$. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DDA}}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $\mathrm{OC}=$ logic high $=\mathrm{V}_{\mathrm{DD} 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$V_{\text {ID }}$	Logic Input D.
14	V_{16}	Logic Input C.
15	$\mathrm{V}_{\text {OB }}$	Logic Output B.
16	$\mathrm{V}_{\text {OA }}$	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {ISO }}$. Use a resistor divider from $\mathrm{V}_{\text {ISO }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller. $\mathrm{V}_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

x 11	ADuM4473Top VIEw(Not to Scale)	20 V REG
${ }^{*} \mathrm{GND}_{1}{ }^{2}$		$19 \mathrm{GND}_{2}{ }^{*}$
NC 3		$18 \mathrm{~V}_{\text {DD2 }}$
X2 4		17 FB
$\mathrm{V}_{14} 5$		$16 \mathrm{~V}_{\text {OA }}$
$\mathrm{V}_{\text {OB }} \mathrm{E}^{6}$		
$\mathrm{v}_{\mathrm{OC}} 7$		14 V IC
$\mathrm{V}_{\text {OD }} 8$		13 V 10
$\mathrm{V}_{\mathrm{DDA}} 9$		${ }^{12} \mathrm{OC}$
${ }^{*} \mathrm{GND}_{1} 10$		$11 \mathrm{GND}_{2}{ }^{*}$

NOTES

1. THE PIN LABELED NC CAN BE ALLOWED TO FLOAT,

BUT IT IS BETTER TO CONNECT THIS PIN TO GROUND.
BUT IT IS BETTER TO CONNECT THIS PIN TO GROU
THESE PINS BECAUSE NOISE COUPLING MAY RESULT.
*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 1 IS
RECOMMENDED. PIN 11 AND PIN 19 ARE
INTERNALLY CONNECTED, AND CONNECTING
BOTH TO GND 2 IS RECOMMENDED.
Figure 11. ADuM4473 Pin Configuration

Table 15. ADuM4473 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2, 10	GND ${ }_{1}$	Ground Reference for Isolator Primary.
3	NC	This pin is not connected internally (see Figure 11).
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{1 \text { A }}$	Logic Input A.
6	$\mathrm{V}_{\text {OB }}$	Logic Output B.
7	$\mathrm{V}_{\text {oc }}$	Logic Output C.
8	$\mathrm{V}_{\text {OD }}$	Logic Output D.
9	$\mathrm{V}_{\text {DDA }}$	Primary Supply Voltage 3.0 V to 5.5 V. Connect to $\mathrm{V}_{\mathrm{DDI}}$. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DDA}}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $\mathrm{OC}=$ logic high $=\mathrm{V}_{\mathrm{DD} 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	V_{10}	Logic Input D.
14	V_{16}	Logic Input C.
15	$\mathrm{V}_{1 \text { B }}$	Logic Input B.
16	$V_{\text {OA }}$	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {ISO }}$. Use a resistor divider from $\mathrm{V}_{\text {ISO }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$\mathrm{V}_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller. $\mathrm{V}_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

NOTES

1. THE PIN LABELED NC CAN BE ALLOWED TO FLOAT BUT IT IS BETTER TO CONNECT THIS PIN TO GROUND. AVOID ROUTING HIGH SPEED SIGNALS THROUGH THESE PINS BECAUSE NOISE COUPLING MAY RESULT.
*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND ${ }_{1}$ IS RECOMMENDED. PIN 11 AND PIN 19 ARE
INTERNALLY CONNECTED, AND CONNECTING INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 12. ADuM4474 Pin Configuration

Table 16. ADuM4474 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground Reference for Isolator Primary.
3	NC	This pin is not connected internally (see Figure 12).
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{\text {OA }}$	Logic Output A.
6	$\mathrm{V}_{\text {OB }}$	Logic Output B.
7	$\mathrm{V}_{\text {oc }}$	Logic Output C.
8	$\mathrm{V}_{\text {OD }}$	Logic Output D.
9	$\mathrm{V}_{\text {DDA }}$	Primary Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\mathrm{DD} 1}$. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DDA}}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $\mathrm{OC}=$ logic high $=\mathrm{V}_{\mathrm{DD} 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$\mathrm{V}_{\text {ID }}$	Logic Input D.
14	$V_{\text {IC }}$	Logic Input C.
15	$V_{1 B}$	Logic Input B.
16	$V_{\text {IA }}$	Logic Input A.
17	FB	Feedback Input from the Secondary Output Voltage, $\mathrm{V}_{\text {ISO }}$. Use a resistor divider from $\mathrm{V}_{\text {ISO }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{15 O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Internal Supply Voltage Pin for the Secondary Side. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$ the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$\mathrm{V}_{\text {REG }}$	Input of the Internal Regulator to Power the Secondary Side Controller. $\mathrm{V}_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 13. Switching Frequency ($f_{\text {SW }}$) vs. $R_{\text {OC }}$ Resistance

Figure 14. Typical Efficiency at 5 V Input to 5 V Output at Various Switching Frequencies with 1:2 Coilcraft Transformer (CR7983-CL)

Figure 15. Typical Efficiency at 5 V Input to 5 V Output at Various Switching Frequencies with 1:2 Halo Transformer (TGSAD-260V8LF)

Figure 16. 5 V Input to 5 V Output Efficiency over Temperature with Coilcraft Transformer (CR7983-CL) at $500 \mathrm{kHz} f_{\text {sw }}$

Figure 17. Single-Supply Efficiency with Coilcraft Transformer (CR7983-CL) at $500 \mathrm{kHz} f_{\text {sw }}$

Figure 18. Typical Efficiency at 3.3 V Input to 5 V Output at Various Switching Frequencies with 1:3 Coilcraft Transformer (CR7984-CL)

Figure 19. Typical Efficiency at 3.3 V In to 5 V Out over Temperature with 1:3 Coilcraft Transformer (CR7984-CL) at $500 \mathrm{kHz} f_{\text {sw }}$

Figure 20.5 V Input to 15 V Output Efficiency at Various Switching Frequencies with 1:3 Coilcraft Transformer (CR7984-CL)

Figure 21.5 V Input to 15 V Output Efficiency at Various Switching Frequencies with 1:3 Halo Transformer (TGSAD-290V8LF)

Figure 22.5 V Input to 15 V Output Efficiency over Temperature with Coilcraft Transformer (CR7984-CL) at $500 \mathrm{kHz} f_{\text {Sw }}$

Figure 23. Double-Supply Efficiency with Coilcraft Transformer (CR7985-CL) at $500 \mathrm{kHz} f_{\text {sw }}$

Figure 24. Typical Single-Supply $I_{C H}$ Supply Current per Forward Data Channel (15 pF Output Load)

Figure 25. Typical Single-Supply $I_{C H}$ Supply Current per Reverse Data Channel (15 pF Output Load)

Figure 26. Typical Single-Supply $I_{\text {ISO(D) }}$ Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 27. Typical Single-Supply $I_{\mid S O(D)}$ Dynamic Supply Current per Input Channel (15 pF Output Load)

Figure 28. Typical Double-Supply Current $I_{C H}$ Per Forward Data Channel (15 pF Output Load)

Figure 29. Typical Double-Supply I ${ }_{\text {CH }}$ Supply Current per Reverse Data Channel (15 pF Output Data)

Figure 30. Typical Double-Supply $I_{\text {ISO(D) }}$ Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 31. Typical Double-Supply $I_{I S O(D)}$ Dynamic Supply Current per Input Channel

Figure 32. Typical $V_{\text {ISO }}$ Startup 5 V Input to 5 V Output with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 400 mA Output Load

Figure 33. Typical $V_{\text {Iso }}$ Startup 5 V Input to 3.3 V Output with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 400 mA Output Load

Figure 34. Typical VISO Startup 3.3 V Input to 3.3 V Output with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 250 mA Output Load

Figure 35. Typical VISO Startup 5 V Input to 15 V Output with $10 \mathrm{~mA}, 20 \mathrm{~mA}$, and 100 mA Output Load

Figure 36. Typical $V_{\text {ISo }}$ Load Transient Response 5 V Input to 5 V Output at 10% to 90% of 400 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\text {sw }}$

Figure 37. Typical V ${ }_{\text {ISO }}$ Load Transient Response 5 V Input to 5 V Output at 10% to 90% of 400 mA Load at $500 \mathrm{kHz} f_{\text {sw }}$ with 0.1μ F Feedback Capacitor

Figure 38. Typical $V_{\text {ISO }}$ Load Transient Response 5 V Input to 3.3 V Output at 10% to 90% of 400 mA Load at $500 \mathrm{kHz} f_{\text {sw }}$

Figure 39. Typical VIso Load Transient Response 5 V Input to 3.3 V Output at 10% to 90% of 400 mA Load at $500 \mathrm{kHz} f_{\text {sw }}$ with 0.1μ Feedback Capacitor

Figure 40. Typical $V_{\text {Iso }}$ Load Transient Response 3.3 V Input to 3.3 V Output at 10% to 90% of 250 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\text {sw }}$

Figure 41. Typical $V_{\text {Iso }}$ Load Transient Response 3.3 V Input to 3.3 V Output at 10% to 90% of 250 mA Load at $500 \mathrm{kHz} f_{\text {sw }}$ with 0.1μ F Feedback Capacitor

Figure 42. Typical $V_{\text {Iso }}$ Load Transient Response 5 V Input to 15 V Output at 10% to 90% of 100 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\mathrm{sw}}$

Figure 43. Typical $V_{\text {ISO }}$ Load Transient Response 5 V Input to 15 V Output at 10% to 90% of 100 mA Load at $500 \mathrm{kHz} f_{\text {sw }}$ with 0.1μ F Feedback Capacitor

Figure 44. Typical $V_{\text {ISO }}$ Output Ripple, 5 V Input to 5 V Output at 400 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\text {sw }}$

Figure 45. Typical $V_{\text {ISO }}$ Output Ripple, 5 V Input to 3.3 V Output at 400 mA Load at $500 \mathrm{kHz} f_{\text {sw }}$

Figure 46. Typical $V_{\text {ISO }}$ Output Ripple, 3.3 V Input to 3.3 V Output at 250 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\text {SW }}$

Figure 47. Typical VISO Output Ripple, 5 V Input to 15 V Output at 100 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\text {sw }}$

[^0]: ${ }^{1} V_{D D 1}$ is the power supply for the push-pull transformer.
 ${ }^{2} V_{\text {DDA }}$ is the power supply of Side 1 of the ADuM447x.
 ${ }^{3}$ The contributions of supply current values for all four channels are combined at identical data rates.
 ${ }^{4}$ The $\mathrm{V}_{\text {Iso }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {Iso }}$ power budget.
 ${ }^{5}$ The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
 ${ }^{6}$ This current is available for driving external loads at the V_{150} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

[^1]: ${ }^{1} V_{D D 1}$ is the power supply for the push-pull transformer.
 ${ }^{2} V_{\text {DDA }}$ is the power supply of Side 1 of the ADuM447x.
 ${ }^{3}$ The contributions of supply current values for all four channels are combined at identical data rates.
 ${ }^{4}$ The $\mathrm{V}_{\text {Iso }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {Iso }}$ power budget.
 ${ }^{5}$ The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
 ${ }^{6}$ This current is available for driving external loads at the V_{150} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

[^2]: ${ }^{1} V_{D D 1}$ is the power supply for the push-pull transformer.
 ${ }^{2} V_{\text {DDA }}$ is the power supply of Side 1 of the ADuM447x.
 ${ }^{3}$ The contributions of supply current values for all four channels are combined at identical data rates.
 ${ }^{4}$ The $\mathrm{V}_{\text {Iso }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {Iso }}$ power budget.
 ${ }^{5}$ The power demands of the quiescent operation of the data channels were not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
 ${ }^{6}$ This current is available for driving external loads at the V_{150} output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

