mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

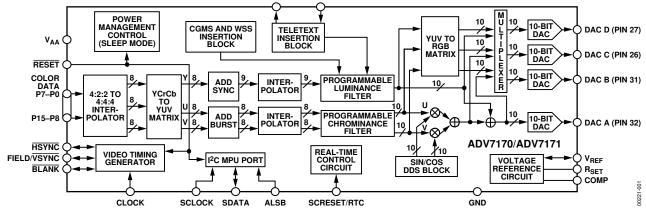
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG
DEVICESDigital PAL/NTSC Video Encoder with 10-Bit
SSAF™ and Advanced Power Management

ADV7170/ADV7171

FEATURES


- ITU-R¹ BT601/656 YCrCb to PAL/NTSC video encoder High quality 10-bit video DACs SSAF (super sub-alias filter) Advanced power management features CGMS (copy generation management system) WSS (wide screen signalling) Simultaneous Y, U, V, C output format NTSC M, PAL M/N², PAL B/D/G/H/I, PAL60 Single 27 MHz clock required (×2 oversampling) 80 dB video SNR 32-bit direct digital synthesizer for color subcarrier Multistandard video output support **Composite (CVBS)** Components S-Video (Y/C), YUV, and RGB EuroSCART output (RGB + CVBS/LUMA) **Component YUV + CHROMA** Video input data port supports CCIR-656 4:2:2 8-bit parallel input format 4:2:2 16-bit parallel input format Programmable simultaneous composite and S-Video or RGB (SCART)/YUV video outputs
- Programmable luma filters (low-pass [PAL/NTSC]) notch, extended (SSAF, CIF, and QCIF)
- Programmable chroma filters (low-pass [0.65 MHz, 1.0 MHz, 1.2 MHz and 2.0 MHz], CIF and QCIF)
- Programmable VBI (vertical blanking interval)
- Programmable subcarrier frequency and phase

Programmable LUMA delay Individual on/off control of each DAC CCIR and square pixel operation Integrated subcarrier locking to external video source Color signal control/burst signal control Interlaced/noninterlaced operation Complete on-chip video timing generator Programmable multimode master/slave operation Macrovision® AntiTaping Rev. 7.1 (ADV7170 only)³ Closed captioning support Teletext insertion port (PAL-WST) On-board color bar generation On-board voltage reference

- 2-wire serial MPU interface (I²C®-compatible and Fast I²C)
- Single supply 5 V or 3.3 V operation
- Small 44-lead MQFP/TQFP packages
- Industrial temperature grade = -40° C to $+85^{\circ}$ C⁴

APPLICATIONS

- High performance DVD playback systems, portable video equipment including digital still cameras and laptop PCs, video games, PC video/multimedia and digital satellite/cable systems (set-top boxes/IRD)
- $^{\rm 1}$ ITU-R and CCIR are used interchangeably in this document (ITU-R has replaced CCIR recommendations).
- ² Throughout the document N is referenced to PAL- Combination -N.
- ³ Protected by U.S. Patents 4,631,603;, 4,577,216, 4,819,098; and other intellectual property rights. The Macrovision anticopy process is licensed for noncommercial home use only, which is its sole intended use in the device. Please contact sales office for latest Macrovision version available.
- ⁴ Refer to Table 8 for complete operating details.

ттх

TTXREQ

Figure 1. Functional Block Diagram

Protected by U.S. Patents 5,343,196; 5,442,355; and other intellectual property rights.

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

	Mode Register 1 MR1 (MR17 to MR10)	30
	MR1 Bit Description	30
	Mode Register 2 MR2 (MR27 to MR20)	30
	MR2 Bit Description	30
	Mode Register 3 MR3 (MR37 to MR30)	32
	MR3 Bit Description	32
	Mode Register 4 MR4 (MR47 to MR40)	33
	MR4 Bit Description	33
	VSYNC_3H (MR43)	33
	Timing Mode Register 0 (TR07 to TR00)	33
	TR0 Bit Description	34
	Timing Mode Register 1 (TR17 to TR10)	34
	TR1 Bit Description	34
	Subcarrier Frequency Registers 0 to 3 (FSC3 to FSC0)	35
	Subcarrier Phase Registers (FP7 to FP0)	35
	Closed Captioning Even Field Data Register 1 to 0 (CED15 CED0)	
	Closed Captioning Odd Field Data Registers 1 to 0 (CCD15 to CCD0)	
	NTSC Pedestal/PAL Teletext Control Registers 3 to 0 (PCE1 to PCE0, PCO15 to PCO0)/(TXE15 to TXE0, TXO15 to TXO0)	
	Teletext Request Control Register TC07 (TC07 to TC00)	36
	CGMS_WSS Register 0 C/W0 (C/W07 to C/W00)	36
	C/W0 Bit Description	36
	CGMS_WSS Register 1 C/W1 (C/W17 to C/W10)	37
	C/W1 Bit Description	37
	CGMS Data Bits (C/W17 to C/W16)	37
	CGMS_WSS Register 2 C/W1 (C/W27 to C/W20)	37
	C/W2 Bit Description	37
A	ppendices	38
	Appendix 1—Board Design and Layout Considerations	38

Appendix 2—Closed Captioning40
Appendix 3—Copy Generation Management System (CGMS)
Appendix 4—Wide Screen Signaling42
Appendix 5—Teletext Insertion
Appendix 6—Waveforms44

REVISION HISTORY

3/09-Rev. B to Rev. C

Changes to Table 8	10
Updated Outline Dimensions	61
Added Figure 103, Renumbered Figures Sequentially	61
Changes to Ordering Guide	61

6/05—Rev. A to Rev. B

Updated FormatUni	iversal
Changes to Features Section	1
Changes to Table 8	10
Changes to Square Pixel Mode Section	18
Changes to Figure 37	29
Changes to Figure 42	33
Changes to Subcarrier Frequency Registers 3 to 0 Section	35
Changes to Figure 45	35
Changes to Figure 82	48
Changes to Ordering Guide	62

6/02—Starting Rev. A to Rev. B

Changes to Specifications	3
Changes to Package Thermal Performance section9	

Appendix 7—Optional Output Filter	48
Appendix 8—Optional DAC Buffering	48
Appendix 9—Recommended Register Values	49
Appendix 10—Output Waveforms	51
Outline Dimensions	61
Ordering Guide	62

SPECIFICATIONS

 $V_{AA} = 5 V \pm 5\%^1$, $V_{REF} = 1.235 V$, $R_{SET} = 150 \Omega$. All specifications T_{MIN} to T_{MAX}^2 , unless otherwise noted.

Table 1.

Parameter	Conditions ¹	Min	Тур	Мах	Unit
STATIC PERFORMANCE					
Resolution (Each DAC)				10	Bits
Accuracy (Each DAC)					
Integral Nonlinearity	$R_{SET} = 300 \Omega$		±0.6		LSB
Differential Nonlinearity	Guaranteed monotonic			±1	LSB
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2			V
Input Low Voltage, V _{INL}				0.8	V
Input Current, I _{IN}	$V_{IN} = 0.4 \text{ V} \text{ or } 2.4 \text{ V}$			±1	μA
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS					
Output High Voltage, V _{он}	$I_{SOURCE} = 400 \ \mu A$	2.4			V
Output Low Voltage, V _{OL}	$I_{SINK} = 3.2 \text{ mA}$			0.4	V
Three-State Leakage Current				10	μΑ
Three-State Output Capacitance			10		рF
ANALOG OUTPUTS					
Output Current ³	$R_{SET} = 150 \Omega$, $R_L = 37.5 \Omega$	3	34.7	37	mA
Output Current⁴	$R_{SET} = 1041 \Omega$, $R_L = 262.5 \Omega$		5		mA
DAC-to-DAC Matching			1.5		%
Output Compliance, Voc		0		+1.4	V
Output Impedance, Rout			30		kΩ
Output Capacitance, Cout	$I_{OUT} = 0 \text{ mA}$			30	pF
VOLTAGE REFERENCE					
Reference Range, VREF	$I_{VREFOUT} = 20 \ \mu A$	1.142	1.235	1.327	V
POWER REQUIREMENTS ⁵					
V _{AA}		4.75	5.0	5.25	V
Normal Power Mode					
I _{DAC} (max) ⁶	$R_{SET} = 150 \ \Omega, R_L = 37.5 \ \Omega$		150	155	mA
I _{DAC} (min) ⁶	$R_{SET} = 1041 \Omega$, $R_L = 262.5 \Omega$		20		mA
I _{CCT} ⁷			75	95	mA
Low Power Mode					
I _{DAC} (max) ⁶			80		mA
I _{DAC} (min) ⁶			20		mA
lcct ⁷			75	95	mA
Sleep Mode					
I _{DAC} ⁸			0.1		μΑ
lcct9			0.001		μΑ
Power Supply Rejection Ratio	$COMP = 0.1 \ \mu F$		0.01	0.5	%/%

¹ The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V.

² Ambient temperature range T_{MIN} to T_{MAX}: -40°C to +85°C. The die temperature, T_J, must always be kept below 110°C.

 3 Full drive into 37.5 Ω doubly terminated load.

⁴ Minimum drive current (used with buffered/scaled output load).

⁸ Total DAC current in sleep mode.

⁹ Total continuous current during sleep mode.

 $^{^{\}rm 5}$ Power measurements are taken with clock frequency = 27 MHz. Max T_J = 110°C.

⁶ I_{DAC} is the total current (min corresponds to 5 mA output per DAC; max corresponds to 37 mA output per DAC) to drive all four DACs. Turning off individual DACs reduces I_{DAC} correspondingly.

⁷ I_{CCT} (circuit current) is the continuous current required to drive the device.

 V_{AA} = 3.0 V to 3.6 V¹, V_{REF} = 1.235 V, R_{SET} = 150 Ω . All specifications T_{MIN} to T_{MAX}^2 , unless otherwise noted.

Table	2.
-------	----

Parameter		Min	Тур	Max	Unit
STATIC PERFORMANCE ³					
Resolution (Each DAC)				10	Bits
Accuracy (Each DAC)					
Integral Nonlinearity	$R_{SET} = 300 \Omega$		±0.6		LSB
Differential Nonlinearity	Guaranteed monotonic			±1	LSB
DIGITAL INPUTS ³					
Input High Voltage, V _{INH}		2			V
Input Low Voltage, VINL				0.8	V
Input Current, I _{IN^{3, 4}}	$V_{IN} = 0.4 \text{ V} \text{ or } 2.4 \text{ V}$			±1	μΑ
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS ³					
Output High Voltage, Vон	$I_{SOURCE} = 400 \ \mu A$	2.4			V
Output Low Voltage, Vol	I _{SINK} = 3.2 mA			0.4	V
Three-State Leakage Current				10	μΑ
Three-State Output Capacitance			10		pF
ANALOG OUTPUTS ³					
Output Current ^{4, 5}	$R_{SET}=150~\Omega,R_L=37.5~\Omega$	33	34.7	37	mA
Output Current ⁶	$R_{\text{SET}} = 1041 \ \Omega, R_{\text{L}} = 262.5 \ \Omega$		5		mA
DAC-to-DAC Matching			2.0		%
Output Compliance, Voc		0		1.4	V
Output Impedance, Rout			30		kΩ
Output Capacitance, Cout	Iout = 0 mA			30	pF
POWER REQUIREMENTS ^{3, 7}					
V _{AA}		3.0	3.3	3.6	V
Normal Power Mode					
I _{DAC} (max) ⁸	$R_{SET}=150~\Omega,R_L=37.5~\Omega$		150	155	mA
l _{DAC} (min) ⁸	$R_{\text{SET}} = 1041 \ \Omega, R_{\text{L}} = 262.5 \ \Omega$		20		mA
lcct9			35		mA
Low Power Mode					
I _{DAC} (max) ⁸			80		mA
I _{DAC} (min) ⁸			20		mA
lcct ⁹			35		mA
Sleep Mode					
I _{DAC} ¹⁰			0.1		μΑ
Icct ¹¹			0.001		μΑ
Power Supply Rejection Ratio	COMP = 0.1 μF		0.01	0.5	%/%

¹ The min/max specifications are guaranteed over this range. The min/max values are typical over 3.0 V to 3.6 V.

² Ambient temperature range T_{MIN} to T_{MAX}: -40°C to +85°C. The die temperature, T_J, must always be kept below 110°C.

³ Guaranteed by characterization.

 4 Full drive into 37.5 Ω load.

 5 DACs can output 35 mA typically at 3.3 V (R_{SET} = 150 Ω and R_L = 37.5 Ω); optimum performance obtained at 18 mA DAC current (R_{SET} = 300 Ω and R_L = 75 Ω).

⁶ Minimum drive current (used with buffered/scaled output load).

⁷ Power measurements are taken with clock frequency = 27 MHz. Max $T_J = 110^{\circ}C$.

⁸ I_{DAC} is the total current (min corresponds to 5 mA output per DAC, max corresponds to 38 mA output per DAC) to drive all four DACs. Turning off individual DACs reduces I_{DAC} correspondingly.

⁹ I_{CCT} (circuit current) is the continuous current required to drive the device.

¹⁰ Total DAC current in sleep mode.

¹¹ Total continuous current during sleep mode.

DYNAMIC SPECIFICATIONS

 $V_{AA} = 5 V \pm 5\%^1$, $V_{REF} = 1.235 V$, $R_{SET} = 150 \Omega$. All specifications T_{MIN} to T_{MAX}^2 , unless otherwise noted.

Table 3.

Parameter	Conditions ¹	Min	Тур	Мах	Unit
Differential Gain ^{3, 4}	Normal power mode		0.3	0.7	%
Differential Phase ^{3, 4}	Normal power mode		0.4	0.7	Degrees
Differential Gain ^{3, 4}	Lower power mode		1.0	2.0	%
Differential Phase ^{3, 4}	Lower power mode		1.0	2.0	Degrees
SNR ^{3, 4} (Pedestal)	RMS		80		dB rms
SNR ^{3, 4} (Pedestal)	Peak periodic		70		dB p-p
SNR ^{3,4} (Ramp)	RMS		60		dB rms
SNR ^{3, 4} (Ramp)	Peak periodic		58		dB p-p
Hue Accuracy ^{3, 4}			0.7	1.2	Degrees
Color Saturation Accuracy ^{3, 4}			0.9	1.4	%
Chroma Nonlinear Gain ^{3, 4}	Referenced to 40 IRE		0.6		±%
Chroma Nonlinear Phase ^{3 4}			0.3	0.5	±Degrees
Chroma/Luma Intermod ^{3, 4}			0.2	0.4	±%
Chroma/Luma Gain Inequality ^{3, 4}			1.0	1.4	±%
Chroma/Luma Delay Inequality ^{3, 4}			0.5	2.0	ns
Luminance Nonlinearity ^{3, 4}			0.8	1.4	±%
Chroma AM Noise ^{3, 4}		82	85		dB
Chroma PM Noise ^{3, 4}		79	81		dB

¹ The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V.

² Ambient temperature range T_{MIN} to T_{MAX}: -40°C to +85°C. The die temperature, T_J, must always be kept below 110°C.

³ Guaranteed by characterization.

⁴ These specifications are for the low-pass filter only and are guaranteed by design.

V_{AA} = 3.0 V to 3.6 V¹, V_{REF} = 1.235 V, R_{SET} = 150 Ω . All specifications T_{MIN} to T_{MAX}^2 , unless otherwise noted.

Table 4.

Parameter	Conditions ¹	Min Typ	Max	Unit
Differential Gain ³	Normal power mode	1.0		%
Differential Phase ³	Normal power mode	0.5		Degrees
Differential Gain ³	Lower power mode	0.6		%
Differential Phase ³	Lower power mode	0.5		Degrees
SNR3 (Pedestal)	RMS	78		dB rms
SNR3 (Pedestal)	Peak periodic	70		dB p-p
SNR3 (Ramp)	RMS	60		dB rms
SNR3 (Ramp)	Peak periodic	58		dB p-p
Hue Accuracy ³		1.0		Degrees
Color Saturation Accuracy ³		1.0		%
Luminance Nonlinearity ^{3, 4}		1.4		±%
Chroma AM Noise ^{3, 4}		80		dB
Chroma PM Noise ^{3, 4}		79		dB
Chroma Nonlinear Gain ^{3, 4}	Referenced to 40 IRE	0.6		±%
Chroma Nonlinear Phase ^{3, 4}		0.3	0.5	±Degrees
Chroma/Luma Intermod ^{3, 4}		0.2	0.4	±%

¹ The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V.

² Ambient temperature range T_{MIN} to T_{MAX}: -40°C to +85°C. The die temperature, T_J, must always be kept below 110°C.

³ Guaranteed by characterization.

⁴ These specifications are for the low-pass filter only and are guaranteed by design. For other internal filters, see Table 10.

TIMING SPECIFICATIONS

 V_{AA} = 4.75 V to 5.25 V¹, V_{REF} = 1.235 V, R_{SET} = 150 Ω . All specifications T_{MIN} to T_{MAX}^2 , unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Unit
MPU PORT ^{3, 4}					
SCLOCK Frequency		0		400	kHz
SCLOCK High Pulse Width, t ₁		0.6			μs
SCLOCK Low Pulse Width, t ₂		1.3			μs
Hold Time (Start Condition), t₃	After this period the first clock is generated	0.6			μs
Setup Time (Start Condition), t ₄	Relevant for repeated start condition	0.6			μs
Data Setup Time, t₅		100			ns
SDATA, SCLOCK Rise Time, t₀				300	ns
SDATA, SCLOCK Fall Time, t ₇				300	ns
Setup Time (Stop Condition), t_8		0.6			μs
ANALOG OUTPUTS ^{3, 5}					
Analog Output Delay			7		ns
DAC Analog Output Skew			0		ns
CLOCK CONTROL AND PIXEL PORT ^{5, 6}					
fсlocк			27		MHz
Clock High Time, t ₉		8			ns
Clock Low Time, t ₁₀		8			ns
Data Setup Time, t ₁₁		3.5			ns
Data Hold Time, t ₁₂		4			ns
Control Setup Time, t ₁₁		4			ns
Control Hold Time, t ₁₂		3			ns
Digital Output Access Time, t ₁₃			11	16	ns
Digital Output Hold Time, t144			8		ns
Pipeline Delay, t ₁₅ 4			48		Clock cycles
TELETEXT ^{3, 4, 7}					
Digital Output Access Time, t ₁₆			20		ns
Data Setup Time, t ₁₇			2		ns
Data Hold Time, t ₁₈			6		ns
RESET CONTROL ^{3, 4}					
RESET Low Time		6			ns

¹ The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V range.

² Ambient temperature range T_{MIN} to T_{MAX}: -40°C to +85°C. The die temperature, T_J, must always be kept below 110°C. ³ TTL input values are 0 V to 3 V, with input rise/fall times ≤ 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load \leq 10 pF.

⁴ Guaranteed by characterization

- ⁵ Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.
- ⁶ Pixel port consists of the following:

Pixel inputs: P15-P0

HSYNC, FIELD/VSYNC, BLANK Pixel controls:

Clock input: CLOCK

⁷ Teletext port consists of the following:

Teletext output: TTXREQ

Teletext input: TTX

 V_{AA} = 3.0 V to 3.6 V¹, V_{REF} = 1.235 V, R_{SET} = 150 Ω . All specifications T_{MIN} to T_{MAX}^2 , unless otherwise noted.

Table 6.

Parameter	Conditions	Min	Тур	Max	Unit
MPU PORT ^{3, 4}					
SCLOCK Frequency		0		400	kHz
SCLOCK High Pulse Width, t ₁		0.6			μs
SCLOCK Low Pulse Width, t ₂		1.3			μs
Hold Time (Start Condition), t₃	After this period the first clock is generated	0.6			μs
Setup Time (Start Condition), t ₄	Relevant for repeated start condition	0.6			μs
Data Setup Time, t₅		100			ns
SDATA, SCLOCK Rise Time, t ₆				300	ns
SDATA, SCLOCK Fall Time, t ₇				300	ns
Setup Time (Stop Condition), t ₈		0.6			μs
ANALOG OUTPUTS ^{3, 5}					
Analog Output Delay			7		ns
DAC Analog Output Skew			0		ns
CLOCK CONTROL AND PIXEL PORT ^{4, 5, 6}					
fсlock			27		MHz
Clock High Time, t ₉		8			ns
Clock Low Time, t ₁₀		8			ns
Data Setup Time, t ₁₁		3.5			ns
Data Hold Time, t ₁₂		4			ns
Control Setup Time, t ₁₁		4			ns
Control Hold Time, t ₁₂		3			ns
Digital Output Access Time, t ₁₃			12		ns
Digital Output Hold Time, t ₁₄			8		ns
Pipeline Delay, t ₁₅			48		Clock cycles
TELETEXT ^{3, 4, 7}					
Digital Output Access Time, t ₁₆			23		ns
Data Setup Time, t ₁₇			2		ns
Data Hold Time, t ₁₈			6		ns
RESET CONTROL ^{3, 4}				_	
RESET Low Time		6			ns

¹ The max/min specifications are guaranteed over this range. The max/min values are typical over 3.0 V to 3.6 V range.

² Ambient temperature range T_{MIN} to T_{MAX}: -40°C to +85°C. The die temperature, T_J, must always be kept below 110°C.

³ TTL input values are 0 V to 3 V, with input rise/fall times ≤3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load ≤10 pF.

⁴ Guaranteed by characterization

⁵ Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition

⁶ Pixel Port consists of the following:

Pixel inputs: P15–P0

Pixel controls: HSYNC, FIELD/VSYNC, BLANK

Clock input: CLOCK

⁷ Teletext port consists of the following:

Teletext output: TTXREQ

Teletext input: TTX

TIMING DIAGRAMS

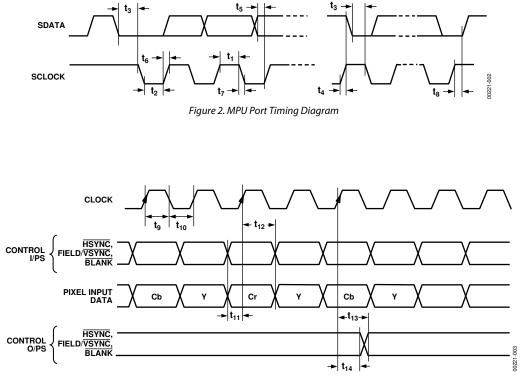
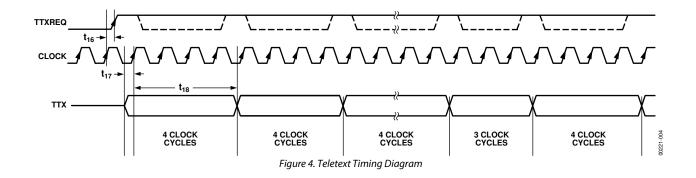



Figure 3. Pixel and Control Data Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 7.

Parameter	Rating
V _{AA} to GND	7 V
Voltage on Any Digital Input Pin	$GND-0.5V$ to $V_{AA}+0.5V$
Storage Temperature (T _s)	–65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (Soldering, 10 sec)	260°C
Analog Outputs to GND ¹	$GND-0.5V$ to V_{AA}

¹ Analog output short circuit to any power supply or GND can be of an indefinite duration.

PACKAGE THERMAL PERFORMANCE

The 44-MQFP package used for this device takes advantage of an ADI patented thermal coastline lead frame construction. This maximizes heat transfer into the leads and reduces the package thermal resistance.

For the MQFP package, the junction-to-ambient (θ_{JA}) thermal resistance in still air on a four-layer PCB is 35.5°C/W. The junction-to-case thermal resistance (θ_{JC}) is 13.75°C/W. For the TQFP package, θ_{JA} in still air on a four-layer PCB is 53.2°C/W. θ_{JC} is 11.1°C/W. Junction Temperature = $T_J = [V_{AA} (\Sigma DAC Output Current + I_{CCT}) \times \theta_{JA}] + Ambient Temperature.$

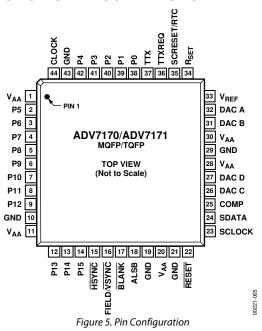
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 8. Allowable Operating Conditions for KS and KSU
Package Options

		KS, WBS	KSU	
Conditions	3 V	5 V	3 V	5 V
4 DAC ON Double 75R ¹	Yes	+70°C max	+70°C max	No
4 DAC ON Low Power ²	Yes	Yes	Yes	No
4 DAC ON Buffering ³	Yes	Yes	Yes	Yes
3 DAC ON Double 75R	Yes	Yes	Yes	No
3 DAC ON Low Power	Yes	Yes	Yes	Yes
3 DAC ON Buffering	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes		
4 DAC ON Buffering	Yes	Yes		

¹ DAC ON Double 75R refers to a condition where the DACs are terminated in a double 75R load and low power mode is disabled.

² DAC ON Low Power refers to a condition where the DACs are terminated in a double 75R load and low power mode is enabled.


³ DAC ON Buffering refers to a condition where the DAC current is reduced to 5 mA and external buffers are used to drive the video load.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 9. Pin Function Descriptions

		Input/	
Pin No.	Mnemonic	Output	Description
1, 11, 20, 28, 30	V _{AA}	Р	Power Supply (3 V to 5 V).
2 to 9, 12 to 14, 38 to 42	P15 to P0	1	8-Bit 4:2:2 Multiplexed YCrCb Pixel Port (P7 to P0) or 16-Bit YCrCb Pixel Port (P15 to P0). P0 represents the LSB.
10, 19, 21, 29, 43	GND	G	Ground Pin.
15	HSYNC	I/O	HSYNC (Mode 1 and Mode 2) Control Signal. This pin may be configured to output (master mode) or accept (slave mode) sync signals.
16	FIELD/VSYNC	I/O	Dual Function FIELD (Mode 1) and VSYNC (Mode 2) Control Signal. This pin may be configured to output (master mode) or accept (slave mode) these control signals.
17	BLANK	I/O	Video Blanking Control Signal. The pixel inputs are ignored when this is Logic Level 0. This signal is optional.
18	ALSB	I	TTL Address Input. This signal sets up the LSB of the MPU address.
22	RESET	1	The input resets the on-chip timing generator and sets the ADV7170/ADV7171 into default mode. This is NTSC operation, Timing Slave Mode 0, 8-bit operation, 2 × composite and S-Video out, and DAC B powered on and DAC D powered off.
23	SCLOCK	1	MPU Port Serial Interface Clock Input.
24	SDATA	I/O	MPU Port Serial Data Input/Output.
25	COMP	0	Compensation Pin. Connect a 0.1 μ F capacitor from COMP to V _{AA} . For optimum dynamic performance in low power mode, the value of the COMP capacitor can be lowered to as low as 2.2 nF.
26	DAC C	0	RED/S-Video C/V Analog Output.
27	DAC D	0	GREEN/S-Video Y/Y Analog Output.
31	DAC B	0	BLUE/Composite/U Analog Output.
32	DAC A	0	PAL/NTSC Composite Video Output. Full-scale output is 180 IRE (1286 mV) for NTSC and 1300 mV for PAL.
33	VREF	I/O	Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).
34	R _{set}	I	A 150 Ω resistor connected from this pin to GND is used to control full-scale amplitudes of the video signals.

Pin No.	Mnemonic	Input/ Output	Description
35	SCRESET/RTC	I	This pin can be configured as an input by setting MR22 and MR21 of Mode Register 2. It can be configured as a subcarrier reset pin, in which case a low-to-high transition on this pin resets the subcarrier to Field 0. Alternatively, it may be configured as a real-time control (RTC) input.
36	TTXREQ	0	Teletext Data Request Signal. Defaults to GND when teletext not selected. Enables backward compatibility to ADV7175/ADV7176.
37	ттх	I	Teletext Data. Defaults to V_{AA} when teletext not selected. Enables backward compatibility to ADV7175/ADV7176.
44	CLOCK	I	TTL Clock Input. Requires a stable 27 MHz reference clock for standard operation. Alternatively, a 24.5454 MHz (NTSC) or 29.5 MHz (PAL) can be used for square pixel operation.

GENERAL DESCRIPTION

The ADV7170/ADV7171 are integrated digital video encoders that convert digital CCIR-601 4:2:2 8- or 16-bit component video data into a standard analog baseband television signal compatible with worldwide standards.

The on-board SSAF (super sub-alias filter) with extended luminance frequency response and sharp stop band attenuation enables studio-quality video playback on modern TVs, giving optimal horizontal line resolution.

An advanced power management circuit enables optimal control of power consumption in both normal operating modes and power-down or sleep modes.

The ADV7170/ADV7171 support both PAL and NTSC square pixel operation. The parts also incorporate WSS and CGMS-A data control generation.

The output video frames are synchronized with the incoming data timing reference codes. Optionally, the encoder accepts and can generate HSYNC, VSYNC, and FIELD timing signals. These timing signals can be adjusted to change pulse width and position while the part is in the master mode. The encoder requires a single, two-times pixel rate (27 MHz) clock for standard operation. Alternatively, the encoder requires a 24.5454 MHz clock for NTSC or 29.5 MHz clock for PAL square pixel mode operation. All internal timing is generated on-chip.

A separate teletext port enables the user to directly input teletext data during the vertical blanking interval.

The ADV7170/ADV7171 modes are set up over a 2-wire, serial bidirectional port (I²C-compatible) with two slave addresses.

Functionally, the ADV7170 and ADV7171 are the same with the exception that the ADV7170 can output the Macrovision anticopy algorithm.

The ADV7170/ADV7171 are packaged in a 44-lead MQFP package and a 44-lead TQFP package.

DATA PATH DESCRIPTION

For PAL B/D/G/H/I/M/N, and NTSC M and N modes, YcrCb 4:2:2 data is input via the CCIR-656 compatible pixel port at a 27 MHz data rate. The pixel data is demultiplexed to form three data paths. Y typically has a range of 16 to 235; Cr and Cb typically have a range of 128 \pm 112. However, it is possible to input data from 1 to 254 on Y, Cb, and Cr. The ADV7170/ADV7171 support PAL (B, D, G, H, I, M, N) and NTSC (with and without pedestal) standards. The appropriate SYNC, BLANK, and burst levels are added to the YCrCb data. Macrovision antitaping (ADV7170 only), closed-captioning, and teletext levels are also added to Y, and the resultant data is interpolated to a rate of 27 MHz. The interpolated data is filtered and scaled by three digital FIR filters.

The U and V signals are modulated by the appropriate subcarrier sine/cosine phases and added together to make up the chrominance signal. The luma (Y) signal can be delayed 1 to 3 luma cycles (each cycle is 74 ns) with respect to the chroma signal. The luma and chroma signals are then added together to make up the composite video signal. All edges are slew rate limited.

The YCrCb data is also used to generate RGB data with appropriate SYNC and BLANK levels. The RGB data is in synchronization with the composite video output. Alternatively, analog YUV data can be generated instead of RGB.

The four 10-bit DACs can be used to output the following:

Composite video + RGB video.

Composite video + YUV video.

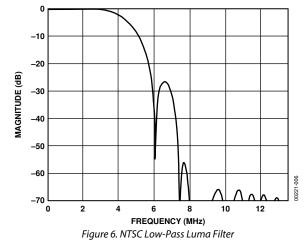
Two composite video signals + LUMA and CHROMA (Y/C) signals.

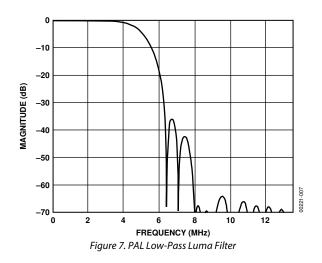
Alternatively, each DAC can be individually powered off if not required.

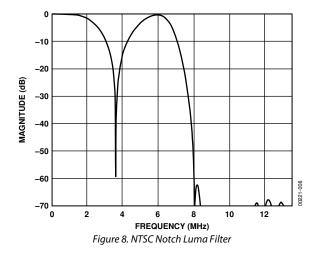
Video output levels are illustrated in Appendix 6-Waveforms.

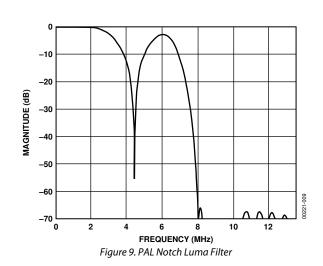
INTERNAL FILTER RESPONSE

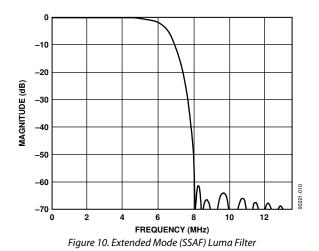
The Y filter supports several different frequency responses, including two low-pass responses, two notch responses, an extended (SSAF) response, a CIF response, and a QCIF response. The UV filter supports several different frequency responses, including four low-pass responses, a CIF response, and a QCIF response that are shown in Table 10 and Table 11 and Figure 6 to Figure 18.

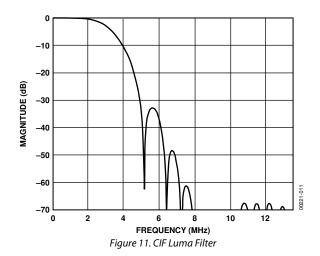

	Filter Selection		Pass-Band Ripple	3 dB Bandwidth	Stop-Band	Stop-Band Attenuation	
Filter Type	MR04	MR03	MR02	(dB)	(MHz)	Cutoff (MHz)	(dB)
Low Pass (NTSC)	0	0	0	0.091	4.157	7.37	-56
Low Pass (PAL)	0	0	1	0.15	4.74	7.96	-64
Notch (NTSC)	0	1	0	0.015	6.54	8.3	-68
Notch (PAL)	0	1	1	0.095	6.24	8.0	-66
Extended (SSAF)	1	0	0	0.051	6.217	8.0	-61
CIF	1	0	1	0.018	3.0	7.06	-61
QCIF	1	1	0	Monotonic	1.5	7.15	-50

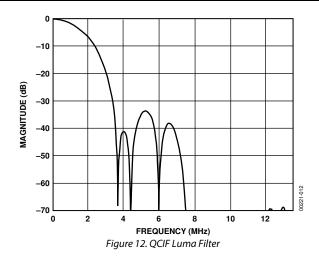

Table 10. Luminance Internal Filter Specifications

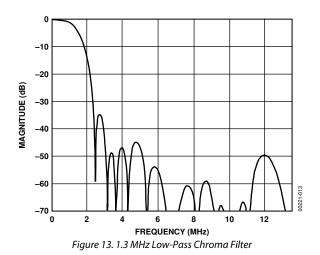

Table 11. Chrominance Internal Filter Specifications

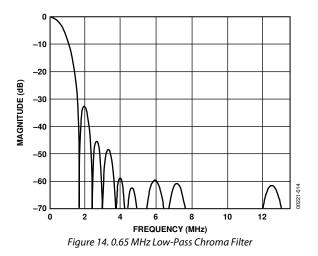

Filter Type	Filt MR07	er Select MR06	ion MR05	Pass-Band Ripple (dB)	3 dB Bandwidth (MHz)	Stop-Band Cutoff (MHz)	Stop-Band Attenuation (dB)
1.3 MHz Low Pass	0	0	0	0.084	1.395	3.01	-45
.65 MHz Low Pass	0	0	1	Monotonic	0.65	3.64	-58.5
1.0 MHz Low Pass	0	1	0	Monotonic	1.0	3.73	-49
2.0 MHz Low Pass	0	1	1	0.0645	2.2	5.0	-40
Reserved	1	0	0				
CIF	1	0	1	0.084	0.7	3.01	-45
QCIF	1	1	0	Monotonic	0.5	4.08	-50

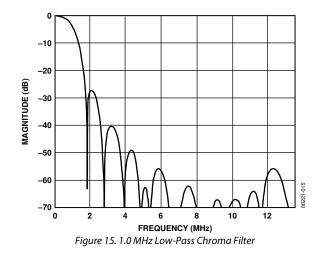

TYPICAL PERFORMANCE CHARACTERISTICS

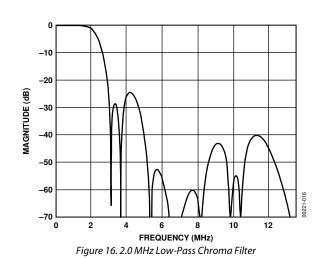


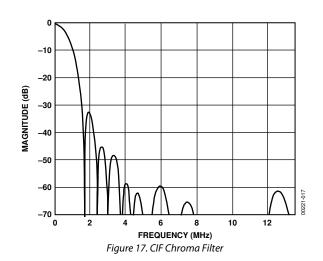


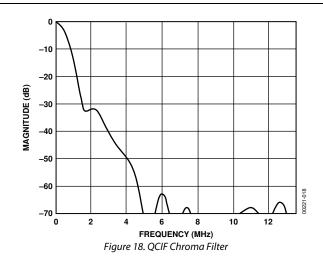












FEATURES COLOR BAR GENERATION

The ADV7170/ADV7171 can be configured to generate 100/7.5/75/7.5 color bars for NTSC or 100/0/75/0 color bars for PAL. These are enabled by setting MR17 of Mode Register 1 to Logic Level 1.

SQUARE PIXEL MODE

The ADV7170/ADV7171 can be used to operate in square pixel mode. For NTSC operation, an input clock of 24.5454 MHz is required. Alternatively, for PAL operation, an input clock of 29.5 MHz is required. The internal timing logic adjusts accordingly for square pixel mode operation. When the ADV7171 is configured for PAL square pixel mode, it supports 768 active pixels per line. NTSC square pixel mode supports 640 active pixels per line.

COLOR SIGNAL CONTROL

The color information can be switched on and off the video output using Bit MR24 of Mode Register 2.

BURST SIGNAL CONTROL

The burst information can be switched on and off the video output using Bit MR25 of Mode Register 2.

NTSC PEDESTAL CONTROL

The pedestal on both odd and even fields can be controlled on a line-by-line basis using the NTSC pedestal control registers. This allows the pedestals to be controlled during the vertical blanking interval.

PIXEL TIMING DESCRIPTION

The ADV7170/ADV7171 operate in either 8-bit or 16-bit YCrCb mode.

8-Bit YCrCb Mode

This default mode accepts multiplexed YCrCb inputs through the P7 to P0 pixel inputs. The inputs follow the sequence Cb0, Y0 Cr0, Y1 Cb1, Y2, and so on. The Y, Cb, and Cr data are input on a rising clock edge.

16-Bit YCrCb Mode

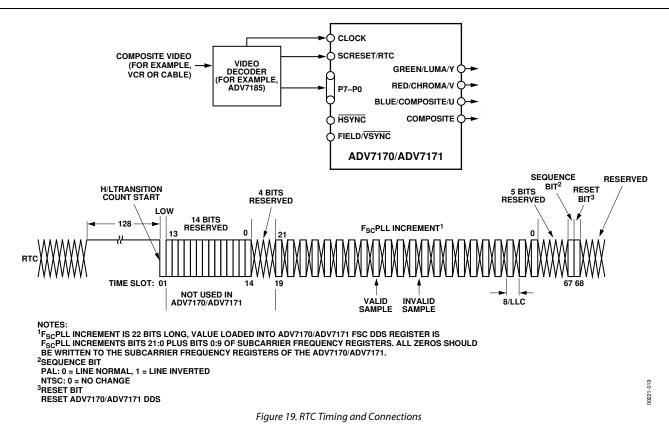
This mode accepts Y inputs through the P7 to P0 pixel inputs and multiplexed CrCb inputs through the P15 to P8 pixel inputs. The data is loaded on every second rising edge of CLOCK. The inputs follow the sequence Cb0, Y0 Cr0, Y1 Cb1, Y2, and so on.

SUBCARRIER RESET

Together with the SCRESET/RTC pin and Bit MR22 and Bit MR21 of Mode Register 2, the ADV7170/ADV7171 can be used in subcarrier reset mode. The subcarrier resets to Field 0 at the start of the following field when a low-to-high transition occurs on this input pin.

REAL-TIME CONTROL

Together with the SCRESET/RTC pin and Bit MR22 and Bit MR21 of Mode Register 2, the ADV7170/ADV7171 can be used to lock to an external video source. The real-time control mode allows the ADV7170/ADV7171 to automatically alter the subcarrier frequency to compensate for line length variation. When the part is connected to a device that outputs a digital data stream in the RTC format (such as a ADV7185 video decoder, shown in Figure 19), the part automatically changes to the compensated subcarrier frequency on a line-by-line basis. This digital data stream is 67 bits wide, and the subcarrier is contained in Bit 0 to Bit 21. Each bit is 2 clock cycles long. 00Hex should be written into all four subcarrier frequency registers when using this mode.


VIDEO TIMING DESCRIPTION

The ADV7170/ADV7171 are intended to interface to off-theshelf MPEG1 and MPEG2 decoders. Consequently, the ADV7170/ADV7171 accept 4:2:2 YCrCb pixel data via a CCIR-656 pixel port, and they have several video timing modes of operation that allow them to be configured as either system master video timing generators or as slaves to the system video timing generator. The ADV7170/ADV7171 generate all of the required horizontal and vertical timing periods and levels for the analog video outputs.

The ADV7170/ADV7171 calculate the width and placement of analog sync pulses, blanking levels, and color burst envelopes. Color bursts are disabled on appropriate lines, and serration and equalization pulses are inserted where required.

In addition, the ADV7170/ADV7171 support a PAL or NTSC square pixel operation in slave mode. The part requires an input pixel clock of 24.5454 MHz for NTSC and an input pixel clock of 29.5 MHz for PAL. The internal horizontal line counters place the various video waveform sections in the correct location for the new clock frequencies.

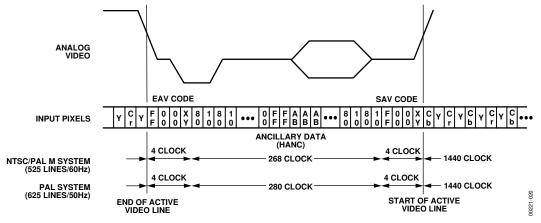
The ADV7170/ADV7171 have four distinct master and four distinct slave timing configurations. Timing Control is established with the bidirectional SYNC, BLANK, and FIELD/VSYNC pins. Timing Mode Register 1 can also be used to vary the timing pulse widths where they occur in relation to each other.

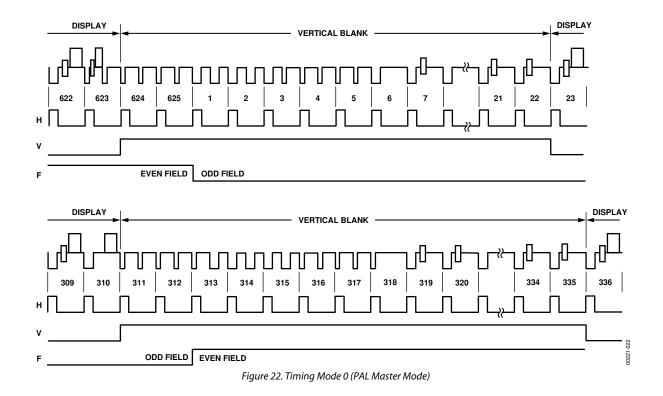
Vertical Blanking Data Insertion

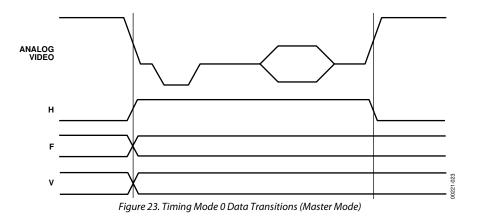
It is possible to allow encoding of incoming YCbCr data on those lines of VBI that do not bear line sync or pre-/postequalization pulses (see Figure 21 to Figure 32). This mode of operation is called "partial blanking" and is selected by setting MR32 to 1. It allows the insertion of any VBI data (opened VBI) into the encoded output waveform. This data is present in the digitized incoming YcbCr data stream (for example, WSS data, CGMS, VPS, and so on). Alternatively, the entire VBI may be blanked (no VBI data inserted) on these lines by setting MR32 to 0.

Mode 0 (CCIR-656): Slave Option (Timing Register 0 TR0 = X X X X X 0 0 0)

The ADV7170/ADV7171 are controlled by the SAV (start active video) and EAV (end active video) time codes in the pixel data. All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after each line during active picture and retrace. Mode 0 is shown in Figure 20. The HSYNC, FIELD/VSYNC, and BLANK (if not used) pins should be tied high during this mode.

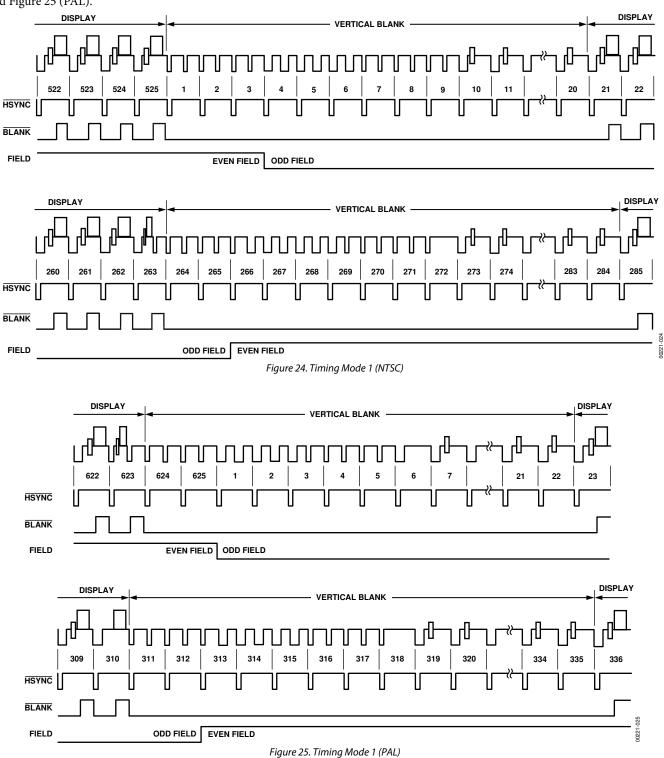




Figure 20. Timing Mode 0 (Slave Mode)


Mode 0 (CCIR-656): Master Option

(Timing Register 0 TR0 = X X X X X 0 0 1)

The ADV7170/ADV7171 generate H, V, and F signals required for the SAV (start active video) and EAV (end active video) time codes in the CCIR656 standard. The H bit is output on the HSYNC pin, the V bit is output on the BLANK pin, and the F bit is output on the FIELD/VSYNC pin. Mode 0 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL). The H, V, and F transitions relative to the video waveform are illustrated in Figure 23.



Mode 1: Slave Option HSYNC, BLANK, FIELD

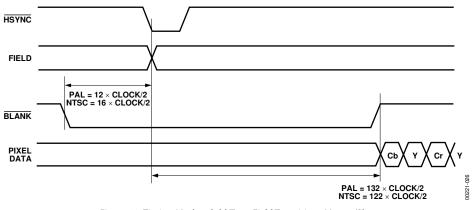
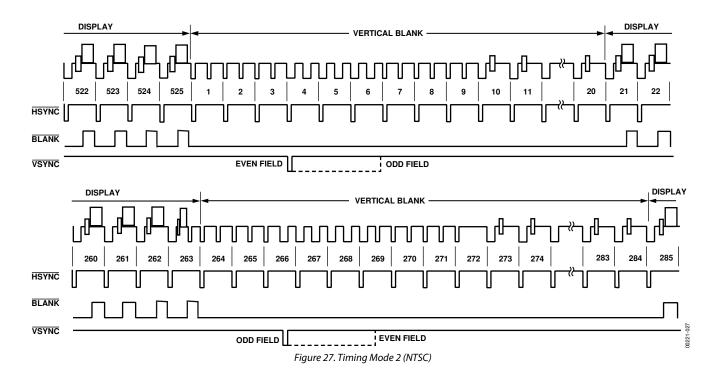
(Timing Register 0 TR0 = X X X X X 0 1 0)

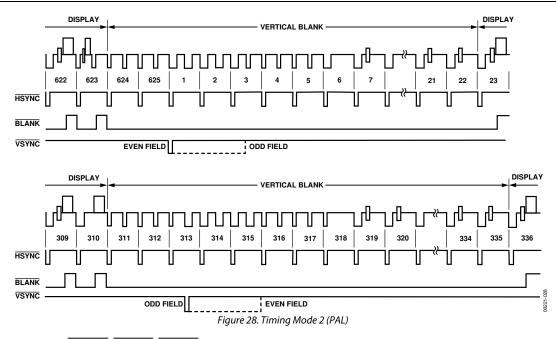
In this mode the ADV7170/ADV7171 accept horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when HSYNC is low indicates a new frame, that is, vertical retrace. The BLANK signal is optional. When the BLANK input is disabled, the ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Mode 1 is illustrated in Figure 24 (NTSC) and Figure 25 (PAL).

Mode 1: Master Option HSYNC, BLANK, FIELD

(Timing Register 0 TR0 = X X X X X 0 1 1)

In this mode the ADV7170/ADV7171 can generate horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when HSYNC is low indicates a new frame, that is, vertical retrace. The BLANK signal is optional. When the BLANK input is disabled, the ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Pixel data is latched on the rising clock edge following the timing signal transitions. Mode 1 is shown in Figure 24 (NTSC) and Figure 25 (PAL). Figure 26 illustrates the HSYNC, BLANK, and FIELD for an odd or even field transition relative to the pixel data.


Figure 26. Timing Mode 1 Odd/Even Field Transitions Master/Slave

Mode 2: Slave Option HSYNC, VSYNC, BLANK

(Timing Register 0 TR0 = X X X X X 1 0 0)

In this mode the ADV7170/ADV7171 accept horizontal and vertical SYNC signals. A coincident low transition of both HSYNC and <u>VSYNC</u> inputs indicates the start of an odd field. A <u>VSYNC</u> low transition when <u>HSYNC</u> is high indicates the start of an even field. The BLANK signal is optional. When the BLANK input is disabled, the ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Mode 2 is illustrated in Figure 27 (NTSC) and Figure 28 (PAL).

Mode 2: Master Option HSYNC, VSYNC, BLANK

(Timing Register 0 TR0 = X X X X X 1 0 1)

In this mode the ADV7170/ADV7171 can generate horizontal and vertical SYNC signals. A coincident low transition of both HSYNC and VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of an even field. The BLANK signal is optional. When the BLANK input is disabled, the ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Mode 2 is shown in Figure 27 (NTSC) and Figure 28 (PAL). Figure 29 shows the HSYNC, BLANK, and VSYNC for an even-to-odd field transition relative to the pixel data. Figure 30 shows the HSYNC, BLANK, and VSYNC for an odd-to-even field transition relative to the pixel data.

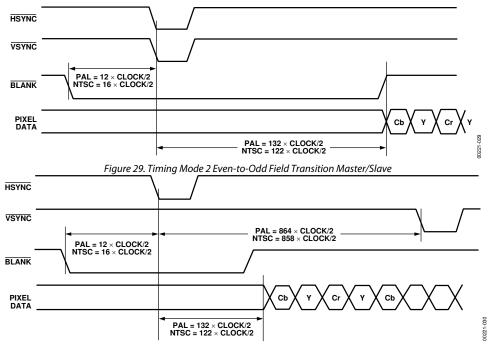
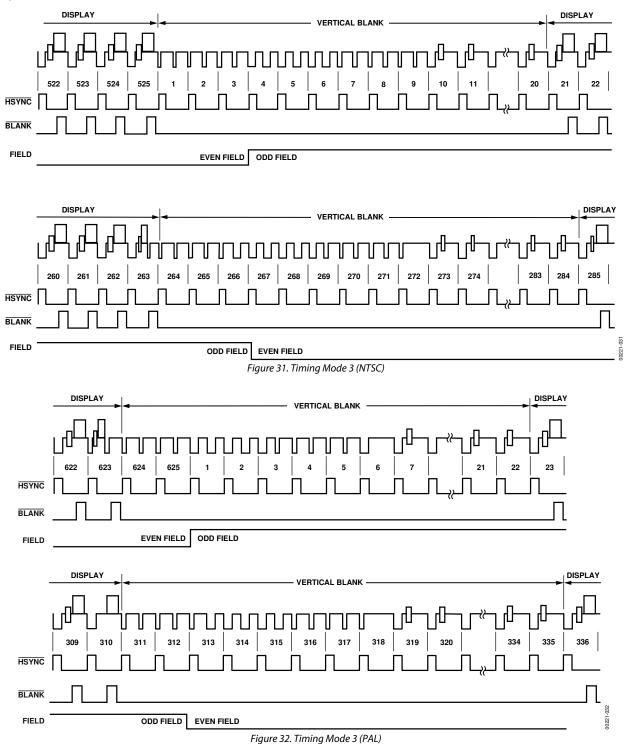



Figure 30. Timing Mode 2 Odd-to-Even Field Transition Master/Slave

Mode 3: Master/Slave Option HSYNC, BLANK, FIELD

(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)

In this mode the ADV7170/ADV7171 accept or generate horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when HSYNC is high indicates a new frame, that is, vertical retrace. The BLANK signal is optional. When the BLANK input is disabled, the ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Mode 3 is shown in Figure 31 (NTSC) and Figure 32 (PAL).

