mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Multiformat 216 MHz Video Encoder with Six NSV[®] 12-Bit DACs

ADV7320/ADV7321

FEATURES

High definition (HD) input formats 16-/20-, 24-/30-bit (4:2:2, 4:4:4) parallel YCrCb **Fully compliant with** SMPTE 274M (1080i, 1080p @ 74.25 MHz) SMPTE 296M (720p) SMPTE 240M (1035i) RGB in 3-bit × 10-bit 4:4:4 input format **HDTV RGB supported RGB, RGBHV** Other HD formats using async timing mode **Enhanced definition (ED) input formats** 8-/10-, 16-/20-, 24-/30-bit (4:2:2, 4:4:4) parallel YCrCb SMPTE 293M (525p) BTA T-1004 EDTV2 (525p) ITU-R BT.1358 (625p/525p) ITU-R BT.1362 (625p/525p) RGB in 3-bit × 10-bit 4:4:4 input format Standard definition (SD) input formats CCIR-656 4:2:2 8-/10-bit or 16-/20-bit parallel input **HD** output formats YPrPb HDTV (EIA 770.3) **RGB**, **RGBHV** CGMS-A (720p/1080i) **ED output formats** Macrovision® Rev 1.2 (525p/625p) (ADV7320 only) CGMS-A (525p/625p) YPrPb progressive scan (PS) (EIA-770.1, EIA-770.2) **RGB**, **RGBHV SD** output formats Composite NTSC M/N Composite PAL M/N/B/D/G/H/I, PAL-60 SMPTE 170M NTSC-compatible composite video ITU-R BT.470 PAL-compatible composite video S-video (Y/C) EuroScart RGB Component YPrPb (Betacam, MII, SMPTE/EBU N10) Macrovision Rev 7.1.L1 (ADV7320 only) CGMS/WSS **Closed captioning**

GENERAL FEATURES

Simultaneous SD/HD or PS/SD inputs and outputs Oversampling up to 216 MHz Programmable DAC gain control Sync outputs in all modes

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

On-board voltage reference

Six 12-bit NSV (noise shaped video) precision video DACs 2-wire serial I²C® interface, open-drain configuration Dual I/O supply 2.5 V/3.3 V operation Analog and digital supply 2.5 V On-board PLL 64-lead LQFP package Lead (Pb) free product

APPLICATIONS

EVD (enhanced versatile disk) players High-end SD/PS DVD recorders/players SD/PS/HDTV display devices SD/HDTV set top boxes Professional video systems

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADV*7320/ADV7321 are high speed, digital-to-analog encoders on single monolithic chips. They include six high speed NSV video DACs with TTL-compatible inputs. They have separate 8-/10-, 16-/20-, and 24-/30-bit input ports that accept data in high definition (HD) and/or standard definition (SD) video format. For all standards, external horizontal, vertical, and blanking signals, or EAV/SAV timing codes, control the insertion of appropriate synchronization signals into the digital data stream and, therefore, the output signal.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2006 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
General Features 1
Applications1
Functional Block Diagram1
General Description
Revision History
Detailed Features
Terminology
Specifications
Dynamic Specifications7
Timing Specifications
Timing Diagrams9
Absolute Maximum Ratings16
Thermal Characteristics
ESD Caution16
Pin Configuration and Function Descriptions17
Typical Performance Characteristics 19
MPU Port Description
Register Access
Register Programming25
Subaddress Register (SR7 to SR0)
Input Configuration
SD Only
PS Only or HDTV Only
Simultaneous SD/PS or SD/HDTV
PS at 27 MHz (Dual Edge) or 54 MHz
Features
Output Configuration
HD Async Timing Mode
HD Timing Reset
SD Real-Time Control, Subcarrier Reset, and Timing Reset43

	Reset Sequence	45
	SD VCR FF/RW Sync	45
	Vertical Blanking Interval	46
	Subcarrier Frequency Registers	46
	Square Pixel Timing Mode	47
	Filters	48
	Color Controls and RGB Matrix	49
	Programmable DAC Gain Control	53
	Gamma Correction	53
	HD Sharpness Filter and Adaptive Filter Controls	55
	HD Sharpness Filter and Adaptive Filter Application Examples	56
	SD Digital Noise Reduction	57
	Coring Gain Border	58
	Coring Gain Data	58
	DNR Threshold	58
	Border Area	58
	Block Size Control	58
	DNR Input Select Control	58
	DNR Mode Control	59
	Block Offset Control	59
	SD Active Video Edge	59
	SAV/EAV Step-Edge Control	59
	HSYNC/VSYNC Output Control	61
В	oard Design and Layout	62
	DAC Termination and Layout Considerations	62
	Video Output Buffer and Optional Output Filter	62
	PCB Board Layout	63
A	ppendix 1—Copy Generation Management System	65
	PS CGMS	65
	HD CGMS	65
	SD CGMS	65

CGMS Functionality65
Appendix 2—SD Wide Screen Signaling68
Appendix 3—SD Closed Captioning69
Appendix 4—Test Patterns70
Appendix 5—SD Timing Modes73
Mode 0 (CCIR-656)—Slave Option (Timing Register 0 TR0 = X X X X X 0 0 0)73
Mode 0 (CCIR-656)—Master Option (Timing Register 0 TR0 = X X X X X 0 0 1)74
Mode 1—Slave Option (Timing Register 0 TR0 = X X X X X 0 1 0)76
Mode 1—Master Option (Timing Register 0 TR0 = X X X X X 0 1 1)77
Mode 2— Slave Option (Timing Register 0 TR0 = X X X X X 1 0 0)78

REVISION HISTORY

5/06—Rev. 0 to Rev. A	
Replaced Figure 11	12
Changes to Table 25	41

10/04—Revision 0: Initial Version

Mode 2—Master Option (Timing Register 0 TR0 = X X X X X 1 0 1)79
Mode 3—Master/Slave Option (Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)80
Appendix 6—HD Timing81
Appendix 7—Video Output Levels82
HD YPrPb Output Levels82
RGB Output Levels83
YPrPb Levels—SMPTE/EBU N1084
Appendix 8—Video Standards86
Outline Dimensions
Ordering Guide88

DETAILED FEATURES Table 1. Standards Directly Supported ¹					
HD programmable features (720p/1080i/1035i)			Frame	Clock	
2× oversampling (148.5 MHz)	Posolution	Intoriaco/PS	Rate	Input	Standard
Internal test pattern generator	720 × 480		20.07	27	
Color hatch, black bar, flat field/frame	720 × 400	1	29.97	27	BT.656
Fully programmable YCrCb to RGB matrix	720 × 576	1	25	27	ITU-R
Gamma correction		-			BT.656
Programmable adaptive filter control	720×480	1	29.97	24.54	NTSC
Programmable sharpness filter control					Square
CGMS-A (720p/1080i)					Pixel
ED programmable features (525p/625p)	720 × 576	1	25	29.5	PAL
8× oversampling (216 MHz output)					Pixel
Internal test pattern generator	720 × 483	Р	59 94	27	SMPTE
Color hatch, black bar, flat frame	7207(105		55.51	27	293M
Individual Y and PrPb output delay	720 × 483	Р	59.94	27	BTA T-1004
Gamma correction	720 × 483	Р	59.94	27	ITU-R
Programmable adaptive filter control					BT.1358
Fully programmable YCrCb to RGB matrix	720 × 576	Р	50	27	ITU-R
Undershoot limiter					BT.1358
Macrovision Rev 1.2 (525p/625p) (ADV7320 only)	720 × 483	Р	59.94	27	ITU-R
CGMS-A (525p/625p)	720 576	D	50	27	B1.1362
SD programmable features	720 × 576	٢	50	27	HU-R BT 1362
16× oversampling (216 MHz)	1920 × 1035		30	74 25	SMPTE
Internal test pattern generator	1920 × 1055		29.97	74 1758	240M
Color bars, black bar	1280 × 720	Р	60 50	74.25	SMPTE
Controlled edge rates for start and end of active video	1200 / / 20		30, 25,	/ 1.25	296M
Individual Y and PrPb output delay			24		
Undershoot limiter			23.97,	74.1758	
Gamma correction			59.94,		
Digital noise reduction (DNR)	1000 1000		29.97	74.25	CMDTE
Multiple chroma and luma filters	1920 × 1080	1	30, 25	74.25	SMPTE
Luma-SSAF™ filter with programmable gain/attenuation	1000 1000		29.97	74.1758	
PrPb SSAF™	1920 × 1080	Р	30, 25,	/4.25	SMPTE
Separate pedestal control on component and composite/S-video output			23.98,	74.1758	274101
VCR FF/RW sync mode		1	29.91		<u> </u>
Macrovision Rev 7.1.L1 (ADV7320 only)	¹ Other standard	s are supported in	async timing	mode.	

CGMS/WSS

Closed captioning

TERMINOLOGY

SD: standard definition video, conforming to ITU-R BT.601/ITU-R BT.656.

HD: high definition video, that is, 720p/1080i/1035i.

EDTV: enhanced definition television (525p/625p).

PS: progressive scan video, conforming to SMPTE 293M, ITU-R BT.1358, BTA T-1004 EDTV2, or ITU-R BT.13621362.

HDTV: high definition television video, conforming to SMPTE 274M, or SMPTE 296M and SMPTE 240M.

YCrCb SD, PS, or HD component: digital video.

YPrPb SD, PS, or HD component: analog video.

SPECIFICATIONS

 $V_{AA} = 2.375 \text{ V to } 2.625 \text{ V}, V_{DD} = 2.375 \text{ V to } 2.625 \text{ V}, V_{DD_{-}IO} = 2.375 \text{ V to } 3.6 \text{ V}, V_{REF} = 1.235 \text{ V}, R_{SET} = 3040 \Omega, R_{LOAD} = 300 \Omega. \text{ All specifications } T_{MIN} \text{ to } T_{MAX} (0^{\circ}\text{C to } 70^{\circ}\text{C}), \text{ unless otherwise noted.}$

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions
STATIC PERFORMANCE ¹					
Resolution		12		Bits	
Integral Nonlinearity		1.5		LSB	
Differential Nonlinearity, ² +ve		0.25		LSB	
Differential Nonlinearity, ² –ve		1.5		LSB	
DIGITAL OUTPUTS					
Output Low Voltage, Vol			0.4 [0.4] ³	V	$I_{SINK} = 3.2 \text{ mA}$
Output High Voltage, V _{он}	2.4 [2.0] ³			V	$I_{SOURCE} = 400 \ \mu A$
Three-State Leakage Current		±1.0		μA	$V_{IN} = 0.4 V, 2.4 V$
Three-State Output Capacitance		2		рF	
DIGITAL AND CONTROL INPUTS					
Input High Voltage, V _{IH}	2			V	
Input Low Voltage, V⊩			0.8	V	
Input Leakage Current		10		μΑ	$V_{IN} = 2.4 V$
Input Capacitance, C _{IN}		2		рF	
ANALOG OUTPUTS					
Full-Scale Output Current	4.1	4.33	4.6	mA	
Output Current Range	4.1	4.33	4.6	mA	
DAC-to-DAC Matching		1.0		%	
Output Compliance Range, V _{oc}	0	1.0	1.4	V	
Output Capacitance, Cout		7		рF	
VOLTAGE REFERENCE					
Internal Reference Range, V _{REF}	1.15	1.235	1.3	V	
External Reference Range, V _{REF}	1.15	1.235	1.3	V	
V _{REF} Current ⁴		±10		μΑ	
POWER REQUIREMENTS					
Normal Power Mode					
I _{DD} ⁵		137		mA	SD only (16×)
		78		mA	PS only (8×)
		73		mA	HDTV only (2×)
		140	190 ⁶	mA	SD (16×, 10 bit) + PS (8×, 20 bit)
I _{DD_IO}		1.0		mA	
I _{AA} ^{7, 8}		37	45	mA	
Sleep Mode					
I _{DD}		80		μΑ	
IAA		7		μΑ	
I _{DD_IO}		250		μΑ	
POWER SUPPLY REJECTION RATIO		0.01		%/%	

¹ Oversampling disabled. Static DAC performance improves with increased oversampling ratios.

² DNL measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value; for -ve DNL, the actual step value lies below the ideal step value.

³ For values in brackets, $V_{DD_{-}IO} = 2.375$ V to 2.75 V.

 4 External current required to overdrive internal $V_{\text{REF}}.$

⁵ I_{DD}, the circuit current, is the continuous current required to drive the digital core.

⁶ Guaranteed maximum by characterization.

7 All DACs on.

 8 I_{AA} is the total current required to supply all DACs, including the V_{REF} circuitry and the PLL circuitry.

DYNAMIC SPECIFICATIONS

 $V_{AA} = 2.375 \text{ V to } 2.625 \text{ V}, V_{DD} = 2.375 \text{ V to } 2.625 \text{ V}, V_{DD_{-}IO} = 2.375 \text{ V to } 3.6 \text{ V}, V_{REF} = 1.235 \text{ V}, R_{SET} = 3040 \Omega, R_{LOAD} = 300 \Omega. \text{ All specifications } T_{MIN} \text{ to } T_{MAX} (0^{\circ}\text{C to } 70^{\circ}\text{C}), \text{ unless otherwise noted.}$

Table 3.					
Parameter	Min	Тур	Max	Unit	Test Conditions
PS MODE					
Luma Bandwidth		12.5		MHz	
Chroma Bandwidth		5.8		MHz	
SNR		65.6		dB	Luma ramp unweighted
		72		dB	Flat field full bandwidth
HDTV MODE					
Luma Bandwidth		30		MHz	
Chroma Bandwidth		13.75		MHz	
SD MODE					
Hue Accuracy		0.2		Degrees	
Color Saturation Accuracy		0.20		%	
Chroma Nonlinear Gain		0.84		±%	Referenced to 40 IRE
Chroma Nonlinear Phase		-0.2		±Degrees	
Chroma/Luma Intermodulation		0		±%	
Chroma/Luma Gain Inequality		96.7		±%	
Chroma/Luma Delay Inequality		-1.0		ns	
Luminance Nonlinearity		0.2		±%	
Chroma AM Noise		84		dB	
Chroma PM Noise		75.3		dB	
Differential Gain		0.25		%	NTSC
Differential Phase		0.2		Degrees	NTSC
SNR		63.5		dB	Luma ramp
		77.7		dB	Flat field full bandwidth

TIMING SPECIFICATIONS

 $V_{\text{AA}} = 2.375 \text{ V to } 2.625 \text{ V}, V_{\text{DD}} = 2.375 \text{ V to } 2.625 \text{ V}, V_{\text{DD}_{-IO}} = 2.375 \text{ V to } 3.6 \text{ V}, V_{\text{REF}} = 1.235 \text{ V}, R_{\text{SET}} = 3040 \ \Omega, R_{\text{LOAD}} = 300 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 300 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 300 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 300 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 300 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega. \text{ All } 1000 \ \Omega, R_{\text{LOAD}} = 3000 \ \Omega, R_{\text{$ specifications T_{MIN} to T_{MAX} (0°C to 70°C), unless otherwise noted.

Table 4.					
Parameter	Min	Тур	Max	Unit	Test Conditions
MPU PORT ¹					
SCLOCK Frequency	0		400	kHz	
SCLOCK High Pulse Width, t1	0.6			μs	
SCLOCK Low Pulse Width, t ₂	1.3			μs	
Hold Time (Start Condition), t_3	0.6			μs	First clock generated after this period relevant for
					repeated start condition
Setup Time (Start Condition), t ₄	0.6			μs	
Data Setup Time, t₅	100			ns	
SDATA, SCLOCK Rise Time, t ₆			300	ns	
SDATA, SCLOCK Fall Time, t ₇			300	ns	
Setup Time (Stop Condition), t_8	0.6			μs	
RESET Low Time	100			ns	
ANALOG OUTPUTS					
Analog Output Delay ²		7		ns	
Output Skew		1		ns	
CLOCK CONTROL AND PIXEL PORT ³					
fclk			29.5	MHz	SD PAL square pixel mode
fсlк		81		MHz	PS/HD async mode
Clock High Time, t ₉	40			% of one clock cycle	
Clock Low Time, t ₁₀	40			% of one clock cycle	
Data Setup Time, t_{11}	2.0			ns	
Data Hold Time, t_{12} ¹	2.0			ns	
SD Output Access Time, t ₁₃			15	ns	
SD Output Hold Time, t ₁₄	5.0			ns	
HD Output Access Time, t ₁₃			14	ns	
HD Output Hold Time, t ₁₄	5.0			ns	
PIPELINE DELAY ⁴		63		Clock cycles	SD (2×, 16×)
		76		Clock cycles	SD component mode (16×)
		35		Clock cycles	PS (1×)
		41		Clock cycles	PS (8×)
		36		Clock cycles	HD (2×, 1×)

¹ Guaranteed by characterization.

² Output delay measured from the 50% point of the rising edge of <u>CLOCK to the 50% point of DAC</u> output full-scale transition. ³ Data: C[9:0], Y[9:0], S[9:0]; Control: P_HSYNC, P_VSYNC, P_BLANK, S_HSYNC, S_VSYNC, S_BLANK.

⁴ SD, PS = 27 MHz; HD = 74.25 MHz.

05067-003

TIMING DIAGRAMS CLKIN_A t9 **t**10 < t₁₂ → P_HSYNC, P_VSYNC, P_BLANK CONTROL INPUTS Y9-Y0 Y0 Y1 Y2 Y3 **Y4** Y5 ... C9-C0 Cb0 Cr0 Cb2 Cr2 Cb4 Cr4 ••• t₁₁ ← t₁₃ CONTROL OUTPUTS t_{14} $t_9 = CLOCK HIGH TIME$ $t_{10} = CLOCK LOW TIME$ $t_{11} = DATA SETUP TIME$ $t_{12} = DATA HOLD TIME$ $t_{12} = HD OUTDUT$ t₁₃ = HD OUTPUT ACCESS TIME

t₁₄ = HD OUTPUT HOLD TIME

CLKIN A t9 t₁₀ - t₁₂ → P_HSYNC, CONTROL INPUTS P_VSYNC P_BLANK VSYNC, Y2 Y9-Y0 Y0 Y1 Y3 Y5 ••• ¥4 C9-C0 Cb0 Cb1 Cb2 Cb3 Cb4 Cb5 ••• t₁₁ Cr0 Cr3 S9-S0 Cr1 Cr2 Cr5 Cr4 ... CONTROL OUTPUTS t₁₄ t₉ = CLOCK HIGH TIME l ← t₁₃ → 05067-004 t_{13} = HD OUTPUT ACCESS TIME t₁₄ = HD OUTPUT HOLD TIME

Figure 3. HD Only 4:2:2 Input Mode (Input Mode 010); PS Only 4:2:2 Input Mode (Input Mode 001)

Figure 5. HD RGB 4:4:4 Input Mode (Input Mode 010)

Figure 6. PS 4:2:2 10-Bit Interleaved at 27 MHz HSYNC/VSYNC Input Mode (Input Mode 100)

Figure 7. PS 4:2:2 10-Bit Interleaved at 54 MHz HSYNC /VSYNC Input Mode (Input Mode 111)

Figure 8. PS Only 4:2:2 10-Bit Interleaved at 27 MHz EAV/SAV Input Mode (Input Mode 100)

Figure 10. HD 4:2:2 and SD 10-Bit Simultaneous Input Mode (Input Mode 101: SD Oversampled) (Input Mode 110: HD Oversampled)

Figure 11. PS 4:2:2 and SD 10-Bit Simultaneous Input Mode (Input Mode 011)

05067-013

Figure 12. PS 10-Bit and SD 10-Bit Simultaneous Input Mode (Input Mode 100)

 $\begin{array}{l} t_9 = \text{CLOCK HIGH TIME} \\ t_{10} = \text{CLOCK LOW TIME} \\ t_{11} = \text{DATA SETUP TIME} \\ t_{12} = \text{DATA HOLD TIME} \\ t_{13} = \text{HD OUTPUT ACCESS TIME} \\ t_{14} = \text{HD OUTPUT HOLD TIME} \end{array}$

Figure 13. 8-/10-Bit SD Only Pixel Input Mode (Input Mode 000)

*SELECTED BY ADDRESS 0x01, BIT 7: SEE TABLE 21.

 $\begin{array}{l} t_9 = \text{CLOCK HIGH TIME} \\ t_{10} = \text{CLOCK LOW TIME} \\ t_{11} = \text{DATA SETUP TIME} \\ t_{12} = \text{DATA HOLD TIME} \\ t_{13} = \text{HD OUTPUT ACCESS TIME} \end{array}$

 t_{14} = HD OUTPUT HOLD TIME

05067-014

a AND b AS PER RELEVANT STANDARD.

 ${\tt c}$ = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE TIMING SPECIFICATION SECTION OF THE DATA SHEET.

A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT AFTER A TIME EQUAL TO THE PIPELINE DELAY.

Figure 15. HD 4:2:2 Input Timing Diagram

Figure 18. MPU Port Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 5.

1 4010 01	
Parameter ¹	Value
V _{AA} to AGND	–0.3 V to +3.0 V
V _{DD} to DGND	–0.3 V to +3.0 V
V _{DD_IO} to GND_IO	–0.3 V to +4.6 V
Digital Input Voltage to DGND	-0.3 V to V_{DD_IO} +0.3 V
V _{AA} to V _{DD}	–0.3 V to +0.3 V
AGND to DGND	–0.3 V to +0.3 V
DGND to GND_IO	–0.3 V to +0.3 V
AGND to GND_IO	–0.3 V to +0.3 V
Ambient Operating Temperature (T _A)	0°C to 70°C
Storage Temperature (Ts)	–65°C to +150°C
Infrared Reflow Soldering (20 sec)	260°C

¹ Analog output short circuit to any power supply or common can be of an indefinite duration.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

 $\theta_{\rm JC} = 11^{\circ}C/W$

 $\theta_{JA} = 47^{\circ}C/W$

The ADV7320/ADV7321 are Pb-free, environmentally friendly products. They are manufactured using the most up-to-date materials and processes. The coating on the leads of each device is 100% pure Sn electroplate. The devices are suitable for Pb-free applications and are able to withstand surface-mount soldering up to 255°C (\pm 5°C).

In addition, they are backward-compatible with conventional SnPb soldering processes. This means that the electroplated Sn coating can be soldered with Sn/Pb solder pastes at conventional reflow temperatures of 220°C to 235°C.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 6. Pi	ı Function	Descript	ions

Pin No.	Mnemonic	Input/Output	Description
11, 57	DGND	G	Digital Ground.
40	AGND	G	Analog Ground.
32	CLKIN_A	1	Pixel Clock Input for HD Only (74.25 MHz), PS Only (27 MHz), and SD Only (27 MHz).
63	CLKIN_B	1	Pixel Clock Input. Requires a 27 MHz reference clock for PS mode or a 74.25 MHz (74.1758 MHz) reference clock in HDTV mode. This clock is only used in dual modes.
45, 36	COMP1, COMP2	0	Compensation Pin for DACs. Connect 0.1 μF capacitor from COMP pin to $V_{AA}.$
44	DAC A	0	CVBS/Green/Y/Y Analog Output.
43	DAC B	0	Chroma/Blue/U/Pb Analog Output.
42	DAC C	0	Luma/Red/V/Pr Analog Output.
39	DAC D	0	In SD Only Mode: CVBS/Green/Y Analog Output; in HD Only Mode and Simultaneous HD/SD Mode: Y/Green [HD] Analog Output.
38	DAC E	0	In SD Only Mode: Luma/Blue/U Analog Output; in HD Only Mode and Simultaneous HD/SD Mode: Pr/Red Analog Output.
37	DAC F	0	In SD Only Mode: Chroma/Red/V Analog Output; in HD Only Mode and Simultaneous HD/SD Mode: Pb/Blue [HD] Analog Output.
23	P_HSYNC	1	Video Horizontal Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.
24	P_VSYNC	1	Video Vertical Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.
25	P_BLANK	1	Video Blanking Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.
48	S_BLANK	I/O	Video Blanking Control Signal for SD Only.
49	S_VSYNC	I/O	Video Vertical Sync Control Signal for SD Only.
50	S_HSYNC	I/O	Video Horizontal Sync Control Signal for SD Only.
13, 12, 9 to 2	Y9 to Y0	I	SD or PS/HDTV Input Port for Y Data. Input port for interleaved progressive scan data. The LSB is set up on Pin Y0. For 8-bit data input, LSB is set up on Pin Y2.
30 to 26, 18 to 14	C9 to C0	1	PS/HDTV Input Port 4:4:4 Input Mode. This port is used for the Cb[Blue/U] data. The LSB is set up on Pin C0. For 8-bit data input, LSB is set up on Pin C2.

Pin No.	Mnemonic	Input/Output	Description
62 to 58, 55 to 51	S9 to S0	1	SD or PS/HDTV Input Port for Cr[Red/V] Data in 4:4:4 Input Mode. LSB is set up on Pin S0. For 8-bit data input, LSB is set up on Pin S2.
33	RESET	1	This input resets the on-chip timing generator and sets the ADV7320/ADV7321 into default register setting. RESET is an active low signal.
47, 35	Rset1, Rset2	1	A 3040 Ω resistor must be connected from this pin to AGND and is used to control the amplitudes of the DAC outputs.
22	SCLK	I	I ² C Port Serial Interface Clock Input.
21	SDA	I/O	I ² C Port Serial Data Input/Output.
20	ALSB	1	TTL Address Input. This signal sets up the LSB of the I ² C address. When this pin is tied low, the I ² C filter is activated, which reduces noise on the I ² C interface.
1	V _{DD_IO}	Р	Power Supply for Digital Inputs and Outputs.
10, 56	V _{DD}	Р	Digital Power Supply.
41	VAA	Р	Analog Power Supply.
46	VREF	I/O	Optional External Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).
34	EXT_LF	1	External Loop Filter for the Internal PLL.
31	RTC_SCR_TR	1	Multifunctional Input. Real-time control (RTC) input, timing reset input, subcarrier reset input.
19	I ² C	1	This input pin must be tied high ($V_{DD_{-}IO}$) for the ADV7320/ADV7321 to interface over the I ² C port.
64	GND_IO		Digital Input/Output Ground.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 20. PS—UV 8× Oversampling Filter (Linear)

Figure 23. PS—Y 8× Oversampling Filter (Pass Band)

Figure 25. HDTV—Y 2× Oversampling Filter

Figure 33. Luma SSAF Filter—Programmable Gain

Figure 34. Luma SSAF Filter—Programmable Attenuation

MPU PORT DESCRIPTION

The ADV7320/ADV7321 support a 2-wire serial (I²Ccompatible) microprocessor bus driving multiple peripherals. This port operates in an open-drain configuration. Two inputs, serial data (SDA) and serial clock (SCL), carry information between any device connected to the bus and the ADV7320/ ADV7321. Each slave device is recognized by a unique address. The ADV7320/ADV7321 have four possible slave addresses for both read and write operations. These are unique addresses for each device and are illustrated in Figure 44 and Figure 45. The LSB sets either a read or write operation. Logic 1 corresponds to a read operation, while Logic 0 corresponds to a write operation. A1 is enabled by setting the ALSB pin of the ADV7320/ADV7321 to Logic 0 or Logic 1. When ALSB is set to 1, there is greater input bandwidth on the I²C lines, which allows high speed data transfers on this bus. When ALSB is set to 0, there is reduced input bandwidth on the I²C lines, which means that pulses of less than 50 ns do not pass into the I²C internal controller. This mode is recommended for noisy systems.

Figure 45. ADV7321 Slave Address = 0x54

To control the various devices on the bus, the following protocol must be followed. First, the master initiates a data transfer by establishing a start condition, defined by a high-tolow transition on SDA while SCL remains high. This indicates that an address/data stream will follow. All peripherals respond to the start condition and shift the next eight bits (7-bit address + R/\overline{W} bit). The bits are transferred from MSB down to LSB. The peripheral that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse. This is known as an acknowledge bit. All other devices withdraw from the bus at this point and maintain an idle condition. The idle condition is where the device monitors the SDA and SCL lines waiting for the start condition and the correct transmitted address. The R/\overline{W} bit determines the direction of the data.

Logic 0 on the LSB of the first byte means that the master writes information to the peripheral. Logic 1 on the LSB of the first byte means that the master reads information from the peripheral.

The ADV7320/ADV7321 act as standard slave devices on the bus. The data on the SDA pin is eight bits long, supporting the 7-bit address plus the R/\overline{W} bit. It interprets the first byte as the device address and the second byte as the starting subaddress. There is a subaddress auto-increment facility. This allows data to be written to or read from registers in ascending subaddress sequence starting at any valid subaddress. A data transfer is always terminated by a stop condition. The user can also access any unique subaddress register on a one-by-one basis without updating all of the registers.

Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, they cause the device to immediately jump to the idle condition. During a given SCL high period, the user should only issue a start condition, a stop condition, or a stop condition followed by a start condition. If an invalid subaddress is issued by the user, the ADV7320/ADV7321 do not issue an acknowledge and return to the idle condition. If the user utilizes the autoincrement method of addressing the encoder and exceeds the highest subaddress, the following actions are taken:

- In read mode, the highest subaddress register contents are output until the master device issues a no acknowledge. This indicates the end of a read. A no acknowledge condition is when the SDA line is not pulled low on the ninth pulse.
- In write mode, the data for the invalid byte is not loaded into any subaddress register, a no acknowledge is issued by the ADV7320/ADV7321, and the part returns to the idle condition.

Before writing to the subcarrier frequency registers, it is required to reset ADV7320/ADV7321 at least once after power-up.

The four subcarrier frequency registers must be updated, starting with Subcarrier Frequency Register 0 and ending with Subcarrier Frequency Register 3. The subcarrier frequency will only update after the last subcarrier frequency register byte has been received by the ADV7320/ADV7321.

Figure 46 illustrates an example of data transfer for a write sequence and the start and stop conditions. Figure 47 shows bus write and read sequences.

Figure 47. Read and Write Sequences

REGISTER ACCESS

The MPU can write to or read from all registers of the ADV7320/ADV7321 except the subaddress registers, which are write only registers. The subaddress register selected determines which register the next read or write operation will access. All communication with the part through the bus starts with an access to the subaddress register. A read/write operation is then performed from/to the target address, which increments to the next address until a stop command is performed on the bus.

REGISTER PROGRAMMING

The following tables describe the functionality of each register. All registers can be read from and written to, unless otherwise stated.

SUBADDRESS REGISTER (SR7 TO SR0)

Each subaddress register is an 8-bit write only register. After the encoder's bus is accessed and a read or write operation is selected, the subaddress is set up. The subaddress register determines to or from which register the operation takes place.

SR7-	Pogistor	Bit Description	Rit 7	Bit 6	Rit 5	Bit A	Bit 2	Rit 2	Ri+ 1	Bit 0	Pagistar Satting	Reset Value
	Power	Sloop Mode With this	DIC /	DILO	DICO	DIT 4	DIT 3	Dit 2	DICI		Sloop mode off	
0x00	Mode	control enabled the								1	Sleep mode on	UXFC
	Register	current consumption is								1	Sleep mode on.	
	negister	reduced to uA level All										
		DACs and the internal										
		PLL cct are disabled.										
		I ² C registers can be										
		read from and written										
		to in sleep mode.										
		PLL and Oversampling							0		PLL on.	
		Control. This control							1		PLL off.	
		allows the internal PLL										
		cct to be powered										
		down and the										
		oversampling to be										
		DAC E: Power Op/Off	-	-	-	-	-	0	-	-	DACEoff	
		DACT. FOWER ON/ON.						1			DACT OIL DAC F on	
		DAC E: Power On/Off					0	<u> </u>			DAC F off	
							1				DACE on.	
		DAC D: Power On/Off.		1	1	0	1		1	1	DAC D off.	
						1					DAC D on.	
		DAC C: Power On/Off.			0						DAC C off.	
					1						DAC C on.	
		DAC B: Power On/Off.		0							DAC B off.	
				1							DAC B on.	
		DAC A: Power On/Off.	0								DAC A off.	
0.01	Mada	Pesaniad	1							0	DAC A on.	
0.001	Select Register	Clock Edgo							0	0	Ch clocked upon	Only for PS
		Clock Edge.							0		rising edge	interleaved
									1		Y clocked upon rising	input at 27
									1.		edae.	MHz.
		Reserved.						0				
		Clock Align.					0					
							1				Must be set if the	Only if two
											phase delay between	input clocks
											the two input clocks is	are used.
		have the star		0	0	0		-			<9.25 ns or >27.75 ns.	020
		Input Mode.		0	0	0					SD input only.	0x38
				0	1						HDTV input only	
				0	1	1					SD and PS (20-bit)	
				1	0	0					SD and PS (10-bit).	
				1	0	1					SD and HDTV (SD	
											oversampled).	
				1	1	0					SD and HDTV (HDTV	
											oversampled).	
				1	1	1					PS only (at 54 MHz).	ļ
		Y/C/S Bus Swap.	0	1	1	1	1		1	1	Allows data to be	See Table 21.
			1	1	1	1	1		1	1	applied to data ports	
				1	1	1	1		1	1	in various	
	1			1	1	1					configurations (SD	
	1		1	1	1	1	1	1	1	1	reature only).	1

Table 7. Registers 0x00 to 0x01