imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

Low Noise, Low Drift, Low Power, 3-Axis MEMS Accelerometers

ADXL356/ADXL357

FEATURES

Hermetic package offers excellent long-term stability 0 g offset vs. temperature (all axes): 0.75 mg/°C maximum Ultralow noise density (all axes): 80 $\mu g/\sqrt{Hz}$ Low power, V_{SUPPLY} (LDO enabled) ADXL356 in measurement mode: 150 µA ADXL357 in measurement mode: 200 µA ADXL356/ADXL357 in standby mode: 21 µA ADXL356 has user adjustable analog output bandwidth ADXL357 digital output features Digital serial peripheral interface (SPI)/limited I²C interfaces supported 20-bit analog-to-digital converter (ADC) Data interpolation routine for synchronous sampling Programmable high- and low-pass digital filters Integrated temperature sensor Voltage range options V_{SUPPLY} with internal regulators: 2.25 V to 3.6 V V_{1P8ANA}, V_{1P8DIG} with internal low dropout (LDO) regulator bypassed: 1.8 V typical ± 10% Operating temperature range: -40°C to +125°C 14-terminal, 6 mm × 5.6 mm × 2.05 mm, LCC package, 0.26 g

APPLICATIONS

Inertial measurement units (IMUs)/altitude and heading reference systems (AHRSs) Platform stabilization systems Structural health monitoring Seismic imaging Tilt sensing Robotics Condition monitoring

GENERAL DESCRIPTION

The analog output ADXL356 and the digital output ADXL357 are low noise density, low 0 *g* offset drift, low power, 3-axis accelerometers with selectable measurement ranges. The ADXL356B supports the ± 10 *g* and ± 20 *g* ranges, the ADXL356C supports the ± 10 *g* and ± 40 *g* ranges, and the ADXL357 supports the ± 10.24 g, ± 20.48 g, and ± 40.96 g ranges.

The ADXL356/ADXL357 offer industry leading noise, minimal offset drift over temperature, and long-term stability, enabling precision applications with minimal calibration.

The low drift, low noise, and low power ADXL357 enables accurate tilt measurement in an environment with high vibration, such as airborne IMUs. The low noise of the ADXL356 over higher frequencies is ideal for wireless condition monitoring.

The ADXL357 multifunction pin names may be referenced only by their relevant function for either the SPI or limited I²C interface.

¹ Protected by U.S. Patents 8,472,270; 9,041,462; 8,665,627; 8,917,099; 6,892,576; 9,297,825; and 7,956,621.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700©2017 Analog Devices, Inc. All rights reserved.Technical Supportwww.analog.com

FUNCTIONAL BLOCK DIAGRAMS

TABLE OF CONTENTS

Features
Applications
Functional Block Diagrams
General Description
Revision History 2
Specifications
Analog Output for the ADXL356
Digital Output for the ADXL3574
SPI Digital Interface Characteristics for the ADXL3576
I ² C Digital Interface Characteristics for the ADXL3577
Absolute Maximum Ratings
Thermal Resistance
Recommended Soldering Profile 8
ESD Caution
Pin Configurations and Function Descriptions
Typical Performance Characteristics11
Root Allan Variance (RAV) ADXL357 Characteristics 19
Theory of Operation
Applications Information
Analog Output
Digital Output21
Axes of Acceleration Sensitivity22
Power Sequencing
Power Supply Description
Overrange Protection
Self Test
Filter
Serial Communications
SPI Protocol25
I ² C Protocol
Reading Acceleration or Temperature Data from the Interface
FIFO
Interrupts
DATA_RDY29
DRDY Pin
REVISION HISTORY

FIFO_FULL
FIFO_OVR
Activity
External Synchronization and Interpolation
ADXL357 Register Map
Register Definitions
Analog Devices ID Register
Analog Devices MEMS ID Register
Device ID Register
Product Revision ID Register
Status Register
FIFO Entries Register
Temperature Data Registers
X-Axis Data Registers
Y-Axis Data Registers
Z-Axis Data Registers
FIFO Access Register
X-Axis Offset Trim Registers
Y-Axis Offset Trim Registers
Z-Axis Offset Trim Registers
Activity Enable Register
Activity Threshold Registers
Activity Count Register
Filter Settings Register
FIFO Samples Register
Interrupt Pin (INTx) Function Map Register
Data Synchronization
I ² C Speed, Interrupt Polarity, and Range Register
Power Control Register
Self Test Register
Reset Register
PCB Footprint Pattern
Outline Dimensions
Ordering Guide 42

2/2017—Revision 0: Initial Version

SPECIFICATIONS ANALOG OUTPUT FOR THE ADXL356

 $T_A = 25^{\circ}$ C, $V_{SUPPLY} = 3.3$ V, x-axis acceleration and y-axis acceleration = 0 g, z-axis acceleration = 1 g, and full-scale range = ±10 g, unless otherwise noted.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Output Full-Scale Range (FSR)	ADXL356B, supports two ranges		±10/±20		g
	ADXL356C, supports two ranges		±10/±40		g
Resonant Frequency ¹			5.5		kHz
Nonlinearity	±10 g		0.1		%
Cross Axis Sensitivity			1		%
SENSITIVITY	Ratiometric to V _{1P8ANA}				
Sensitivity at X _{out} , Y _{out} , Z _{out}	±10 g	73.6	80	86.4	mV/ <i>g</i>
	±20 g	36.8	40	43.2	mV/ <i>g</i>
	±40 g	18.4	20	21.6	mV/ <i>g</i>
Sensitivity Change due to Temperature	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.01		%/°C
0 g OFFSET	Each axis, ±10 g				
0 <i>g</i> Output for X _{OUT} , Y _{OUT} , Z _{OUT}	Referred to V _{1P8ANA} /2	-375	±125	+375	m <i>g</i>
0 g Offset vs. Temperature (X-Axis, Y-Axis, and Z-Axis) ²	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	-0.75	±0.5	+0.75	m <i>g/</i> °C
Vibration Rectification Error (VRE) ³	Offset due to 7.5 g rms vibration,		<0.1		g
	±10 <i>g</i> range, in a 1 <i>g</i> orientation				
NOISE DENSITY	±10 g				
X-Axis, Y-Axis, and Z-Axis			80		µ <i>g/√</i> Hz
Velocity Random Walk	X-axis and y-axis		45		µm/sec/√Hr
	Z-axis		65		µm/sec/√Hr
BANDWIDTH					
Internal Low-Pass Filter Frequency	Fixed frequency, 50% response		1500		Hz
	attenuation				
SELF TEST					
Output Change					
Z-Axis	±10 g range		1.25		g
POWER SUPPLY					
Voltage Range					
V _{SUPPLY} ⁴		2.25	2.5	3.6	V
V _{DDIO}		V _{1P8DIG}	2.5	3.6	V
V _{1PBANA} , V _{1PBDIG} with Internal Low Dropout Regulator (LDO) Bypassed	$V_{SUPPLY} = 0 V$	1.62	1.8	1.98	V
Current					
Measurement Mode					
VSURDEX (LDO Enabled)			150		uА
VIDEANA (LDO Disabled)			138		uA
V _{1PEDIC} (LDO Disabled)			12		μA
Standby Mode					F.
V _{cuppy} (LDO Enabled)			21		uА
V _{1R9ANA} (LDO Disabled)			7		uA
V _{100DIC} (LDO Disabled)			10		uA
Turn On Time ⁵	10 <i>a</i> range		<10		ms
	Power-off to standby		<10		ms
OUTPUT AMPLIFIER					
Swina	No load	0.03		VIDRANIA -	v
5				0.03	
Output Series Resistance			32		kΩ

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
TEMPERATURE SENSOR					
Output at 25°C			892.2		mV
Scale Factor			3.0		mV/°C
TEMPERATURE					
Operating Temperature Range		-40		+125	°C

¹ The resonant frequency is a sensor characteristic. An integrated analog 1.5 kHz (-6 dB) sinc low-pass filter that cannot be bypassed limits the actual output response. ² The temperature change is -40° C to $+25^{\circ}$ C or $+25^{\circ}$ C to $+125^{\circ}$ C.

³ The VRE measurement is the shift in dc offset while the device is subject to 12.5 g rms of random vibration from 50 Hz to 2 kHz. The device under test (DUT) is configured for the $\pm 10 g$ range and an output data rate of 4 kHz. The VRE scales with the range setting.

⁴ When V_{1PBANA} and V_{1PBANA} and V_{1PBDIG} are generated internally, V_{SUPPLY} is valid. To disable the LDO and drive V_{1PBANA} and V_{1PBDIG} externally, connect V_{SUPPLY} to V_{ss}. ⁵ Standby to measurement mode; valid when the output is within 5 mg of the final value.

DIGITAL OUTPUT FOR THE ADXL357

 $T_A = 25^{\circ}$ C, $V_{SUPPLY} = 3.3$ V, x-axis acceleration and y-axis acceleration = 0 g, z-axis acceleration = 1 g, full-scale range = ± 10.24 g, and output data rate (ODR) = 500 Hz, unless otherwise noted. Note that multifunction pin names may be referenced only by their relevant function.

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Output Full Scale Range (FSR)	User selectable		±10.24		g
			±20.48		g
			±40.96		g
Nonlinearity	±10 g		0.1		% FSR
Cross Axis Sensitivity			1		%
SENSITIVITY	Each axis				
X-Axis, Y-Axis, and Z-Axis Sensitivity	±10 g	47,104	51,200	55,296	LSB/g
	±20 g	23,552	25,600	27,648	LSB/g
	±40 g	11,776	12,800	13,824	LSB/g
X-Axis, Y-Axis, and Z-Axis Scale Factor	±10 g		19.5		μ <i>g/</i> LSB
	±20 g		39		μ <i>g/</i> LSB
	±40 g		78		μ <i>g/</i> LSB
Sensitivity Change due to Temperature	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.01		%/°C
0 g OFFSET	Each axis, ±10 g				
X-Axis, Y-Axis, and Z-Axis 0 g Output		-375	±125	+375	m <i>g</i>
0 <i>g</i> Offset vs. Temperature (X-Axis, Y-Axis, and Z-Axis) ¹	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	-0.75	±0.50	+0.75	m <i>g</i> ∕°C
Vibration Rectification Error (VRE) ²	Offset due to 7.5 <i>g</i> rms vibration,		<0.1		g
	±10 g range, in a 1 g orientation				
NOISE DENSITY	±10 g				
X-Axis, Y-Axis, and Z-Axis			80		µg/√Hz
Velocity Random Walk	X-axis and y-axis		45		µm/sec/√Hr
	Z-axis		65		µm/sec/√Hr
OUTPUT DATA RATE AND BANDWIDTH					
ADC Resolution			20		bits
Low-Pass Filter Passband Frequency	User programmable, Register 0x28	1		1000	Hz
High-Pass Filter Passband Frequency When Enabled (Disabled by Default)	User programmable, Register 0x28 for 4 kHz ODR	0.0095		10	Hz
SELF TEST					
Output Change					
Z-Axis	±10 <i>g</i> range		1.25		g

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY					
Voltage Range					
V _{SUPPLY} Operating ³		2.25	2.5	3.6	V
V _{DDIO}		V _{1P8DIG}	2.5	3.6	V
V_{1PBANA} and V_{1PBDIG} with Internal LDO Bypassed	$V_{SUPPLY} = 0 V$	1.62	1.8	1.98	V
Current					
Measurement Mode					
V _{SUPPLY} (LDO Enabled)			200		μA
V _{1PBANA} (LDO Disabled)			160		μA
V _{1P8DIG} (LDO Disabled)			35.5		μΑ
Standby Mode					
V _{SUPPLY} (LDO Enabled)			21		μA
V _{1P8ANA} (LDO Disabled)			7		μΑ
V _{1P8DIG} (LDO Disabled)			10		μA
Turn On Time⁴	±10 g range		<10		ms
	Power-off to standby		<10		ms
TEMPERATURE SENSOR					
Output at 25°C			1852		LSB
Scale Factor			-9.05		LSB/°C
TEMPERATURE					
Operating Temperature Range		-40		+125	°C

¹ The temperature change is -40°C to +25°C or +25°C to +125°C.
 ² The VRE measurement is the shift in dc offset while the device is subject to 12.5 *g* rms random vibration from 50 Hz to 2 kHz. The DUT is configured for the ±2 *g* range and an output data rate of 4 kHz. The VRE scales with the range setting.
 ³ When V_{1PBANA} and V_{1PBDIG} are generated internally, V_{SUPPLY} is valid. To disable the LDO and drive V_{1PBANA} and V_{1PBDIG} externally, connect V_{SUPPLY} to V_{SS}.
 ⁴ Standby to measurement mode; valid when the output is within 1 mg of final value.

SPI DIGITAL INTERFACE CHARACTERISTICS FOR THE ADXL357

Note that multifunction pin names may be referenced by their relevant function only.

Table 3.							
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit	
DC INPUT LEVELS							
Input Voltage							
Low Level	V _{IL}				$0.3 \times V_{\text{DDIO}}$	V	
High Level	V _{IH}		$0.7 \times V_{\text{DDIO}}$			V	
Input Current							
Low Level	I _{IL}	$V_{IN} = 0 V$	-0.1			μA	
High Level	I _{IH}	$V_{IN} = V_{DDIO}$			0.1	μΑ	
DC OUTPUT LEVELS							
Output Voltage							
Low Level	V _{OL}	$I_{OL} = I_{OL, MIN}$			$0.2 \times V_{\text{DDIO}}$	V	
High Level	V _{OH}	$I_{OH} = I_{OH, MAX}$	$0.8 \times V_{\text{DDIO}}$			V	
Output Current							
Low Level	I _{OL}	$V_{OL} = V_{OL, MAX}$	-10			mA	
High Level	I _{он}	$V_{OH} = V_{OH, MIN}$			4	mA	
AC INPUT LEVELS							
SCLK Frequency			0.1		10	MHz	
SCLK High Time	t _{HIGH}		40			ns	
SCLK Low Time	t _{LOW}		40			ns	
CS Setup Time	t _{css}		20			ns	
CS Hold Time	t _{csh}		20			ns	
CS Disable Time	t _{CSD}		40			ns	
Rising SCLK Setup Time	t _{sclks}		20			ns	
MOSI Setup Time	t _{su}		20			ns	
MOSI Hold Time	t _{HD}		20			ns	
AC OUTPUT LEVELS							
Propagation Delay	t _P	$C_{LOAD} = 30 \text{ pF}$			30	ns	
Enable MISO Time	t _{en}		30			ns	
Disable MISO Time	t _{DIS}				20	ns	

Figure 3. SPI Interface Timing Diagram

I²C DIGITAL INTERFACE CHARACTERISTICS FOR THE ADXL357

Note that multifunction pin names may be referenced only by their relevant function.

Table 4.

		Test Conditions/ I2C_HS = 0 (Fast Mode) I2C_HS = 1 (High Spee			I2C_HS = 0 (Fast Mode)		peed Mode)		
Parameter	Symbol	Comments	Min	Тур	Max	Min	Тур	Max	Unit
DC INPUT LEVELS									
Input Voltage									
Low Level	VIL				$0.3 \times V_{DDIO}$			$0.3 \times V_{DDIO}$	V
High Level	VIII		$0.7 \times V_{DDIO}$			$0.7 \times V_{DDIO}$			V
Hysteresis of Schmitt Triggered Inputs	V _{HYS}		$0.05 \times V_{DDIO}$			$0.1 \times V_{DDIO}$			μΑ
Input Current	I _{IL}	$0.1 \times V_{DDIO} < V_{IN} < 0.9 \times V_{DDIO}$	-10		+10				μΑ
DC OUTPUT LEVELS									
Output Voltage		$I_{OL} = 3 \text{ mA}$							
Low Level	V _{OL1}	$V_{DDIO} > 2 V$			0.4				V
	V _{OL2}	$V_{DDIO} \le 2 V$			$0.2 \times V_{DDIO}$				V
Output Current									
Low Level	I _{OL}	$V_{OL} = 0.4 V$	20						mA
		$V_{OL} = 0.6 V$	6						mA
AC INPUT LEVELS									
SCL Frequency			0		1	0		3.4	MHz
SCL High Time	t _{HIGH}		260			60			ns
SCL Low Time	t _{LOW}		500			160			ns
Start Setup Time	t _{susta}		260			160			ns
Start Hold Time	t _{HDSTA}		260			160			ns
SDA Setup Time	t _{sudat}		50			10			ns
SDA Hold Time	t _{HDDAT}		0			0			ns
Stop Setup Time	t _{susto}		260			160			ns
Bus Free Time	t _{BUF}		500						ns
SCL Input Rise Time	t _{RCL}				120			80	ns
SCL Input Fall Time	t _{FCL}				120			80	ns
SDA Input Rise Time	t _{RDA}				120			160	ns
SDA Input Fall Time	t _{FDA}				120			160	ns
Width of Spikes to	t _{sP}	Not shown in Figure 4			50			10	ns
Suppress									ļ
AC OUTPUT LEVELS									
Propagation Delay		$C_{LOAD} = 500 \text{pF}$							
Data	t _{VDDAT}		97		450	27		135	ns
Acknowledge	t _{VDACK}				450				ns
Output Fall Time	t _F	Not shown in Figure 4	20× (V _{DDIO} /5.5)		120				ns

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Acceleration (Any Axis, 0.1 ms)	5000 g
V _{SUPPLY} , V _{DDIO}	5.4 V
V_{1P8ANA}, V_{1P8DIG} Configured as Inputs	1.98 V
ADXL356	
Digital Inputs (RANGE, ST1, ST2, STBY)	-0.3 V to V _{DDIO} + 0.3 V
Analog Outputs (X _{OUT} , Y _{OUT} , Z _{OUT} , TEMP)	-0.3 V to V _{1P8ANA} + 0.3 V
ADXL357	
Digital Pins (CS/SCL, SCLK/V _{ssio} ,	-0.3 V to V _{DDIO} + 0.3 V
MOSI/SDA, MISO/ASEL, INT1, INT2,	
	1000 1 10500
Operating Temperature Range	-40° C to $+125^{\circ}$ C
Storage Temperature Range	–55°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

Table 6. Thermal Resistance

Package Type	θ _{JA}	Unit
E-14-1 ¹	42	°C/W

¹ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board with four thermal vias. See JEDEC JESD51.

RECOMMENDED SOLDERING PROFILE

Figure 5 and Table 7 provide details about the recommended soldering profile.

Table 7. Recommended Soldering Profile

	Condition			
Profile Feature	Sn63/Pb37	Pb-Free		
Average Ramp Rate from Liquid	3°C/sec	3°C/sec		
Temperature (T_L) to Peak	maximum	maximum		
Temperature (T _P)				
Preheat				
Minimum Temperature (T _{SMIN})	100°C	150°C		
Maximum Temperature (T _{SMAX})	150°C	200°C		
Time from T_{SMIN} to T_{SMAX} (t _c)	60 sec to	60 sec to		
	120 sec	180 sec		
T _{SMAX} to T ₁ Ramp-Up Rate	3°C/sec	3°C/sec		
	maximum	maximum		
Liquid Temperature (T _L)	183°C	217°C		
Time Maintained Above $T_{I}(t_{I})$	60 sec to	60 sec to		
	150 sec	150 sec		
Peak Temperature (T _P)	240°C +	260°C +		
	0°C/-5°C	0°C/-5°C		
Time of Actual $T_p - 5^{\circ}C$ (t_p)	10 sec to	20 sec to		
	30 sec	40 sec		
Ramp-Down Rate	6°C/sec	6°C/sec		
	maximum	maximum		
Time from 25°C to Peak	6 minutes	8 minutes		
Temperature (t _{25°С ТО РЕАК})	maximum	maximum		

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 8. ADXL356 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RANGE	Range Selection Pin. Set this pin to ground to select the $\pm 10 g$ range, or set this pin to V _{DDIO} to select the $\pm 20 g$ or $\pm 40 g$ range. This pin is model dependent (see the Ordering Guide section).
2	ST1	Self Test Pin 1. This pin enables self test mode.
3	ST2	Self Test Pin 2. This pin activates the electromechanical self test actuation.
4	TEMP	Temperature Sensor Output.
5	V _{DDIO}	Digital Interface Supply Voltage.
6	V _{SSIO}	Digital Ground.
7	STBY	Standby or Measurement Mode Selection Pin. Set this pin to ground to enter standby mode, or set this pin to V_{DDO} to enter measurement mode.
8	V _{1P8DIG}	Digital Supply. This pin requires a decoupling capacitor. If V _{SUPPLY} connects to V _{SS} , supply the voltage to this pin externally.
9	V _{ss}	Analog Ground.
10	V _{1P8ANA}	Analog Supply. This pin requires a decoupling capacitor. If V _{SUPPLY} connects to V _{SS} , supply the voltage to this pin externally.
11	V _{SUPPLY}	Supply Voltage. When V_{SUPPLY} equals 2.25 V to 3.6 V, V_{SUPPLY} enables the internal LDO regulators to generate V_{1P8DIG} and V_{1
12	X _{OUT}	X-Axis Output.
13	Y _{OUT}	Y-Axis Output.
14	Z _{OUT}	Z-Axis Output.

Table 9. ADXL357 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	CS/SCL	Chip Select for SPI (CS).
		Serial Communications Clock for I ² C (SCL).
2	SCLK/V _{SSIO}	Serial Communications Clock for SPI (SCLK).
		I ² C Mode Enable (V_{SSIO}). Connect this pin to Pin 6 (V_{SSIO}) to enable I ² C mode.
3	MOSI/SDA	Master Output, Slave Input for SPI (MOSI).
		Serial Data for I ² C (SDA).
4	MISO/ASEL	Master Input, Slave Output for SPI (MISO).
		Alternate I ² C Address Select for I ² C (ASEL).
5	V _{DDIO}	Digital Interface Supply Voltage.
6	V _{SSIO}	Digital Ground.
7	RESERVED	Reserved. This pin can be connected to ground or left open.
8	V _{1P8DIG}	Digital Supply. This pin requires a decoupling capacitor. If V _{SUPPLY} connects to V _{SS} , supply the voltage to this pin externally.
9	V _{ss}	Analog Ground.
10	V _{1P8ANA}	Analog Supply. This pin requires a decoupling capacitor. If V _{SUPPLY} connects to V _{SS} , supply the voltage to this pin externally.
11	V _{SUPPLY}	Supply Voltage. When V_{SUPPLY} equals 2.25 V to 3.6 V, V_{SUPPLY} enables the internal LDOs to generate V_{1P8DIG} and V_{1P8ANA} . For $V_{SUPPLY} = V_{SS}$, V_{1P8DIG} and V_{1P8ANA} are externally supplied.
12	INT1	Interrupt Pin 1.
13	INT2	Interrupt Pin 2.
14	DRDY	Data Ready Pin.

TYPICAL PERFORMANCE CHARACTERISTICS

All figures include data for multiple devices and multiple lots, and they were taken in the ± 10 g range, unless otherwise noted.

Figure 9. ADXL356 Frequency Response for Y-Axis

Figure 10. ADXL356 Frequency Response for Z-Axis

Figure 11. ADXL357 Normalized Frequency Response for X-Axis at 4 kHz ODR

Figure 12. ADXL357 Normalized Frequency Response for Y-Axis at 4 kHz ODR

Figure 13. ADXL357 Normalized Frequency Response for Z-Axis at 4 kHz ODR

Figure 15. ADXL356 Y-Axis Zero g Offset Normalized Relative to 25°C vs. Temperature

Figure 16. ADXL356 Z-Axis Zero g Offset Normalized Relative to 25°C vs. Temperature

Figure 17. ADXL356 X-Axis Change in Sensitivity Relative to 25°C vs. Temperature

Figure 18. ADXL356 Y-Axis Change in Sensitivity Relative to 25°C vs. Temperature

PERCENT OF POPULATION (%)

PERCENT OF POPULATION (%)

PERCENT OF POPULATION (%)

PERCENT OF POPULATION (%)

5 5 8 В 5 5 8 ß 5 5 8 cπ 0 cπ 0 ¢π Figure 23. ADXL356 Sensitivity Histogram at 25°C, Figure 24. ADXL356 Sensitivity Histogram at 25°C, 0.0736 0.0736 0.0740 0.0740 0.0744 0.0748 0.0744 0.0752 0.0752 0.0756 0.0756 0.0760 0.0760 0.0764 0.0764 V-AXIS 0.0776 0.0772 0.0776 0.0776 0.0780 0.0764 0.0768 0.0772 AXIS 0.0776 0.0776 0.0784 0.0780 S 0.0784 0.0784 0.0792 0.0796 0.0800 AT 25°C (0.0820 S 0.0784 0.0788 0.0792 SET 0.0800 AT 25° 0.0812 5° 0.0812 C 0.0820 -Q 0.0824 Q 0.0828 Q 0.0824 Q 0.0828 0.0828 0.0828 0.0836 0.0836 0.0840
0.0844
0.0848 0.0840 , Y-Axis , X-Axis 0.0848 0.0852 0.0852 0.0860 0.0860 0.0864 0.0864 15429-024 15429-023

PERCENT OF POPULATION (%)

ADXL356/ADXL357

ß

Figure 22. ADXL356 Zero g Offset Histogram at 25°C,

Z-Axis

Figure 25. ADXL356 Sensitivity Histogram at 25°C,

, Z-Axis

0

0.0736

0.0740

0.0744

0.0752

0.0756

0.0760

0.0764

0.0764 0.0768 N- 0.0772 AXIS 0.0776 0.0780

0.0784 0.0788 0.0792 0.0796 0.0800

A 0.0804

C 0.0808

(V 0.0820 (V 0.0824 9) 0.0828 0.0832

0.0836

0.0840

0.0844

0.0852

0.0860

0.0864

15429-025

15429-031

25

15

20

Data Sheet

Figure 32. ADXL357 X-Axis Zero g Offset Normalized Relative to 25°C vs. Temperature

Figure 34. ADXL357 Z-Axis Zero g Offset Normalized Relative to 25°C vs. Temperature

Figure 35. ADXL357 X-Axis Change in Sensitivity Relative to 25°C vs. Temperature

Figure 36. ADXL357 Y-Axis Change in Sensitivity Relative to 25°C vs. Temperature

Temperature

ADXL356/ADXL357

Data Sheet

Figure 40. ADXL357 Zero g Offset Histogram at 25°C, Z-Axis

Figure 43. ADXL357 Sensitivity Histogram at 25°C, Z-Axis

Data Sheet

ADXL356/ADXL357

Figure 52. ADXL357 Internal ODR Frequency Histogram

Figure 53. ADXL357 Temperature Sensor Output and Linearity Offset vs. Temperature

ROOT ALLAN VARIANCE (RAV) ADXL357 CHARACTERISTICS

Figure 55 to Figure 57 include data for multiple devices and multiple lots, and they were taken in the ± 10 g range, unless otherwise noted.

Figure 56. ADXL357 Root Allan Variance (RAV), Y-Axis

THEORY OF OPERATION

The ADXL356 is a complete 3-axis, ultralow noise and ultrastable offset MEMS accelerometer with outputs ratiometric to the analog 1.8 V supply, V_{1P8ANA}. The ADXL357 adds three high resolution ADCs that use the analog 1.8 V supply as a reference to provide digital outputs insensitive to the supply voltage. The ADXL356B is pin selectable for $\pm 10 g$ or $\pm 20 g$ full scale, the ADXL356C is pin selectable for $\pm 10 g$ or $\pm 40 g$ full scale, and the ADXL357 is programmable for $\pm 10.24 g$, $\pm 20.48 g$, and $\pm 40.96 g$ full scale. The ADXL357 offers both SPI and I²C communications ports.

The micromachined, sensing elements are fully differential, comprising the lateral x-axis and y-axis sensors and the vertical, teeter totter z-axis sensors. The x-axis and y-axis sensors and the z-axis sensors go through separate signal paths that minimize offset drift and noise. The signal path is fully differential, except for a differential to single-ended conversion at the analog outputs of the ADXL356.

The analog accelerometer outputs of the ADXL356 are ratiometric to $V_{1\text{P8ANA}}$; therefore, carefully digitize them correctly. The temperature sensor output is not ratiometric. The X_{OUT} , Y_{OUT} , and Z_{OUT} analog outputs are filtered internally with an antialiasing filter. These analog outputs also have an internal 32 k Ω series resistor that can be used with an external capacitor to set the bandwidth of the output.

The ADXL357 includes antialias filters before and after the high resolution Σ - Δ ADC. User-selectable output data rates and filter corners are provided. The temperature sensor is digitized with a 12-bit successive approximation register (SAR) ADC.

APPLICATIONS INFORMATION Analog output

Figure 58 shows the ADXL356 application circuit. The analog outputs (X_{OUT} , Y_{OUT} , and Z_{OUT}) are ratiometric to the 1.8 V analog voltage from the V_{1P8ANA} pin. V_{1P8ANA} can be powered with an on-chip LDO regulator that is powered from V_{SUPPLY}. V_{1P8ANA} can also be supplied externally by forcing V_{SUPPLY} to V_{SS}, which disables the LDO regulator. Due to the ratiometric response, the analog output requires referencing to the V_{1P8ANA} supply when digitizing to achieve the inherent noise and offset performance of the ADXL356. The 0 g bias output is nominally equal to V_{1P8ANA}/2. The recommended option is to use the ADXL356 with a ratiometric ADC (for example, the Analog Devices, Inc., AD7682) with V_{1P8ANA} providing the voltage reference. This configuration results in self cancellation of errors due to minor supply variations.

The ADXL356 outputs two forms of filtering: internal antialiasing filtering with a cutoff frequency of approximately 1.5 kHz, and external filtering. The external filter uses a fixed, on-chip, $32 \text{ k}\Omega$ resistance in series with each output in conjunction with the external capacitors to implement the low-pass filter antialiasing and noise reduction prior to the external ADC. The antialias filter cutoff frequency must be significantly higher than the desired signal bandwidth. If the antialias filter corner is too low, ratiometricity can degrade where the signal attenuation is different from the reference attenuation.

DIGITAL OUTPUT

Figure 59 shows the ADXL357 application circuit with the recommended bypass capacitors. The communications interface is either SPI or I^2C (see the Serial Communications section for additional information).

The ADXL357 includes an internal configurable digital bandpass filter. Both the high-pass and low-pass poles of the filter are adjustable, as detailed in the Filter Settings Register section and Table 44. At power-up, the default conditions for the filters are as follows:

- High-pass filter (HPF) = dc (off)
- Low-pass filter (LPF) = 1000 Hz
- Output data rate = 4000 Hz

AXES OF ACCELERATION SENSITIVITY

Figure 60 shows the axes of acceleration sensitivity. Note that the output voltage increases when accelerated along the sensitive axis.

Figure 60. Axes of Acceleration Sensitivity

POWER SEQUENCING

There are two methods for applying power to the device. Typically, internal LDO regulators generate the 1.8 V power for the analog and digital supplies, V_{1P8ANA} and V_{1P8DIG} , respectively. Optionally, connecting V_{SUPPLY} to V_{SS} and driving V_{1P8ANA} and V_{1P8DIG} with an external supply can supply V_{1P8ANA} and V_{1P8DIG} .

When using the internal LDO regulators, connect $V_{\rm SUPPLY}$ to a voltage source between 2.25 V to 3.6 V. In this case, $V_{\rm DDIO}$ and $V_{\rm SUPPLY}$ can be powered in parallel. $V_{\rm SUPPLY}$ must not exceed the $V_{\rm DDIO}$ voltage by greater than 0.5 V. If necessary, $V_{\rm DDIO}$ can be powered before $V_{\rm SUPPLY}$.

When disabling the internal LDO regulators and using an external 1.8 V supply to power V_{1P8ANA} and V_{1P8DIG}, tie V_{SUPPLY} to ground, and set V_{1P8ANA} and V_{1P8DIG} to the same final voltage level. In the case of bypassing the LDOs, the recommended power sequence is to apply power to V_{DDIO}, followed by V_{1P8DIG} approximately 10 µs later, and then V_{1P8ANA} approximately 10 µs later. If necessary, V_{1P8DIG} and V_{DDIO} can be powered from the same 1.8 V supply, which can also be tied to V_{1P8ANA} with proper isolation. In this case, proper decoupling and low frequency isolation is important to maintain the noise performance of the sensor.

POWER SUPPLY DESCRIPTION

The ADXL356/ADXL357 have four different power supply domains: V_{SUPPLY} , V_{1P8ANA} , V_{1P8DIG} , and V_{DDIO} . The internal analog and digital circuitry operates at 1.8 V nominal.

V_{SUPPLY}

 V_{SUPPLY} is 2.25 V to 3.6 V, which is the input range to the two LDO regulators that generate the nominal 1.8 V outputs for $V_{1\text{P8ANA}}$ and $V_{1\text{P8DIG}}$. Connect V_{SUPPLY} to V_{SS} to disable the LDO regulators, which allows driving $V_{1\text{P8ANA}}$ and $V_{1\text{P8DIG}}$ from an external source.

V_{1P8ANA}

All sensor and analog signal processing circuitry operates in this domain. Offset and sensitivity of the analog output ADXL356 are ratiometric to this supply voltage. When using external ADCs, use V_{1P8ANA} as the reference voltage. The digital output ADXL357 includes ADCs that are ratiometric to V_{1P8ANA} , thereby rendering offset and sensitivity insensitive to the value of V_{1P8ANA} . V_{1P8ANA} can be an input or an output as defined by the state of the V_{SUPPLY} voltage.

V_{1P8DIG}

 $V_{\rm 1P8DIG}$ is the supply voltage for the internal logic circuitry. A separate LDO regulator decouples the digital supply noise from the analog signal path. $V_{\rm 1P8ANA}$ can be an input or an output as defined by the state of the $V_{\rm SUPPLY}$ voltage. If driven externally, $V_{\rm 1P8DIG}$ must be the same voltage as the $V_{\rm 1P8ANA}$ voltage.

V_{DDIO}

The V_{DDIO} value determines the logic high levels. On the analog output ADXL356, V_{DDIO} sets the logic high level for the self test pins, ST1 and ST2, as well as the STBY pin. On the digital output ADXL357, V_{DDIO} sets the logic high level for communications interface ports, as well as the interrupt and DRDY outputs.

The LDO regulators are operational when V_{SUPPLY} is between 2.25 V and 3.6 V. V_{1P8ANA} and V_{1P8DIG} are the regulator outputs in this mode. Alternatively, when tying V_{SUPPLY} to V_{SS} , V_{1P8ANA} and V_{1P8DIG} are supply voltage inputs with a 1.62 V to 1.98 V range.

OVERRANGE PROTECTION

To avoid electrostatic capture of the proof mass when the accelerometer is subject to input acceleration beyond its full-scale range, all sensor drive clocks turn off for 0.5 ms. In the $\pm 10 g/\pm 10.24 g$ range setting, the overrange protection activates for input signals beyond approximately $\pm 40 g$ ($\pm 25\%$), and for the $\pm 20 g/\pm 20.48 g$ and $\pm 40 g/\pm 40.95 g$ range settings, the threshold corresponds to about $\pm 80 g$ ($\pm 25\%$).

When overrange protection occurs, the X_{OUT} , Y_{OUT} , and Z_{OUT} pins on the ADXL356 begin to drive to midscale. The ADXL357 floats toward zero, and first in, first out (FIFO) buffer begins filling with this data.

SELF TEST

The ADXL356 and ADXL357 incorporate a self test feature that effectively tests the mechanical and electronic system. Enabling self test stimulates the sensor electrostatically to produce an output corresponding to the test signal applied as well as the mechanical force exerted. Only the z-axis response is specified to validate device functionality.

In the ADXL356, drive the ST1 pin to V_{DDIO} to invoke self test mode. Then, by driving the ST2 pin to V_{DDIO} , the ADXL356 applies an electrostatic force to the mechanical sensor and induces a change in output in response to the force. The self test delta (or response) is the difference in output voltage in the z-axis when ST2 is high vs. ST2 is low, while ST1 is asserted. After the self test measurement is complete, bring both pins low to resume normal operation.

The self test operation is similar in the ADXL357, except ST1 and ST2 can be accessed through the SELF_TEST register (Register 0x2E).

Data Sheet

ADXL356/ADXL357

The self test feature rejects externally applied acceleration and only responds to the self test force, which allows an accurate measurement of the self test, even in the presence of external mechanical noise.

FILTER

The ADXL356/ADXL357 use an analog, low-pass, antialiasing filter to reduce out of band noise and to limit bandwidth. The ADXL357 provides further digital filtering options to maintain excellent noise performance at various ODRs.

The analog, low-pass antialiasing filter in the ADXL356/ ADXL357 provides a fixed bandwidth of approximately 1.5 kHz, the frequency at which the output response is attenuated by approximately 50%. The shape of the filter response in the frequency domain is that of a sinc3 filter.

The ADXL356 x-axis, y-axis, and z-axis analog outputs include an amplifier followed by a series 32 k Ω resistor, and output to the X_{OUT} , the Y_{OUT} , and the Z_{OUT} pins, respectively.

The ADXL357 provides an internal 20-bit, Σ - Δ ADC to digitize the filtered analog signal. Additional digital filtering (beyond the analog, low-pass, antialiasing filter) consists of a low-pass digital decimation filter and a bypassable high-pass filter that supports output data rates between 4 kHz and 3.906 Hz. The decimation filter consists of two stages. The first stage is fixed decimation with a 4 kHz ODR with a low-pass filter cutoff (50% reduction in output response) at about 1 kHz. A variable second stage decimation filter is used for the 2 kHz output data rate and below (it is bypassed for 4 kHz ODR). Figure 61 shows the low-pass filter response with a 1 kHz corner (4 kHz ODR) for the ADXL357. Note that Figure 61 does not include the fixed frequency analog, low-pass, antialiasing filter with a fixed bandwidth of approximately 1.5 kHz.

Figure 61. ADXL357 Digital Low-Pass Filter (LPF) Response for 4 kHz ODR

The ADXL357 pass band of the signal path relates to the combined filter responses, including the analog filter previously described, and the digital decimation filter/ODR setting. Table 10 shows the delay associated with the decimation filter for each setting and provides the attenuation at the ODR/4 corner.

The ADXL357 also includes an optional digital high-pass filter with a programmable corner frequency. By default, the highpass filter is disabled. The high-pass corner frequency, where the output is attenuated by 50%, is related to the ODR, and the HPF_CORNER setting in the filter register (Register 0x28, Bits[6:4]). Table 11 shows the HPF_CORNER response. Figure 62 and Figure 63 show the simulated high-pass filter response and delay for a 10 Hz cutoff.

The ADXL357 also includes an interpolation filter, after the decimation filters, that produces oversampled/upconverted data and provides an external synchronization option. See the Data Synchronization section for more details. Table 12 shows the delay and attenuation relative to the programmed ODR.

Figure 62. High-Pass Filter Pass-Band Response for a 4 kHz ODR and an HPF_CORNER Setting of 001 (Register 0x28, Bits[6:4])

Group delay is the digital filter delay from the input to the ADC until data is available at the interface (see the Filter section). This delay is the largest component of the total delay from sensor to serial interface.

Figure 63. High-Pass Filter Delay Response for a 4 kHz ODR and an HPF_CORNER Setting of 001 (Register 0x28, Bits[6:4])

Table 10. Digital Filter Group Delay and Profile

	Delay		Attenuation	
Programmed ODR (Hz)	ODR (Cycles)	Time (ms)	Decimator at ODR/4 (dB)	Full Path at ODR/4 (dB)
4000	2.52	0.63	-3.44	-3.63
4000/2 = 2000	2.00	1.00	-2.21	-2.26
4000/4 = 1000	1.78	1.78	-1.92	-1.93
4000/8 = 500	1.63	3.26	-1.83	-1.83
4000/16 = 250	1.57	6.27	-1.83	-1.83
4000/32 = 125	1.54	12.34	-1.83	-1.83
4000/64 = 62.5	1.51	24.18	-1.83	-1.83
4000/128 ~ 31	1.49	47.59	-1.83	-1.83
4000/256 ~ 16	1.50	96.25	-1.83	-1.83
4000/512 ~ 8	1.50	189.58	-1.83	-1.83
4000/1024 ~ 4	1.50	384.31	-1.83	-1.83

Table 11. Digital High-Pass Filter Response

HPF_CORNER Register Setting (Register 0x28, Bits[6:4])	HPF_CORNER Frequency, -3 dB Point Relative to ODR Setting	-3 dB at 4 kHz ODR (Hz)
000	Not applicable, no high-pass filter enabled	Off
001	$247 \times 10^{-3} \times ODR$	9.88
010	$62.084 \times 10^{-3} \times ODR$	2.48
011	$15.545 \times 10^{-3} \times ODR$	0.62
100	$3.862 \times 10^{-3} \times ODR$	0.1545
101	$0.954 \times 10^{-3} \times ODR$	0.03816
110	$0.238 \times 10^{-3} \times ODR$	0.00952

Table 12. Combined Digital Interpolation Filter and Decimation Filter Response

Interpolator Data Rate Resolution Relative to 64 × ODR (Hz)	Combined Interpolator/ Decimator Delay (ODR Cycles)	Combined Interpolator/ Decimator Delay (ms)	Combined Interpolator/Decimator Output Attenuation at ODR/4 (dB)
$64 \times 4000 = 256000$	3.51661	0.88	-6.18
$64 \times 2000 = 128000$	3.0126	1.51	-4.93
$64 \times 1000 = 64000$	2.752	2.75	-4.66
$64 \times 500 = 32000$	2.6346	5.27	-4.58
$64 \times 250 = 16000$	2.5773	10.31	-4.55
$64 \times 125 = 8000$	2.5473	20.38	-4.55
$64 \times 62.5 = 4000$	2.53257	40.52	-4.55
64 × 31.25 = 2000	2.52452	80.78	-4.55
$64 \times 15.625 = 1000$	2.52045	161.31	-4.55
64 × 7.8125 = 500	2.5194	322.48	-4.55
64 × 3.90625 = 250	2.51714	644.39	-4.55

SERIAL COMMUNICATIONS

The 4-wire serial interface communicates in either the SPI or I^2C protocol. It affectively autodetects the format being used, requiring no configuration control to select the format.

SPI PROTOCOL

Wire the ADXL357 for SPI communication as shown in the connection diagram in Figure 64. The SPI protocol timing is shown in Figure 65 to Figure 68. The timing scheme follows the clock polarity (CPOL) = 0 and clock phase (CPHA) = 0. The SPI clock speed ranges from 100 kHz to 10 MHz.

Figure 68. SPI Timing Diagram—Multibyte Write