: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

Description

These line drivers are pin compatible with 26LS31 in applications where pin $4=5 \mathrm{~V}$ and pin $12=$ GND. Internal clamp diodes allow trouble-free operation when driving cable lengths exceeding 100m. Split supplies are provided to minimize standby power dissipation in high voltage applications. The logic should be powered from a regulated 5 V supply at the VccBias pin. The output stages may then be powered by a separate supply at VccDrivers, up to 30V. Output voltage swings of 0.3 V to $\mathrm{VCC}-1.9 \mathrm{~V}$ are typical. The outputs are protected against shorts to ground, shorts to Vcc and to other outputs, by a two-fold scheme of current limiting and thermal shutdown. This assures highly reliable operation in harsh environments.

This part is available in 16L SOIC (Pb-free) package.

Applications

- Encoders
- Industrial controls

Features

- Supply (Bias) Voltage Range 3.5 V to 30 V
- Operation to 800 KHz
- CMOS and TTL Compatible Inputs
- Separate logic bias and driver supply pins
- Optional single supply operation for moderate power applications
- High Impedance Buffered Inputs with hysteresis
- Tri-State outputs
- 80 mA peak SINK/SOURCE current

Pin Assignment

Table 1. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Units	Test Conditions
Operating Temperature Range	T_{A}	-55	125	${ }^{\circ} \mathrm{C}$	
Supply (Driver) Voltage Range	$\mathrm{V}_{\mathrm{CCD}}$	4.5	30	V	

Table 2. Electrical Characteristics
Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{EN}-<0.8 \mathrm{~V}$.

Parameters	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Overtemp Operate Point (junction)	TJop	-	172	-	${ }^{\circ} \mathrm{C}$	Note 1
Overtemp Release Point (junction)	TJRP	-	136	-	${ }^{\circ} \mathrm{C}$	Note 1
Vcc Bias Voltage Range	$V_{\text {CCB }}$	3.5	5	30	V	
Vcc Drivers Voltage Range	$V_{\text {CCD }}$	4.5	5	30	V	
Supply Current $\mathrm{V}_{\text {CCB1 }}$ (BIAS)	$I_{\text {CCB1 }}$	-	11.9	16.0	mA	$\mathrm{V}_{\text {CCB }}$ and $\mathrm{V}_{\text {CCD }}=5 \mathrm{~V}$
Supply Current V ${ }_{\text {CCD1 }}$ (DRIVERS)	ICCD1	-	2.4	3.3	mA	$\mathrm{V}_{\text {CCB }}$ and $\mathrm{V}_{\text {CCD }}=5 \mathrm{~V}$
Supply Current $\mathrm{V}_{\text {CCB2 }}$	$I_{\text {CCB2 }}$	-	2.5	3.4	mA	$\mathrm{V}_{C C B}$ and $\mathrm{V}_{C C D}=5 \mathrm{~V}$, EN- $>2 \mathrm{~V}$
Supply Current V CCD2	ICCD2	-	0.0	0.1	mA	$\mathrm{V}_{C C B}$ and $\mathrm{V}_{\text {CCD }}=5 \mathrm{~V}, \mathrm{EN}->2 \mathrm{~V}$
Supply Current $\mathrm{V}_{\text {CCB3 }}$	$\mathrm{ICCB3}$	-	12.1	18.5	mA	$V_{\text {CCB }}$ and $V_{\text {CCD }}=30 \mathrm{~V}$
Supply Current V CCD3	ICCD3	-	2.4	3.3	mA	$V_{\text {CCB }}$ and $V_{C C D}=30 \mathrm{~V}$
Supply Current $\mathrm{V}_{\text {CCB4 }}$	ICCB4	-	2.6	3.5	mA	$\mathrm{V}_{\text {CCB }}$ and $\mathrm{V}_{\text {CCD }}=30 \mathrm{~V}$, EN->2 V
Supply Current V CCD4	ICCD4	-	0.0	0.1	mA	$\mathrm{V}_{\text {CCB }}$ and $\mathrm{V}_{\text {CCD }}=30 \mathrm{~V}$, EN->2 V
Enable Input Threshold	$\mathrm{V}_{\text {THE }}$	0.8	1.5	2	V	
Enable Low Level Input Current	$\mathrm{I}_{\text {ILE }}$	-10	0	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=5 \mathrm{~V}$
Enable High Level Input Current	IIHE	-	108	150	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=5 \mathrm{~V}$
High Impedance Output Leakage	loz	-4.0	0.0	4.0	$\mu \mathrm{A}$	$V_{C C D}=30 \mathrm{~V}, \mathrm{EN}->2 \mathrm{~V},$ Output at 15 V
Input Positive-Going Threshold	$\mathrm{V}_{\text {T+ }}$	1.05	1.25	1.45	V	$\mathrm{V}_{C C B}=5 \mathrm{~V}$
Input Negative-Going Threshold	V_{T} -	0.75	0.95	1.15	V	$V_{C C B}=5 \mathrm{~V}$
Input Hysteresis	V_{H}	-	0.3	-	V	$V_{C C B}=5 \mathrm{~V}$
Low Level Input Current	IIL	-4.0	-0.1	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=5 \mathrm{~V}$
High Level Input Current	$\mathrm{IIH}^{\text {H }}$	-	0	4.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=5 \mathrm{~V}$
Low Level Output1	$\mathrm{V}_{\text {OL1 }}$	-	375	500	mV	$\mathrm{l}_{\mathrm{LL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CCD}}=5 \mathrm{~V}$
Low Level Output2	$\mathrm{V}_{\text {OL2 }}$	-	370	500	mV	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CCD}}=30 \mathrm{~V}$
High Level Output1	$\mathrm{V}_{\mathrm{OH} 1}$	2.4	2.8	-	V	$\mathrm{IOH}=-20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CCD}}=5 \mathrm{~V}$
High Level Output2	$\mathrm{V}_{\mathrm{OH} 2}$	27.7	28.1	-	V	$\mathrm{l}_{\mathrm{OH}}=-20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CCD}}=30 \mathrm{~V}$

Note:

1. This is not a test parameter, but for information only.

Table 3. AC Switching Characteristics

Values given at $\mathrm{V}_{\mathrm{CCB}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCD}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$ on all outputs, and $\mathrm{EN}-<0.8 \mathrm{~V}$.

Parameters	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Propagation delay, rising input 50\% point to zero crossing of differential outputs	$\mathrm{T}_{\mathrm{PLH}}$	-	450	630	ns	See above.
Propagation delay, falling input 50\% point to zero crossing of differential outputs	$\mathrm{T}_{\text {PHL }}$	-	450	630	ns	See above.
Output Rise Time	T_{R}	-	700	980	ns	See above.
Output Fall Time	T_{F}	-	700	980	ns	See above.

Package Drawings (Dimensions in Inches)

	16 SOIC	
Symbol	Min	Max
A	0.054	0.068
A1	0.004	0.0098
B	0.014	0.019
D	0.386	0.393
E	0.150	0.157
H	0.229	0.244
e	0.050	
BSC		
C	0.0075	0.0098
L	0.016	0.034
X	0.020 REF	
$\theta 1$	0°	
$\theta 2$	7° BSC	

DETAIL"A"

Notes:

1. Lead coplanarity should be o to $0.004^{\prime \prime}$ max.
2. Package surface finishing: VD1 24~27 (Dual). Package surface finishing: VD1 13~15 (16L Soic(NB) Matrix).
3. All dimension excluding mold flashes.
4. The lead width, B to be determined at $0.0075^{\prime \prime}$ from the lead tip.
