imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AFBR-2310Z Fiber Optic Receiver for Multi GHz Analog Links

Data Sheet

Description

The AFBR-2310Z is a compact, high performance, cost effective receiver for multi GHz analog communication over single mode optical fiber.

The receiver incorporates a wide bandwidth, low dark current InGaAs/InP PIN photodiode packaged inside a TOheader, together with a high performance E-pHEMT RF amplifier and its bias network.

A receptacle designed according to the CEI/IEC 61754-13 standard allows coupling of the optical signal by means of a FC fiber patchcord.

The receiver is optimized for operation at 1310 nm and 1550 nm but may be used over a wide wavelength range ranging from 850 nm to 1600 nm, with reduced performance.

The amplifier low noise figure and PIN high responsivity allow for a high sensitivity and thus a high splitting ratio in branched Passive Optical Networks.

Access to the RF output as well as bias of PIN and amplifier is through a flexible printed circuit board. The RF output requires external AC coupling.

The receptacle is designed for assembly into a properly shaped aperture in the customer box wall or fixture.

Features

- Compact package
- Low dark current PIN
- High performance RF amplifier
- FC Single mode fiber connectorized optical receptacle
- Low power consumption
- Flex interconnect to customer PCB
- Minimal external circuitry required
- RoHS6 compliant
- Pairs to AFBR-1310Z Fiber Optic Transmitter for Multi GHz analog links

Specifications

- Nominal 50 ohm RF output impedance
- 3.3 V RF amplifier and PIN bias voltage
- 200 V/W typical conversion gain
- 200 MHz to 5.5 GHz frequency range

Applications

- Analog optical links for satellite signal distribution
- In-building antenna remote systems

Table 1. Absolute Maximum Ratings^[1]

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Storage Temperature (non-operating)	Ts	-40		85	С	
Operating Temperature	Та	-40		85	С	
Relative Humidity (non condensing)	RH			85	%	
RF amplifier/PIN supply voltage		0		5.0	V	
Optical input power	Pin			7	dBm	
RF amplifier output DC voltage	Vout			5	V	
ESD capability (HBM)	VESDHBM			250	V	
Flex soldering temperature				300	С	For manual soldering, no longer than 2 sec/pad. It is advisable to pre-heat the customer PCB.

Notes:

1. Absolute maximum ratings are those values beyond which functional performance is not intended, device reliability is not implied, and damage to the device may occur.

Table 2. Recommended operating conditions^[2]

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Operating Temperature	Та	0		85	С	
Relative Humidity (non condensing)	RH			80	%	
RF amplifier supply voltage	Vcc	3.135	3.3	3.465	V	

Notes:

2. Typical operating conditions are those values for which functional performance and device reliability is implied.

Table 3. Electro-Optical specifications^[3]

Parameter	Symbol	Conditions	Min.	Nom.	Max.	Unit	Notes
RF Output impedance	Ro			50		Ω	
Gain ripple	ΔG	0.2 to 5.5 GHz		4		dB	
RF conversion gain	G			200		V/W	@ 1 GHz
RF amplifier supply current	lcc	T = 0-85° C	16		40	mA	No light input
Input referred noise		T = 0-85° C		10		pW/√Hz	
Wavelength range	λ		850	1310	1600	nm	Note 4
3 dB Bandwidth				7		GHz	
Low Cutoff Frequency				40		MHz	
Input optical power					2	dBm	

Notes:

3. All O/E parameters refer to 1310 nm and 1550 nm wavelength optical input signal

4. The receiver is optimized for operation at 1310 nm and 1550 nm but may be used over a wide wavelength range ranging from 850 nm to 1600 nm, with reduced performance

Schematic Diagram

Figure 1. Schematic Diagram

Electrical Pinout

Figure 2. Electrical pinout (top view after 90° bending of the flexible PCB)

Package Information

The AFBR-2310Z Receiver is housed in a TO-46 header, joint to a robust FC plastic receptacle, as shown in figure 3.

Figure 4 shows the mechanical outline of the flex.

A nut with washer is used to fix the receiver to the customer box wall. The aperture in the box wall should be designed in order to avoid rotation of the receptacle.

A dust cap is provided for shipping, and should be used whenever the receiver is not connected to a fiber patch cord.

Figure 3. Mechanical layout of Analog Receiver. The flex is shown before bending. All dimensions are in [mm].

Figure 4. Flex outline. All dimensions are in [mm].

Figure 5. Example of flex bending when soldered onto a PCB. All dimensions are in [mm].

Handling information

When soldering the flex to the customer PCB, it is advisable to avoid heating or touching with the hot iron the plastic receptacle and the header to flex interconnections.

The flex circuit can be soldered to the customer PCB by hand soldering or with automatic equipment (like hot bar).

A washless flux should be used to solder the flex pads to the PCB.

This device is sensitive to ESD discharge. To protect the device, it is important to use normal ESD handling precautions. These include use of grounded wrist straps, work-benches and floor wherever a receiver is handled.

Mounting hardware

A nut with integrated washer is used to assemble the receiver to a panel (see Figure 6).

Recommended application circuit

Figure 7 shows the recommended application circuit.

Proper 50 ohm controlled impedance traces are required on the RF output. The RF output has to be AC coupled to the next amplifier stage.

The RF amp/PIN bias pads should be connected to a 8.2 ohm impedence controlled trace, terminated with a 8.2 ohm resistor in parallel to an inductor. Filtering caps are required on the bias line.

Figure 6. Mechanical dimensions of nut+washer. All dimensions are in [mm].

Figure 7. Recommended application circuit

For product information and a complete list of distributors, please go to our web site:

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-3183EN - October 7, 2011

