: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Transparent Jacket Plastic Optical Fiber

Data Sheet

Cable Description

The AFBR-TUS500Z plastic fiber optic cable is constructed of a single step-index fiber sheathed in a transparent polyethylene jacket. The cable is supplied in spools of 500 m .

Figure 1 Typical POF Attenuation vs. Wavelength

Features

- Compatible with Avago Versatile Link Family of connectors and fiber optic components
- $1.0 / 2.2 \mathrm{~mm}$ diameter Plastic Optical Fiber (POF) with $0.21 \mathrm{~dB} / \mathrm{m}$ typical attenuation $\left(-40^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$)
- PMMA core
- Fluorinated polymer cladding
- Transparent polyethylene jacket
- Halogen free

Applications

- Arc flash event detection
- Light detection

Figure 2 AFBR-TUS500Z Structure

Plastic Optical Fiber Specifications: AFBR-TUS500Z

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Recommended Storage Temperature	TS	-55	+85	${ }^{\circ} \mathrm{C}$	
Recommended Operating Temperature	TO	-40	+85	${ }^{\circ} \mathrm{C}$	
Recommended Installation Temperature	Ti	0	+70	${ }^{\circ} \mathrm{C}$	1
Short Term Tensile Force	FT		50	N	2, 3
Long Term Tensile Load	FT		1	N	2, 4
Bend Radius	r	30		mm	5, 6, 7
Humidity range	H		85	\%	

NOTE

1. Installation temperature is the range over which the cable can be bent and pulled without damage. Below $0^{\circ} \mathrm{C}$ the cable becomes brittle and should not be subjected to mechanical stress.
2. Fail criteria for tensile force test: elongation higher than 5% of original length.
3. Short term: $\mathbf{3 0} \mathrm{mins}$.
4. Long term: 24 hours.
5. Bend angle is 90°. Bend radius is the radius of the mandrel around which the cable is bent.
6. Fail criteria for bend radius test: increase in attenuation higher than 0.5 dB .
7. Test duration: 24 hours.

Mechanical Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless Otherwise Specified

Parameter		Symbol	Min.	Typ.	Max.	Unit	Note
Numerical Aperture		NA		0.48			1
Diameter Core and Cladding		DC	0.94	1.00	1.06	mm	
Diameter Jacket		DJ	2.13	2.20	2.27	mm	
Refractive Index	Core	n		1.492			
	Cladding			1.412			
Mass per Unit Length				3.7		g / m	2

NOTE

1. Fiber length longer than 2 meters
2. Without connectors

Optical Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless Otherwise Specified

Parameter	Symbol	Min.	Typ.	Max.	Unit	Note
Cable Attenuation Source: 650nm, LED, NA=0.5 (Source: AFBR-1529Z)	0	0.16	0.21	0.26	$\mathrm{~dB} / \mathrm{m}$	
Capturing constant	C	$1.5 \mathrm{E}-9$	$3 \mathrm{E}-9$		m	1,2
Propagation delay constant	I / v		5		$\mathrm{~ns} / \mathrm{m}$	3

NOTE

1. The optical power P at the photo detector can be calculated as $P=C \times L \times E / K$ with;

P: Optical power on detector [W]
C: Capturing constant [m]
L: Illuminated length of fiber [m]
E: Optical power density in illuminated area [W/m²], halogen lamp used as light source
K: Correction factor for transmission losses [1], calculated as: K=10^(A $\times \mathrm{L} 2 / 10)$
A: Transmission loss [dB/m]
L2: Length of fiber between illuminated area and photo detector [m], i.e. wiring length.

* Capturing constant determined with a fiber length of 12 m .

2. Minimum limit of the capturing efficiency is based on the calculation of the average value $-3 \times$ standard deviation for 51-cm-long segments of AFBR-TUS500Z. Capturing efficiency was measured with $17-\mathrm{cm}$-long segments of AFBR-TUS500Z (17 cm is the diameter of the integrating sphere used for characterization). The $51-\mathrm{cm}$-long segment was achieved by averaging three measurements taken over $17-\mathrm{cm}$-long segments.
3. Propagation delay constant is the reciprocal of the group velocity for propagation delay of optical power. Group velocity is $\mathrm{v}=\mathrm{c} / \mathrm{n}$, where c is the velocity of light in free space $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ and n is the effective core index of refraction.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago Technologies and the A logo are trademarks of Avago Technologies in the United States and other countries. All other brand and product names may be trademarks of their respective companies.

Data subject to change. Copyright © 2015-2016 Avago Technologies. All Rights Reserved.
AV02-4965EN - March 1, 2016

