: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MODEL AFCM - ANALOG TO FREQUENCY CONVERTER MODULE

DESCRIPTION

The configurable analog to frequency converter is used to convert analog standard signals to frequency signals or pulse width modulated (PWM) signals. Input signal ranges are $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-10 \mathrm{~mA}, 2-10 \mathrm{~mA}$, $0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 0-5 \mathrm{~V}$, or $1-5 \mathrm{~V}$.

The DIP switches are accessible on the side of the housing and allow the following parameters to be configured:

- Input signal
- Output values
- Output type (frequency or PWM)
- Filter type (for smoothing interferences on the input signal)
- Input over/under range fault detection

DIMENSIONS In inches (mm)

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBER
AFCM	Analog to Frequency Converter Module	AFCM0000

- VOLTAGE/CURRENT TO FREQUENCY CONVERTER
- 3-WAY ISOLATION OF INPUT / OUTPUT SIGNALS
- UNIVERSAL CONVERSION MODULE - INPUTS AND OUTPUTS SELECTED VIA DIP SWITCH SETTINGS
- ULTRA SLIM DESIGN - ONLY 0.244" WIDE
- 19 to 30 VDC POWER

UL Recognized Component, File \# E257265

SAFETY SUMMARY

The device may only be installed and put into operation by qualified personnel. The corresponding national regulations must be observed.

SPECIFICATIONS

INPUT

1. INPUT SIGNAL RANGE (Configurable): 0-20 mA, 4-20 mA, $0-10 \mathrm{~mA}, 2-10 \mathrm{~mA}, 0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 0-5 \mathrm{~V}, 1-5 \mathrm{~V}$
2. MAX. INPUT SIGNAL:

Current inputs: 100 mA
Voltage inputs: 30 VDC
3. INPUT RESISTANCE:

Current inputs: 50Ω, approx.
Voltage inputs: $110 \mathrm{~K} \Omega$, approx.

OUTPUT

1. OUTPUT SIGNAL RANGE (Configurable):

Frequencies: $0-10 \mathrm{kHz}, 0-5 \mathrm{kHz}, 0-2.5 \mathrm{kHz}, 0-1 \mathrm{kHz}, 0-500 \mathrm{~Hz} 0-250$ $\mathrm{Hz}, 0-100 \mathrm{~Hz}, 0-50 \mathrm{~Hz}$
PWM: $7.8 \mathrm{kHz}, 3.9 \mathrm{kHz}, 1.9 \mathrm{kHz}, 977 \mathrm{~Hz}, 488 \mathrm{~Hz}, 244 \mathrm{~Hz}, 122 \mathrm{~Hz}, 61 \mathrm{~Hz}$
2. MIN. LOAD:

Frequency: $6 \mathrm{~K} \Omega$
PWM: $2 \mathrm{~K} \Omega$
3. MAX. LOAD CURRENT: 20 mA
4. OUTPUT: NPN open collector transistor
5. MAX. SWITCHING VOLTAGE: 30 V
6. OVER-RANGE/UNDER-RANGE FAULT DETECTION: Configurable
7. OUTPUT PROTECTION: Short circuit and polarity protection

GENERAL DATA

1. SUPPLY VOLTAGE: 19.2-30 VDC
2. NOMINAL VOLTAGE: 24 VDC
3. CURRENT CONSUMPTION: $<10 \mathrm{~mA}$
4. POWER CONSUMPTION: < 200 mW
5. TRANSMISSION ERROR: $<0.1 \%$ of full scale
6. TEMPERATURE COEFFICIENT (MAX.): $<0.02 \% / \mathrm{K}$
7. STEP RESPONSE:
0% to 99% : < $15 \mathrm{msec}+(1 / \mathrm{T})$
With Largest Filter: $<1 \mathrm{sec}+(1 / \mathrm{T})$
8. TEST VOLTAGE (INPUT / OUTPUT / SUPPLY): $1.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$
9. AMBIENT TEMPERATURE RANGE:

Operation: -20 to $+65^{\circ} \mathrm{C}\left(-4\right.$ to $\left.148^{\circ} \mathrm{F}\right)$
Storage: -40 to $+85^{\circ} \mathrm{C}\left(-4\right.$ to $\left.183^{\circ} \mathrm{F}\right)$
10. FAULT DETECTION: Red LED under clear cover top
11. CERTIFICATIONS AND COMPLIANCES:

Conformance With EMC Guideline 2014/30/EU

Immunity to Interference According to EN 61000-6-2

Discharge of static electricity (ESD)	EN 61000-4-2	Criterion B^{1}
Electromagnetic HF field	EN 61000-4-3	Criterion A^{2}
Fast transients (Burst)	EN 61000-4-4	Criterion B^{1}
Surge voltage capacities (Surge)	EN 61000-4-5	Criterion B^{1}
Conducted disturbance	EN 61000-4-6	Criterion A^{2}
Noise Emission According to EN 61000-6-4		
Noise emission of housing	EN 55011	Class A^{3}

${ }^{1}$ Criterion B: Temporary impairment to operational behavior that is corrected by the device itself.
${ }^{2}$ Criterion A: Normal operating behavior within the defined limits.
${ }^{3}$ Class A: Area of application; industry.
12. CONNECTIONS:

Wire Gauge: 24-12 AWG
Stripping length: $0.47^{\prime \prime}(12 \mathrm{~mm})$
13. CONSTRUCTION: Polybutylenterephthalate PBT, black
14. MOUNTING: Standard DIN top hat (T) profile rail according to EN50022

$$
-35 \times 7.5
$$

15. WEIGHT: $2 \mathrm{oz} .(54 \mathrm{~g})$

WIRING CONNECTIONS

Primary power is connected to terminals 7 or 3 (19.2 - 30 VDC) and 8 or 4 (GND 3). For best results, the Power should be relatively "clean" and within the specified variation limits. Drawing power from heavily loaded circuits or from circuits that also power loads that cycle on and off, should be avoided.

The input signal is connected to terminal 1 (In UI) and 2 (GND 1). Connections for the output signal is on terminals 5 (Out f) and 6 (GND 2).

RECEIVING DEVICE SET UP FOR SOURCE (PULL DOWN RESISTOR).

CONFIGURATION

DIP Switch S1

Using DIP switch S1, you can set the input values, and the values for Moving Average Filter and Over sampling.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	ANALOG IN
				$0-10 \mathrm{~V}$
	ON			$1-5 \mathrm{~V}$
		ON		$0-5 \mathrm{~V}$
	ON	ON		$2-10 \mathrm{~V}$
ON			ON	$0-20 \mathrm{~mA}$
ON	ON		ON	$4-20 \mathrm{~mA}$
ON		ON	ON	$0-10 \mathrm{~mA}$
ON	ON	ON	ON	$2-10 \mathrm{~mA}$

The moving average filter can group values ($1,2,4,6$) using moving window averaging to form a new measured value. In moving window averaging, the average of a fixed number of measured values is taken, whereby the oldest value is always dropped and the most recent added.

$\mathbf{5}$	$\mathbf{6}$	MOVING WINDOW AVERAGING
		1 value
ON		2 values
	ON	4 values
ON	ON	6 values

$\mathbf{7}$	$\mathbf{8}$	OVER SAMPLING
		1 value
ON		10 values
	ON	50 values
ON	ON	100 values

In order to smooth the measured values, an average can be formed from several measured values $(1,10,50,100)$. This process is called Over sampling. In oversampling, the average is updated every time the selected number of values is reached.

DIP Switch S2

Using DIP switch S2, you can set the output values, the output type and fault detection.

Output Signals

Frequency Output:

Variable frequency/period duration T

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	FREQUENCY OUTPUT
				$0-10 \mathrm{kHz}$
ON				$0-5 \mathrm{kHz}$
	ON			$0-2.5 \mathrm{kHz}$
ON	ON			$0-1 \mathrm{kHz}$
		ON		$0-500 \mathrm{~Hz}$
ON		ON		$0-250 \mathrm{~Hz}$
	ON	ON		$0-100 \mathrm{~Hz}$
ON	ON	ON		$0-50 \mathrm{~Hz}$

PWM Output

(Pulse Wide Modulation):
Variable pulse to pause ratio/fixed period duration T

Change can only be read by PWM input meters.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	PWM OUTPUT
			ON	7.8 KHz
ON			ON	3.9 KHz
	ON		ON	1.9 KHz
ON	ON		ON	977 Hz
		ON	ON	488 Hz
ON		ON	ON	244 Hz
	ON	ON	ON	122 Hz
ON	ON	ON	ON	61 Hz

Fault Detection

$\mathbf{5}$	$\mathbf{6}$	INPUT OVER RANGE
		Freeze at 100\% measuring range end value
ON		105% measuring range end value
	ON	110% measuring range end value
ON	ON	Fault detection OFF (continues past end value)

$\mathbf{7}$	$\mathbf{8}$	INPUT UNDER RANGE
		Freeze at 100\% measuring range start value
ON		105% measuring range end value
	ON	110% measuring range end value
ON	ON	Fault detection OFF (stops at start value)

INSTALLATION

The unit is equipped with a universal mounting foot for attachment to standard DIN style top hat (T) profile rail according to EN50022-35 x 7.5 and 35×15. The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

T Rail Installation

To install the AFCM on a "T" style rail, angle the module so that the top groove of the "foot" is located over the lip of the top rail. Push the module toward the rail until it snaps into place. To remove a module from the rail, insert a screwdriver into the slot on the bottom of the "foot", and pry upwards on the module until it releases from the rail.

