imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Technical Data

RF LDMOS Wideband Integrated Power Amplifiers

The avionics AFIC10275N is a 2-stage RFIC designed for transponder applications operating from 978 to 1090 MHz. These devices are suitable for use in pulse applications, including Mode S transponders used for ADS-B.

Narrowband Performance: (50 Vdc, T_A = 25°C)

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	2nd Stage Eff. (%)
1090 (1)	Pulse (128 μsec, 10% Duty Cycle)	250 Peak	32.1	61.4

Typical Wideband Performance (50 Vdc, T_A = 25°C)

Frequency (MHz) ⁽²⁾	Signal Type	P _{out} (W)	G _{ps} (dB)	2nd Stage Eff. (%)
978	Pulse	250 Peak	32.6	61.0
1030	(128 μsec, 10% Duty Cycle)		32.5	59.1
1090			30.1	60.6

Load Mismatch/Ruggedness

	(W) Voltage Resul	[
10% Phase Angle	Peak Degrada (3 dB	
	> 10:1 at all 10% Phase Angles le)	10% Phase Angles Peak Degradat

TO-270WBG-14 PLASTIC AFIC10275GN

1. Measured in 1090 MHz narrowband test circuit.

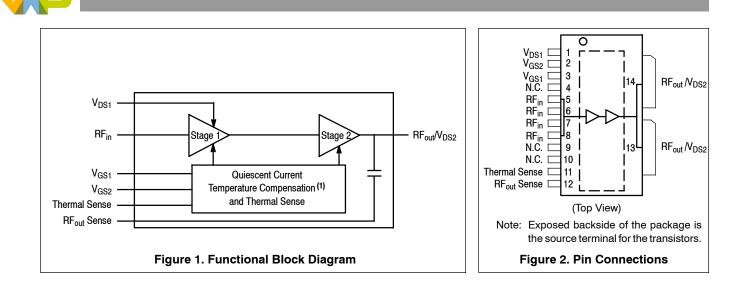
2. Measured in 978 - 1090 MHz broadband reference circuit.

Features

- Characterized from 978 to 1090 MHz
- On-Chip Input (50 Ohm) and Interstage Matching
- Single Ended
- Integrated ESD Protection
- Low Thermal Resistance
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽³⁾

Typical Applications

- · Air Traffic Control Systems (ATC), Including Ground-based Secondary Radars
- Mode S Transponders, Including:
 - Traffic Alert and Collision Avoidance Systems (TCAS)
 - Automatic Dependent Surveillance-Broadcast In and Out (ADS-B) Using, e.g., 1090 Extended Squitter or Universal Access Transponder (UAT)
 - Mode S ELM Interrogators
- 3. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1987.



Document Number: AFIC10275N Rev. 0, 4/2015

> AFIC10275N AFIC10275GN

978-1090 MHz, 250 W PEAK, 50 V

<u>√RoHS</u>

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +100	Vdc
Gate-Source Voltage	V _{GS}	-6, +10	Vdc
Operating Voltage	V _{DD}	50, +0	Vdc
Storage Temperature Range	T _{stg}	–65 to +150	°C
Case Operating Temperature Range	T _C	–40 to 150	°C
Operating Junction Temperature Range ^(2,3)	TJ	-40 to 225	°C
Input Power	P _{in}	25	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(3,4)	Unit
Thermal Resistance, Junction to Case Case Temperature 81°C, 250 W Peak, 128 μsec Pulse Width, 10% Duty Cycle, 1090 MHz Stage 1, 50 Vdc, I _{DQ1} = 80 mA Stage 2, 50 Vdc, I _{DQ2} = 150 mA	Z _{θJC}	1.1 0.15	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	Class 2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	Class A, passes 150 V
Charge Device Model (per JESD22-C101)	Class II, passes 200 V

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1987, Quiescent Current Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1987, Quiescent Current Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1987.

2. Continuous use at maximum temperature will affect MTTF.

3. MTTF calculator available at http://www.freescale.com/rf/calculators.

4. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics			•	•	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V_{DS} = 55 Vdc, V_{GS} = 0 Vdc)	I _{DSS}		_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
stage 1 - On Characteristics			•	•	
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 52 μ Adc)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _{DQ1} = 80 mAdc, Measured in Functional Test)	V _{GG(Q)}	6.0	7.0	8.0	Vdc
Stage 2 - Off Characteristics				•	
Zero Gate Voltage Drain Leakage Current (V_{DS} = 100 Vdc, V_{GS} = 0 Vdc)	I _{DSS}	_	-	10	μAdc
Zero Gate Voltage Drain Leakage Current (V_{DS} = 55 Vdc, V_{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 2 - On Characteristics					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 528 \mu \text{Adc})$	V _{GS(th)}	1.3	1.8	2.3	Vdc
Fixture Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_{DQ2} = 150 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GG(Q)}	2.2	2.7	3.2	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.6 Adc)	V _{DS(on)}	—	0.25	—	Vdc

Functional Tests ^(1,2) (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 50$ Vdc, $I_{DQ1} = 80$ mA, $I_{DQ2} = 150$ mA, $P_{out} = 250$ W Peak (25 W Avg.), f = 1090 MHz, 128 μ sec Pulse Width, 10% Duty Cycle

Power Gain	G _{ps}	30.5	32.1	34.0	dB
2nd Stage Drain Efficiency	η_{D}	57.0	61.4	_	%

Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) I_{DQ1} = 80 mA, I_{DQ2} = 150 mA

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
1090	Pulse (128 μsec, 10% Duty Cycle)	> 10:1 at all Phase Angles	0.345 W Peak (3 dB Overdrive)	50	No Device Degradation

Table 6. Ordering Information

Device	Tape and Reel Information	Package
AFIC10275NR1		TO-270WB-14
AFIC10275GNR1	R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel	TO-270WBG-14

1. Part internally input matched.

2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

TYPICAL CHARACTERISTICS

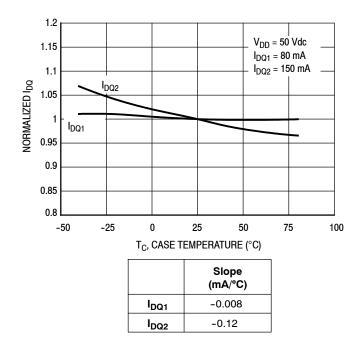


Figure 3. Normalized I_{DQ} versus Case Temperature

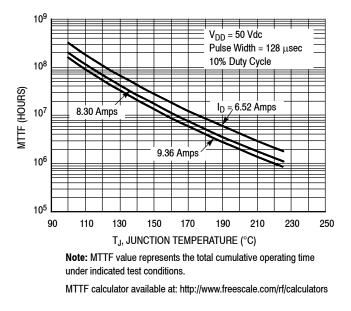
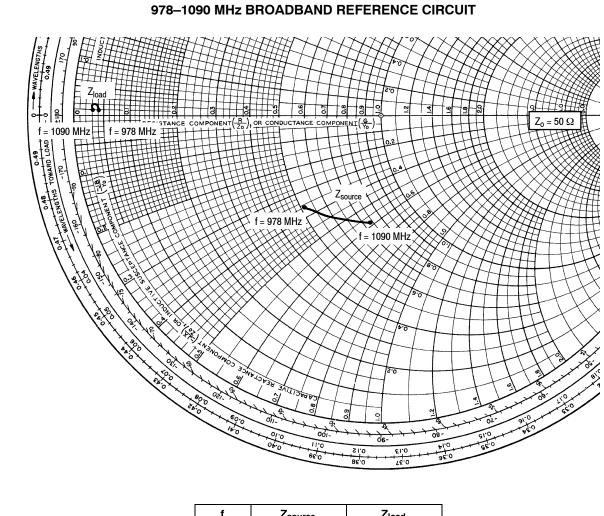


Figure 4. MTTF versus Junction Temperature - Pulse



978-1090 MHz BROADBAND REFERENCE CIRCUIT - 1.97" x 2.76" (5.0 cm x 7.0 cm)

Table 7. 978–1090 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) $V_{DD} = 50$ Vdc, $I_{DQ1} = 80$ mA, $I_{DQ2} = 150$ mA, $P_{out} = 250$ W Peak, 128 µsec Pulse Width, 10% Duty Cycle

Frequency (MHz)	G _{ps} (dB)	2nd Stage Eff. (%)	Signal Type	P _{out} (W)
978	32.6	61.0	Pulse	250
1030	32.5	59.1	Pulse	250
1090	30.1	60.6	Pulse	250

Note: For additional information on the 978-1090 broadband reference circuit, contact your local Freescale sales office or Freescale authorized distributor.

f MHz	Z _{source} Ω	Z _{load} Ω
978	26.0 - j18	2.2 + j0.05
1030	30.0 - j23	1.5 + j0.90
1090	36.7 - j29	1.3 + j0.60

Z_{source} = Test circuit input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

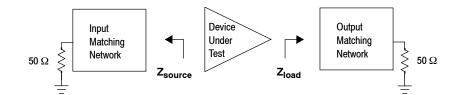
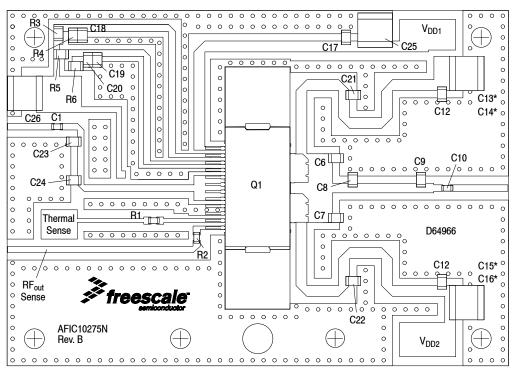
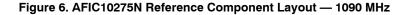



Figure 5. Broadband Series Equivalent Source and Load Impedance — 978–1090 MHz



1090 MHz REFERENCE CIRCUIT — 1.97" x 2.76" (5.0 cm x 7.0 cm)

* Stacked Capacitors

Note: Component numbers C2, C3, C4, and C5 are not used.

Part	Description	Part Number	Manufacturer	
C1, C10	56 pF Chip Capacitors	ATC600F560JT250XT	ATC	
C11, C12, C17, C18, C19	51 pF Chip Capacitors	ATC600F510JT250XT	ATC	
C6, C7	10 pF Chip Capacitors	ATC600F100JT250XT	ATC	
C8	6.8 pF Chip Capacitor	ATC600F6R8BT250XT	ATC	
C9	2.4 pF Chip Capacitor	ATC600F2R4BT250XT	ATC	
C13, C14, C15, C16, C25, C26	10 μF Chip Capacitors	C5750X7S2A106M	TDK	
C20	1 μF Chip Capacitor	GRM21BR71H105KA12L	Murata	
C21, C22	8.2 pF Chip Capacitors	ATC600F8R2BT250XT	ATC	
C23	2.7 pF Chip Capacitor	ATC600F2R7BT250XT	ATC	
C24	1.5 pF Chip Capacitor	ATC600F1R5BT250XT	ATC	
R1	13.7 kΩ, 1/16 W Chip Resistor	RR0816P-1372-B-T5-14C	Susumu	
R2	1.2 k Ω , 1/16 W Chip Resistor	RR0816P-122-B-T5	Susumu	
Q1	RF Power LDMOS Transistor	AFIC10275NR1	Freescale	
PCB	Taconic RF60A 0.025", ε _r = 6.15	D64966	MTL	

TYPICAL CHARACTERISTICS — 1090 MHz REFERENCE CIRCUIT

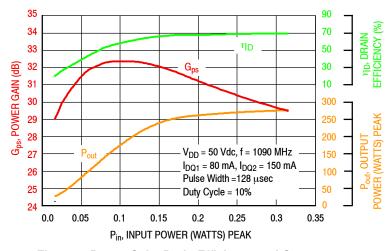


Figure 7. Power Gain, Drain Efficiency and Output Power versus Input Power

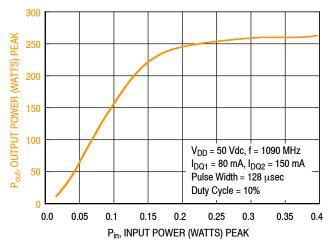
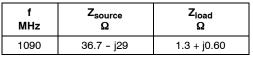



Figure 8. Output Power versus Input Power

Z_{source} = Test circuit input impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

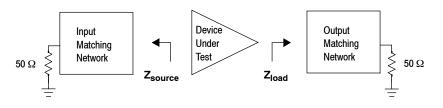
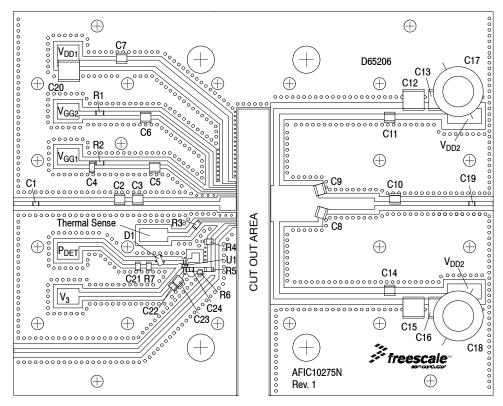


Figure 9. Series Equivalent Source and Load Impedance — 1090 MHz

1090 MHz NARROWBAND PRODUCTION TEST FIXTURE

Table 9. 1090 MHz Narrowband Performance (1,2)(In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ1} = 80 mA, I_{DQ2} = 150 mA, P_{out} = 250 W Peak (25 W Avg.), f = 1090 MHz, 128 µsec Pulse Width, 10% Duty Cycle


Characteristic	Symbol	Min	Тур	Мах	Unit
Power Gain	G _{ps}	30.5	32.1	34.0	dB
2nd Stage Drain Efficiency	η_{D}	57.0	61.4		%

1. Part internally input matched.

2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

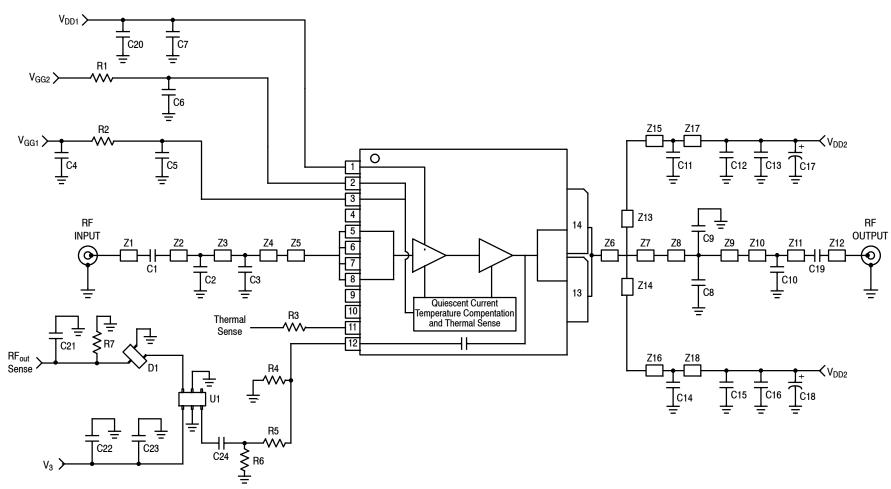

1090 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4" x 5" (10.2 cm x 12.7 cm)

Figure 10. AFIC10275N Narrowband	est Circuit Component Layout — 1090 MHz
----------------------------------	---

Part	Description	Part Number	Manufacturer
C1	47 pF Chip Capacitor	ATC600F470JT250XT	ATC
C2	2.7 pF Chip Capacitor	ATC100B2R7CT500XT	ATC
C3	2.0 pF Chip Capacitor	ATC100B2R0BW500XT	ATC
C4	1 μF Chip Capacitor	GRM31MR71H105KA88L	Murata
C5, C6, C7, C11, C14	43 pF Chip Capacitors	ATC100B430JT500XT	ATC
C8, C9	10 pF Chip Capacitors	ATC100B100JT500XT	ATC
C10	4.7 pF Chip Capacitor	ATC100B4R7CT500XT	ATC
C12, C13, C15, C16, C20	10 μF Chip Capacitors	C5750X752A106M230KB	TDK
C17, C18	220 µF, 100 V Electrolytic Capacitors	MCGPR100V227M16X26-RH	Multicomp
C19	30 pF Chip Capacitor	ATC600F300JT250XT	ATC
C21	10 nF Chip Capacitor	C0805C103J5RAC-TU	Kemet
C22	0.1 μF Chip Capacitor	C1206C104K1RAC-TU	Kemet
C23	47 pF Chip Capacitor	ATC800B470JT500XT	ATC
C24	1000 pF Chip Capacitor	C2012X7R2E102K085AA	TDK
D1	Diode Schottky RF SGL 70 V SOT-23	HSMS-2800-TR1G	Avago Technologies
R1	2.2 kΩ, 1/8 W Chip Resistor	CRCW08052K20JNEA	Vishay
R2	0 Ω, 1 A Chip Resistor	CWCR08050000Z0EA	Vishay
R3	1 kΩ, 1/10 W Chip Resistor	RR1220P-102-D	Susumu
R4	50 Ω, 10 W Chip Resistor	060120A25X50-2	Anaren
R5	15 kΩ, 1/10 W Chip Resistor	RR1220P-153-D	Susumu
R6	51 Ω, 1/8 W Chip Resistor	RK73B2ATTD510J	KOA Speer
R7	470 kΩ, 1/4 W Chip Resistor	CRCW1206470KFKEA	Vishay
U1	IC Detector RF PWR 3GHZ SC70-6	LT5534ESC6#TRMPBF	Linear Technology
РСВ	Rogers, RO4350B, 0.020″, ε _r = 3.66	D65206	MTL

.

Table 11. AFIC10275N Narrowband Tes	st Circuit Microstrips — 1090 MHz
-------------------------------------	-----------------------------------

Microstrip	Description	Microstrip	Description	Microstrip	Description
Z1	0.202" × 0.043" Microstrip	Z6	0.030" × 0.378" Microstrip	Z11	0.774" × 0.044" Microstrip
Z2	0.849" × 0.043" Microstrip	Z7	0.058" × 0.378" Microstrip	Z12	0.803" × 0.058" Microstrip
Z3	0.188" × 0.043" Microstrip	Z8	0.404" × 0.378" Microstrip	Z13, Z14	0.025" × 0.485" Microstrip
Z4	0.857" × 0.043" Microstrip	Z9	0.587" × 0.118" Microstrip	Z15,* Z16*	1.150" × 0.058" Microstrip
Z5	0.170" × 0.140" Microstrip	Z10	0.215" × 0.044" Microstrip	Z17, Z18	0.249" × 0.058" Microstrip

* Line length include microstrip bends

NP

TYPICAL CHARACTERISTICS — 1090 MHz NARROWBAND PRODUCTION TEST FIXTURE

34

33

32

31

30

29

28

10

G_{ps}, POWER GAIN (dB)

 $V_{DD} = 50 \text{ Vdc}, I_{DQ1} = 80 \text{ mA}, I_{DQ2} = 150 \text{ mA}$

Gp

ηD

f = 1090 MHz, Pulse Width = 128 usec, 10% Duty Cycle

100

Pout. OUTPUT POWER (WATTS) PEAK Figure 13. Power Gain and Drain Efficiency

versus Output Power and Quiescent Current

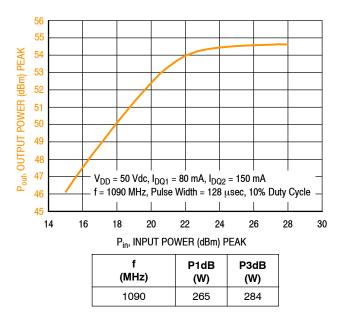
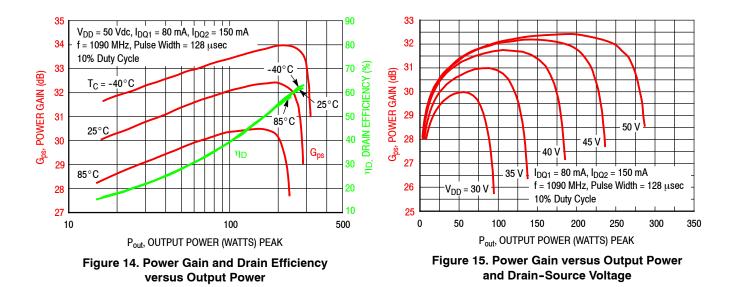



Figure 12. Output Power versus Input Power

70

60

50

40

20

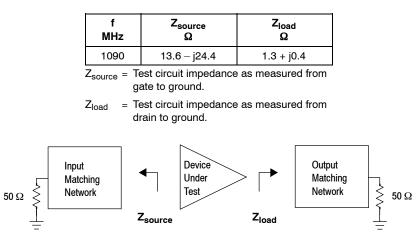
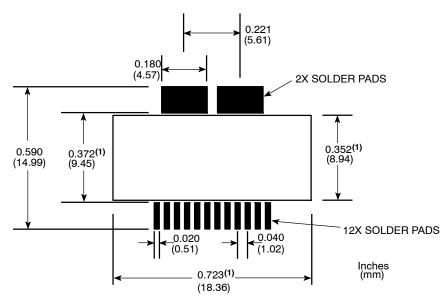
10

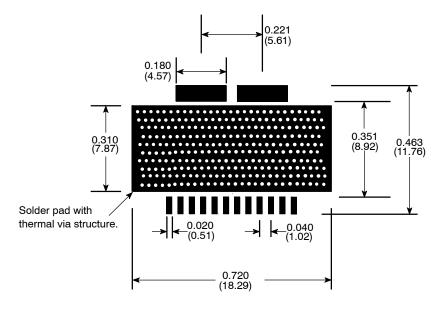
500

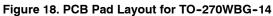
%

DRAIN EFFICIENCY

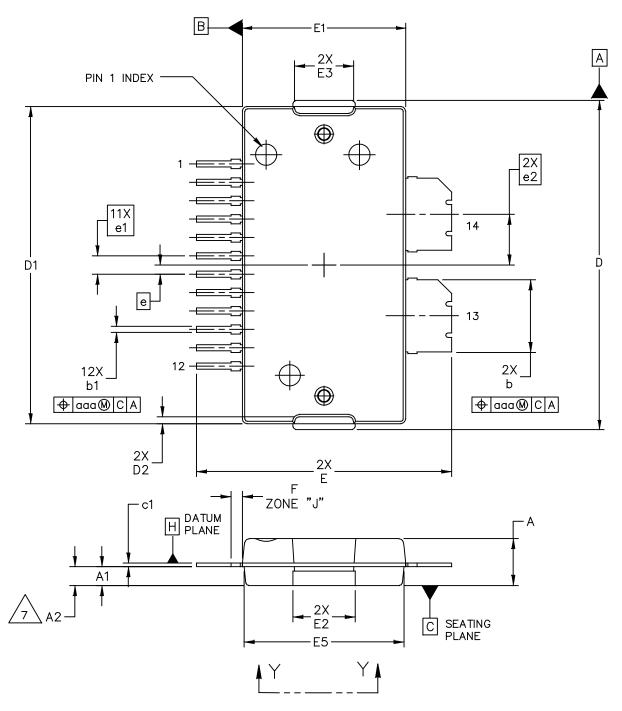
1090 MHz NARROWBAND PRODUCTION TEST FIXTURE

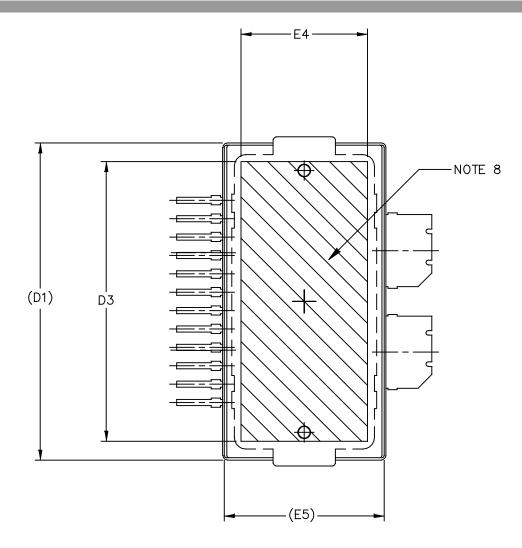




Figure 16. Narrowband Series Equivalent Source and Load Impedance — 1090 MHz



1. Slot dimensions are minimum dimensions and exclude milling tolerances.


Figure 17. PCB Pad Layout for TO-270WB-14



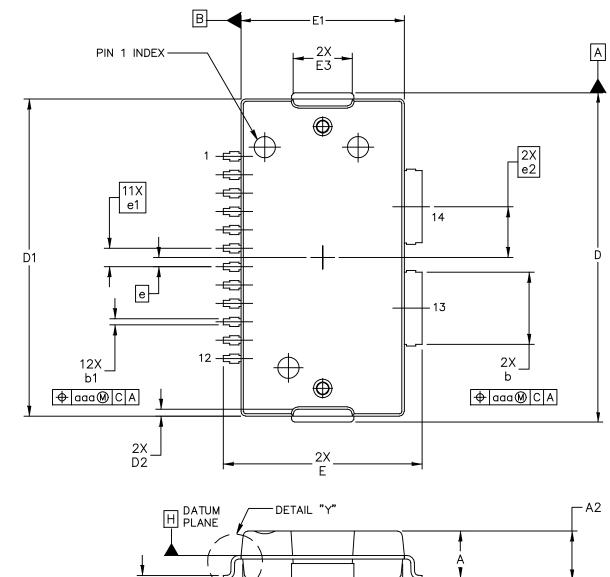
PACKAGE DIMENSIONS

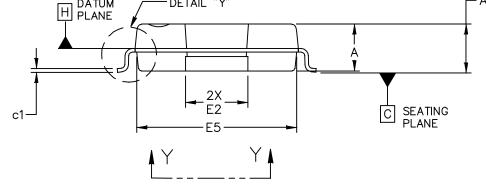
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE:	DOCUMENT NO): 98ASA10650D	REV: A	
TO-270 WIDE BODY 14 LEAD		CASE NUMBER	: 1618–02	19 JUN 2007
	STANDARD: NO	N-JEDEC		

VIEW Y-Y

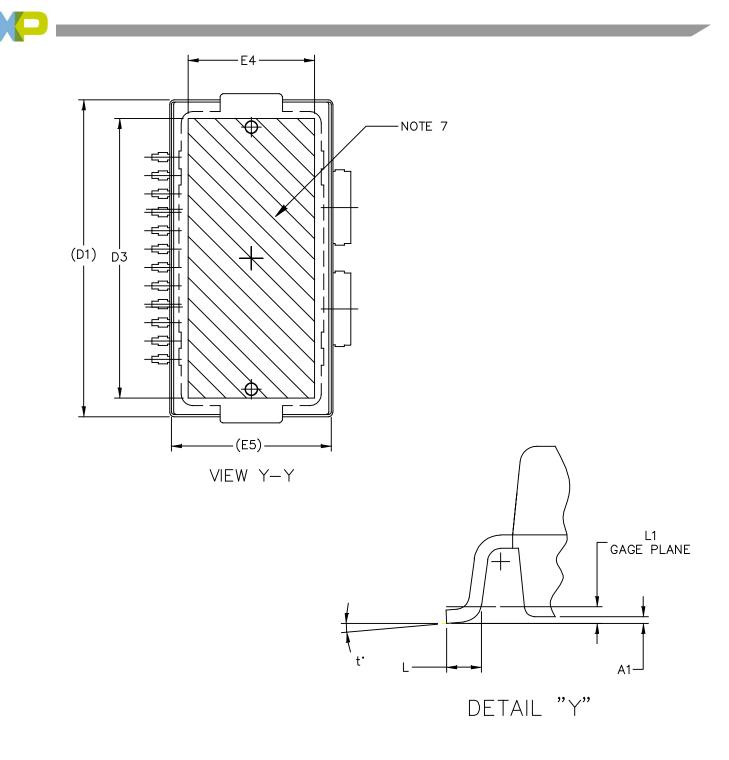
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLI	NE PRINT VERSION N	OT TO SCALE
TITLE:		ENT NO: 98ASA10650D	REV: A
TO-270 WIDE BOE	CASE N	UMBER: 1618-02	19 JUN 2007
	STANDA	RD: NON-JEDEC	

AFIC10275N AFIC10275GN


P



NOTES:


- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	СН	MI	LLIMETER	INCH		м	ILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	F	.c	25 BSC		0.64 BSC	
A1	.039	.043	0.99	1.09	b	.154	.160	3.9 [.]	1 4.06	
A2	.040	.042	1.02	1.07	b1	.010	.016	0.25	5 0.41	
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28	
D1	.688	.692	17.48	17.58	е	.0	20 BSC		0.51 BSC	
D2	.011	.019	0.28	0.48	e1	.0	40 BSC		1.02 BSC	
D3	.600		15.24		e2	.1105 BSC		.1105 BSC 2.807 BSC		
E	.551	.559	14	14.2						
E1	.353	.357	8.97	9.07	aaa	.004		.10		
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35						
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© F	FREESCALE SEN ALL RIGHT	ICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NC	T TO SCALE	
TITLE:					DOCU	MENT NO): 98ASA10650	D	REV: A	
TO-270 WIDE BODY					CASE	NUMBEF	: 1618–02		19 JUN 2007	
14 LEAD			STAN	DARD: NO	N-JEDEC					

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BOD	DOCUMENT NO): 98ASA10653D	REV: A	
14 LEAD		CASE NUMBER: 1621–02 19 JUN 2007		
GULL WING	STANDARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE: TO-270 WIDE BODY		DOCUMENT NO: 98ASA10653D		REV: A
14 LEAD	CASE NUMBER	19 JUN 2007		
GULL WING		STANDARD: NON-JEDEC		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	INCH		MILLIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
A	.100	.104	2.54	2.64	L	.018	.024	0.46	6 0.61	
A1	.001	.004	0.02	0.10	L1	.010 BSC		0.25 BSC		
A2	.099	.110	2.51	2.79	b	.154	.160	3.9	1 4.06	
D	.712	.720	18.08	18.29	b1	.010	.016	0.25	5 0.41	
D1	.688	.692	17.48	17.58	c1	.007	.011	.18	.28	
D2	.011	.019	0.28	0.48	е	.020 BSC		(0.51 BSC	
D3	.600		15.24		e1	.040 BSC		1	1.02 BSC	
E	.429	.437	10.9	11.1	e2	.1105 BSC		2.807 BSC		
E1	.353	.357	8.97	9.07	t	2'	8.	2.	8.	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35	aaa		.004		.10	
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				L OUTLINE PRINT VERSION NOT TO SCALE				T TO SCALE		
TITLE: TO-270 WIDE BODY				DOCUMENT NO: 98ASA10653D			REV: A			
14 LEAD					CASE NUMBER: 1621-02			19 JUN 2007		
GULL WING				STANDARD: NON-JEDEC						

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for HIgh Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- · AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- · AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family

Engineering Bulletins

EB212: Using Data Sheet Impedances for RF LDMOS Devices

White Paper

• RFPLASTICWP: Designing with Plastic RF Power Transistors

Software

- Electromigration MTTF Calculator
- RF High Power Model

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	Apr. 2015	Initial Release of Data Sheet			

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2015 Freescale Semiconductor, Inc.

