: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic

NEW

Programmable Controller

Select the functions you need and control various devices!

C

Conforming to
EMC Directive

Select the functions you need among the many available and achieve a wide range of control with one unit.

For example

Control possible of connected dedicated boards, custom-built jigs, and all types of sensors

Can also be used for central control of devices with different voltage and as a converter for 5 V devices.

Capable of direct inspection in inspection lines for 5 V drive electronic components.

Accomplish motor positioning at the best price.

Control high-speed counter, positioning and I/O with one unit

Easily accomplish complex control!

Rich in support functions for programs that utilize many functions.

Initial settings screen (Function allocation setting) 3 Template screen (Programming aid)

Easily select the functions to use and the I/O number allocations.

(2) Configurator PMX (Setting tool for positioning output) To set the positioning table, simply select the parameters at the configuration screen.

In the window for unit memory access, simply select from the list and click either the "Read" or the "Write" button to build the transfer commands on the ladder. You no longer need to consult the manual nor worry about incorrect data sizes.

Product types

Product name		Standard program capacity	Max. program capacity	Operation speed	Ethernet function	SD memory card function	Encryption function (Note 2) (Note 3)	Part No.
FP7 CPU units	Standard model	196 k steps	234 k steps	From 11 ns	Built-in	Built-in	-	AFP7CPS41E
		120 k steps	120 k steps	From 11 ns	Built-in	Built-in	-	AFP7CPS31E
		120 k steps	120 k steps	From 11 ns	-	Built-in	-	AFP7CPS31
	Security enhanced type	196 k steps	234 k steps	From 11 ns	Built-in	Built-in	Built-in	AFP7CPS41ES
		120 k steps	120 k steps	From 11 ns	Built-in	Built-in	Built-in	AFP7CPS31ES
		120 k steps	120 k steps	From 11 ns	-	Built-in	Built-in	AFP7CPS31S
	Best value model	64 k steps	64 k steps	From 14 ns	-	-	-	AFP7CPS21

Notes: 1) One end unit is attached to the CPU unit.
) When exporting to China, please use a CPU that does not have an encryption function
3) For CPU units with encryption function, please use the security enhanced type programming tools
\square Unit lineup (extract)

Product name	Number of points	Connection method	Specifications	Part No.
Input unit (DC input)	16 points	Terminal block	12 to 24 V DC, common polarity: +/- common, input time constant setting	AFP7X16DW
Output unit [Transistor output, sink (NPN)]	16 points	Terminal block	Load current: 1.0 A, 5 A/common, 16 points/common	AFP7Y16T
Multi input/output unit	Input: 16 points Output: 16 points	MIL connector	Input: Total 16 points \cdot DC input: Max. 16 points \cdot High-speed counter: Max. 4 channels (1 channel: 4 points) \cdot Interrupt input: Max. 8 points Output: Total 16 points •Transistor output: Max. 16 points \cdot Pulse output: Max. 4 channels (Note) (1 channel: 4 points) •PWM output: Max. 4 channels (1 channel: 4 points) \cdot Comparison output: Max. 8 points -Positioning: Max. 4 channels (Only AFP7MXY32DWDH)	$\begin{aligned} & \hline \text { NEW } \\ & \text { AFP7MXY32DWD } \end{aligned}$
Positioning type				$\begin{array}{\|l} \text { NEW } \\ \text { AFP7MXY32DWDH } \end{array}$
High-speed counter units	2 channels	MIL connector	Liner counter / ring counter, Individual input: 1 multiple, 2-multiple, Direction distinction input: 1 multiple, 2-multiple, 2-phase input: 1 multiple, 2-multiple, 4 -multiple	AFP7HSC2T
	4 channels			AFP7HSC4T
Pulse output units	2 axes	MIL connector	Transistor, 1 pps to 500 kpps	AFP7PG02T
	4 axes			AFP7PG04T

Note: Trapezoidal control with acceleration / deceleration not yet supported.
-Programming tools

Product name		Type	Specifications	Part No.
Programming software for Windows ${ }^{\circledR}$ Control FPWIN GR7	Japanese version	Supports only CPU without encryption function	Windows®10 (32 bit / 64 bit) / Windows®8 (32 bit / 64 bit) / Windows®8. 1 (32 bit / 64 bit) / Windows ${ }^{\circledR 7}$ SP1 and over (32 bit / 64 bit) / Vista SP2 / XP SP3	AFPSGR7JP
	Security enhanced type	Supports both CPU with / without encryption function		AFPSGR7JPS
	English version Security enhanced type	Supports only CPU without encryption function		AFPSGR7EN
		Supports both CPU with / without encryption function		AFPSGR7ENS
Programming software for Windows ${ }^{\circledR}$ Control FPWIN Pro7	English, Japanese, Korean and Chinese	Supports only CPU without encryption function	Windows ${ }^{\text {® }} 10$ (32 bit / 64 bit) / Windows ${ }^{\circledR}$ (32 bit / 64 bit) / Windows ${ }^{\circledR} 8.1$ (32 bit / 64 bit) / Windows ${ }^{\circledR}$ SP1 and over (32 bit / 64 bit) / Vista SP2 / XP SP3	AFPSPR7A
	Security enhanced type	Supports only CPU with encryption function * The encryption function will be offered in the future.		AFPSPR7AS

[^0]
Specifications

Item		AFP7CPS21	
Memory capacity	Memory selection pattern (lveil)	1 (Factory default)	2
	Program (steps) ${ }^{\text {(Note } 2)}$	64,000	32,000
	Data register (words) ${ }^{\text {(Noe2) }}$	131,072	262,144
	Numberof max program block (PB)	128	64
Programming method		Relay symbol method	
Control method		Cyclic operation method	
Program memory		Built-in flash ROM (no backup battery required)	
Operation speed		Basic instruction: Min. $14 \mathrm{~ns} /$ step	
External input (X) / output (Y)		8,192 points (Note 4) / 8,192 points (Note 4)	
Internal relays (R)		32,768 points	
System relays (SR)		Indicate operation status of various relays is shown.	
Link relays (L)		16,384 points	
Timers (T)		4,096 points: Timer capable of counting (units: $10 \mu \mathrm{~s}$, $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$ or 1 sec .) $\times 4,294,967,295$	
Counters (C)		1,024 points, Counter capable of counting 1 to 4,294,967,295	
Link data registers (LD)		16,384 words	
System data registers (SD)		Internal operation status of various registers is shown.	
Index registers (10 to IE)		15 long words / With switching function	
Master control relay (MCR)		Unlimited	
Number of labels (LOOP)		Max. 65,535 points for each program block (PB)	
Differential points		Unlimited	
Number of step ladders		Unlimited	
Number of subroutines		Max. 65,535 points for each program block (PB)	
Number of interrupt programs		1 periodical interrupt program	
Constant scan		Available (0 to 125 ms)	
Real time clock (Note 3)		Built in. Date backup with battery.	
PLC link function		Max. 16 units, link relays: 1,024 points, link registers: 128 words. (Data transfer and remote programming are not supported) (Link area allocation is switchable between the first and the second half)	

Notes: 1) The factory default setting is pattern 1
2) For data register (DT), data up to 262,144 words can be backed up.
) Precision of calendar; At $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$, less than 95 seconds error per month, At $25^{\circ} \mathrm{C}$ $77^{\circ} \mathrm{F}$, less than 15 seconds error per month, At $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$, less than 130 seconds
4) Hardware config points are not actually used, usable as internal relays.

COM port communication specifications (AFP7CPS21)

Item	Specifications
Interface	RS232C, three-wire system, 1 channel (Note)
Transmission distance	$15 \mathrm{~m} \mathrm{49.213} \mathrm{ft}$
Transmission speed	$300,600,1200,2400,4800,9600,19200,38400$, $57600,115200,230400 \mathrm{bits} / \mathrm{sec}$.
	Half-duplex system / Start-stop synchronization system
Transmission format	Stop bit: 1 bit / 2 bits
	Parity: none / odd / even
	Data length: 7 bits / 8 bits
	Start code: with STX / without STX
	End code: CR / CR + LF / none / ETX
Data transmission order	Transmit from bit 0 in character units.
Communication mode	General-purpose communication, Computer link and MODBUS-RTU

Dedicated power supply output port specifications for GT series programmable display (AFP7CPS21)
\qquad Connecting programmable display model For 5 V DC type GT series Programmable Display

Function specifications (AFP7MXY32DWD / AFP7MXY32DWDH)

Item			AFP7MXY32DWD	AFP7MXY32DWDH
	Number of occupied I/O points		put/Output: 64 points each (4	put/Output: 96 points each (6 wo
	Number of external I/O points		Input: 16 points, Output: 16 points	
	Input time constant setting		None, $0.5 \mu \mathrm{~s}, 1 \mu \mathrm{~s}, 2 \mu \mathrm{~s}, 4 \mu \mathrm{~s}, 8 \mu \mathrm{~s}, 16 \mu \mathrm{~s}, 32 \mu \mathrm{~s}$, $64 \mu \mathrm{~s}, 96 \mu \mathrm{~s}, 128 \mu \mathrm{~s}, 256 \mu \mathrm{~s}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}$ Setting possible in 2-point units	
	Output polarity setting		No output, N channel, P channel, Both channels (push pull output), Differential output Setting possible in 4-point units	
$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { (1) } \end{aligned}$	Number of points		8 points/unit (Max. of 8 units can be used with FP7 system.)	
	Mode		Non-interrupt unit, Interrupt unit (Set using DIP switches)	
	Interrupt condition setting		Terminal input, Comparison match	
	Counter type		Ring counter Linear counter	
	Input mode		Direction distinction, Individual input, Phase input	
	Number of channels		4 channels ${ }^{\text {(Note 1) }}$	
	Counting range		Signed 32 bit ($-2,147,483,648$ to $+2,174,483,647$) Setting possible of upper and lower limits	
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{D}} \\ & \stackrel{1}{\circ} \end{aligned}$	Max. counting speed		5 V input voltage: $500 \mathrm{kHz}{ }^{\text {(Note 2) }}$ 12 V input voltage: $500 \mathrm{kHz}(350 \mathrm{kHz}$ with phase input) (Note 24 V input voltage: 250 kHz (180 kHz with phase input) (Note)	
	Min. input pulse width		$0.5 \mu \mathrm{~s}$	
	Comparison output setting		Max. 8 points Terminal input counter: 4 channels	
	Others		Transfer multiplication function ($\times 1, \times 2, \times 4$) Elapsed value offset/preset function Elapsed value hold function, setting of upper/lower count limit Input pulse frequency measurement Overflow/underflow detection	
	Number of channels		4 channels	
	Output mode		Direction distinction, Individual output, Phase output, Comparison match stop	
	Output terminals	Pulse output function	2 terminals/channel (B11 to B18 terminals)	
		PWM output function	1 terminal/channel (B11, B13, B15 and B17 terminals)	
	Output frequency	Pulse output function	1 to 500 kHz (Note 3) (Settable by 1 Hz)	
		PWM output function	1 to $100 \mathrm{kHz}{ }^{\text {(Note } 3)}$ (Settable by 1 Hz)	
	Duty ratio	Pulse output function	50 \% approx. (Fixed)	
		PWM output function	0 to 100% (Settable by	
	Other functions		Pulse number measurement function (dedicated pulse counter 4 channels)	

Notes: 1) When using elapsed value hold function, number of channels will be limited 2) With 50% duty input pulse.

```
3) When push pull setting or out
```

Positioning function specifications (AFP7MXY32DWDH)

Item		AFP7MXY32DWDH
Number of axes controlled		Max. 4 axes
	Position setting mode	Increment, Absolute
	Output interface	Transistor open collector output, Push-pull, Line driver ${ }^{\text {(No }}$
	Pulse output method	Pulse + Sign, CW + CCW
	Max. output frequency	500 kHz
	Outptu pulse duty ratio	When using table setting mode: 50 \% (Fixed)
	Control unit	Pulse
$\overline{0}$00000000	Position setting range	-1,073,741,824 to $+1,073,741,823$ pulses
	Speed command range	Pulse: 1 to $500,000 \mathrm{~Hz}$
	Max. operation speed	500 kHz
	Acceleration/ deceleration method	Linear acceleration/deceleration
	Acceleration time	1 to $10,000 \mathrm{~ms}$ (Settable by 1 ms)
	Deceleration time	1 to $10,000 \mathrm{~ms}$ (Settable by 1 ms)
	Number of positioning tables	20 tables for each axis (Up to 2 tables can be executed consecutively.)
	Control method (Single axis)	PTP control (E point control, C point control), CP control (P point control), Speed control (J point control) ${ }^{\text {(Note } 2 \text {) (Note } 3)}$
	Control method (2-axis linear interpolation)	E point, P point, C point controls, Composite speed or Long axis speed setting
	Dwell time	0 to $32,767 \mathrm{~ms}$ (Settable by 1 ms)
$\begin{aligned} & \text { 흥 } \\ & \text { bion } \\ & \text { 흥 } \\ & \hline \text { ᄋ } \end{aligned}$	Speed command range	Pulse: 1 to $500,000 \mathrm{~Hz}$ (Note 3)
	Acceleration/deceleration method	Linear acceleration/deceleration
	Acceleration time	1 to $10,000 \mathrm{~ms}$ (Settable by 1 ms)
	Deceleration time	1 to $10,000 \mathrm{~ms}$ (Settable by 1 ms)
	Speed command range	Pulse: 1 to $500,000 \mathrm{~Hz}$
	Acceleration/deceleration method	Linear acceleration/deceleration
	Acceleration time	1 to $10,000 \mathrm{~ms}$ (Settable by 1 ms)
	Deceleration time	1 to $10,000 \mathrm{~ms}$ (Settable by 1 ms)
	Return method	DOG methods (3 types), Home position method, Data set method
	Deceleration stop	Performs deceleration stop in the deceleration time of a running operation for each axis.
	Emergency stop	Stops in a deceleration time specified for the emergency stop for each axis.
	Limit stop	Stops in a deceleration time specified for the limit input for each axis.
	System stop	Stops all axes immediately.
Notes: 1) The number of axes is reduced when setting Line driver. 2) The J point control is executable only for the two axes of CH 0 and CH 1 . 3) When performing the J point control or JOG operation, the speed can be changed after the startup.		

[^0]: Notes: 1) Windows ${ }^{\circledR} 10,8,7$, Vista and XP are trademarks or registered trademarks of Microsoft Corporation in the United States and other countries
 2) When exporting to China, CPU without encryption function is required.

