: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic

Programmable Controller

FP7 series

Automation Controls \& linformation

Panasonic PLCs also control information

Do more than just control machinery.

Automation Controls

$+$
 Information

Transfer

Cloud

Check

Single PLC with two roles

Enter an era in which you can see the "current state" of the remote site.

Automation Controls

EtherNet/IP compatibility

Models with built-in Ethernet ports add functionality to CPU unit. Easy connection with all kinds of robots and PLCs enables control and communication.
*EtherNet/IP is a trademark of ODVA, Inc.

Cassette system

 reduces unit cost and footprintWith ease and at low cost, extend the serial communication and analog functionality of CPU units

High cost performance model CPU unit

Ideal for Simple Standalone Systems

Achieve high-performance extensibility, lower cost and slimmer form factor.

High cost performance model FP7 CPU unit AFP7CPS21

Saves space and reduces cost
Another FP7 advantage:
add-on cassette system
reduces unit cost and footprint.

Function cassettes
 - Analog input
 Communication cassettes
 - Serial
 - Analog input and output
 - Ethernet
 - Thermocouple input

16 intelligent units can be mounted Low in cost, 16 intelligent units can be mounted.

Up to 16 units can be mounted

Moreover, when used as a serial communication unit, expansion to as many as 35 channels is possible. Reduces cost and footprint.

Analog input unit

Analog sampling that doesn't depend on CPU

Sampling and data collection in the analog unit!
Ideal for high-accuracy measurement applications because with the fixed cycle, analog signal can be held in the buffer

Dependent on scan of CPU

The scan gets delayed when the CPU
slows down due to other processes and sampling becomes sporadic

Sampling in the analog unit
Accurate sampling possible with fixed cycle.

- Doesn't depend on CPU scanning

- Analog buffering
- High-speed conversion: $25 \mu \mathrm{~s} / \mathrm{ch}$
- Overall accuracy: $\pm 0.05 \%$ F.S.
(at $+25^{\circ} \mathrm{C}+77^{\circ} \mathrm{F}$)

+ Information

 communications, the FP7 can be installed in existing facilities.

Store

Easy multiple concurrent logging

Logging set up is done via the configuration screen.
Moreover, it is possible to keep up to 16 files concurrently active.

Protection of log data

Diagnosis of rewrite life of SD memory card helps protect valuable information assets.
*Diagnosis possible when Panasonic industrial-spec SD memory cards are used.

Logs collected information
The FP7 securely stores and carries out log management of collected information assets.

Use program and data register sharing to resolve data space shortage.
No need repurchase expensive upgrade models. Example: 196 k steps type CPU unit AFP7CPS41E(S) Initial state Data-driven setting Program-driven setting

Reference value: for 196 k steps type CPU unit (Note)

Program	234 k steps	221 k steps	196 k steps	145 k steps	52 k steps
Data register	64 k words	128 k words	256 k words	512 k words	976 k words

Note: For data register (DT), data up to 256 k words can be backed up.

+ Information

Information can be transferred to different types of media
Allows the PC to read the logging data in the FP7's SD memory card and to write setting values and other parameters.

Manage your records by summarizing measurement data from your sensors together with result information from the inspection machines.

FTP(S) client function (SSL-compatible)
The FP7 can generate and write data files to an FTP server on a PC as well as read data files from the FTP server.
The sessions use SSL, protecting IDs and passwords.

Transfer electric power data from factories and offices to an FTP server on a regular basis.

Users can access the accumulating FTP server production information in the server at any time.

+ Information

Web server function
Monitor and control the FP7 without the use of custom software. Users can check the accumulated data in the FP7 with a browser.

Operation can be monitored with a browser and control instructions can be sent from a browser.

1. Check out status of greenhouse / food processing
With data always at hand, there's no need to go to the work site to check indoor temperature and humidity or the operation of pumps, heaters, and other equipment.

2. Operational status and production log management for production line
Operational status of the production line can be checked and traceability production control can be carried out. Current production line information can be collected and

3. Building lighting / entry and exit management

Through a web interface, it is possible to check the status of lighting in buildings and apartments, and to building entries and exits.

Information updates viewable in e-mail.
The managers can receive and view e-mailed malfunction notifications and daily reports of equipment operations.

E-mail sending function (SSL-compatible)

Use instructions and timings controlled by the FP7 to send e-mails on a pre-set schedule or when a pre-set condition changes in the PLC. The e-mails can have data files attached and communication is SSL-capable to protect the e-mails.

Receive monitoring e-mails.
Receive emergency e-mails.

Send the results and a notice of completion

The long-term test (30-day) has been completed.
Average temperature: $O O^{\circ} \mathrm{C}$
Duration time: $\bigcirc \bigcirc$ hours
Number of test cycles: $\bigcirc \bigcirc$ times

Receive a daily e-mail on your smartphone with the amount of electric power generated.

For more information on web server function, please see this catalog.

Maintenance

Historical archiving of program changes

Operational events to CPU and program editing events are logged. Useful for debugging and tracing the cause of malfunctions

Date of occurrence	Time	Trigger
$2014 / 11 / 21$	$14: 05: 35$	Power: ON
$2014 / 11 / 21$	$14: 07: 13$	Open cover
$2014 / 11 / 21$	$14: 20: 25$	Insert SD memory card.
$2014 / 11 / 21$	$14: 30: 19$	Close cover
$2014 / 11 / 21$	$14: 31: 00$	Download program
$2014 / 11 / 21$	$14: 33: 10$	Switch operation mode to RUN
$2014 / 11 / 21$	$14: 35: 12$	Program edition during RUN
$2014 / 11 / 21$	$14: 35: 32$	Upload program
$2014 / 11 / 21$	$14: 40: 07$	Power: OFF
		${ }^{*}$ Data logs are virtual.

Set a maintenance schedule that is based on an automatic measurement of contact switching cycles or overall ON time.

Service intervals can be timed according to logged contact switching cycles, and power-on duration, thus enabling preventive maintenance of equipment and peripheral equipment.

Input contacts (X) : Automatically measures and logs total ON times and number of ON operations of connected sensors.
Output contacts (Y): Automatically measures and logs total ON times and number of ON operations of connected actuators. The maintenance schedules for relays, motors, etc. can be optimized

Records the PLC's ON time

Equipment operating time can be estimated. You can decide which equipment to give priority to reactivate if more than one item of equipment is idle.

The built-in program backup allows users to immediately recover factory default conditions.

The CPU unit can store two programs. In the event of fault, no SD memory card is needed to return to a previously saved backup program.

No need to replace a battery by data back up function without battery.

Equipment maintenance tasks are reduced because battery is not required. And, to save power, equipment can be switched off without hesitation.

Item	Without battery	With battery
Program holding	Yes	Yes
Data register holding ${ }^{\text {(Note 1) }}$	Yes	Yes
Clock / calendar operation	No $^{\text {(Note 2) }}$	Yes

Notes: 1) Data register (DT) of up to 256 k words can be backed up.
2) Clock / calendar operation can be held for about a week if the equipment is switched off. (Allow at least 30 minutes of equipment ON time.)

The built-in clock / calendar function can be adjusted via Ethernet. Adjustment at power start up allows the battery-free system to be configured

Security and Compact design

Program level encryption ensures protection against copying program code.

Security enhanced type

Any attempt to copy the installed equipment's program into a newly purchased FP7 will fail due to an unmatched decryption key, resulting in the equipment becoming inoperable.
*When exporting to China, please use a CPU that does not have an encryption function.

A high performance PLC with a small footprint.

Without the requirement of a power supply unit or backplane, you can reduce the cost and footprint of your PLC configuration.

FP7 series Lineup

Analog input and output units P. 19	Analog input unit High-speed and high-accuracy type 4 points, voltage and	NEW Analog input unit High-speed and multi-channel type	Temperature input units $\text { P. } 20$	Thermocouple input and
Input units	AFP7AD4H	AFP7AD8	Thermocouple multiple analog input unit	AFP7TC8
Output unit	Analog output unit High-speed and high-accuracy type 4 points, voltage and current AFP7DA4H		Resistance temperature detector input unit	Resistance temperature detector input AFP7RTD8

- Operation speed:
- Program capacity: 10.
, 106 k steps
- Data registers: 256 k words
- Number of unit connection: Max. 16 units

Compact design and class-leading high performance

1. The function is expanded easily with cassette interface. The function extension is possible without increasing the width of the unit. The cassettes support RS232C, RS422 and RS485 for series communication, Ethernet communication and various analog input and output.
2. High-capacity SD (SDHC) memory cards of up to 32 GB are supported.
Enables large storage for log data *except for AFP7CPS21
3. High performance (min. scan time 1ms, max. $20 \mu \mathrm{~s}$ for 60 k steps)
The processing speed is less susceptible to frequent Ethernet communication
4. All communications ports are safely isolated

Confidently use any port - RS422 / RS485 and LAN ports, as well as USB and RS232C ports - each is isolated.
5. High function types, increased security (encryption), are available.
*When exporting to China, please use a CPU that does not have an encryption function.

Control specifications

Item		AFP7CPS41E(S) ${ }^{\text {(Note } 6)}$						
Memory capacity	Memory selection pattern Mosie	1	23	3(Factory defauti)	4	5		
	Program (steps) ${ }^{\text {(Note 2) }}$	234,000	221,500	196,000	144,500	51,500		
	Data register (words) ${ }^{\text {(Note 2) }}$	65,536	131,072	262,144	524,288	999,424		
	Number of max. program block (PB)	468	443	392	289	103		
Item		AFP7CPS31E(S) / AFP7CPS31(S) ${ }^{\text {(Note } 6)}$						
Memory capacity	Memory selection pattern (Me	1 (Factory defaut)	-			4		
	Program (steps) ${ }^{\text {(Note } 2)}$	121,500	96,000		64,000	32,000		
	Data register (words) ${ }^{\text {(Note 2) }}$	131,072	262,144 192		25,984	589,824		
	Number of max. program block (PB)	243192			128	64		
	Item	AFP7CPS21						
Memory capacity	Memory selection pattern (Nobe	1 (Factory default)			2			
	Program (steps) ${ }^{\text {(Note 2) }}$	64,000			32,000			
	Data register (words) ${ }^{\text {(Note 2) }}$	131,072			262,144			
	Number of max. program block (PB)	128			64			
	Item	AFP7CPS41E(S)/AFP7CPS31E(S)/ AFP7CPS31(S)/AFP7CPS21						
Progra	mming method	Relay symbol method						
Control	1 method	Cyclic operation method						
Progra	m memory	Built-in flash ROM (no backup battery required)						
Operat	tion speed	Basic instruction: Min. $11 \mathrm{~ns} /$ step (AFP7CPS21: $14 \mathrm{~ns} / \mathrm{step}$)						
Externa	al input (X) / output (Y)	8,192 points (Note 4) / 8,192 points (Note 4)						
Interna	al relays (R)	32,768 points						
System	m relays (SR)	Indicate operation status of various relays is shown.						
Link re	lays (L)	16,384 points						
Timers (T)		4,096 points: Timer capable of counting (units: $10 \mu \mathrm{~s}$, $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$ or 1 sec.$) \times 4,294,967,295$						
Counters (C)		1,024 points, Counter capable of counting 1 to 4,294,967,295						
Link data registers (LD)		16,384 words						
System data registers (SD)		Internal operation status of various registers is shown.						
Index registers (10 to IE)		15 long words / With switching function						
Master control relay (MCR)		Unlimited						
Number of labels (LOOP)		Max. 65,535 points for each program block (PB)						
Differential points		Unlimited						
Number of step ladders		Unlimited						
Number of subroutines		Max. 65,535 points for each program block (PB)						
Number of interrupt programs		1 periodical interrupt program						
SD memory card function		SDHC memory cards of up to 32 GB are usable. *except for AFP7CPS21						
Constant scan		Available (0 to 125 ms)						
Real time clock ${ }^{\text {(Note } 3)}$		Built in. Date backup with battery.						
Battery life		3.3 years or more (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$) (when no power is supplied) *except for AFP7CPS21						
Security function (Note 5)		Password / Restricted distribution / Read disable setting / Encryption						
PLC link function		Max. 16 units, link relays: 1,024 points, link registers: 128 words. (Data transfer and remote programming are not supported) (Link area allocation is switchable between the first and the second half)						
Notes: 1) The factory default setting is pattern 3 for AFP7CPS41E(S) and pattern 1 for AFP7CPS31E(S), AFP7CPS31(S) and AFP7CPS21. 2) For data register (DT), data up to 262,144 words can be backed up. 3) Precision of calendar; At $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$, less than 95 seconds error per month, At $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$, less than 15 seconds error per month, At $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$, less than 130 seconds error per month 4) Hardware configuration governs the actually usable number of I/O points. When I/O points are not actually used, usable as internal relays. 5) Encryption can be used for AFP7CPS41ES, AFP7CPS31ES and AFP7CPS31S. 6) Products with an " S " at the end of a part number have the encryption function.								

COM port communication specifications

Item	Specifications
Interface	RS232C, three-wire system, 1 channel (Note 1)
Transmission distance	15 m 49 ft
Transmission speed	$300,600,1200,2400,4800,9600,19200$,
	Half-duplex system / Start-stop synchronization system
	Stop bit: 1 bit / 2 bits
	Parity: none / odd / even
	Data length: 7 bits / 8 bits
	Start code: with STX / without STX
	End code: CR / CR + LF / none / ETX
Data transmission order	Transmit from bit 0 in character units.
Communication mode	General-purpose communication, Computer link and MODBUS-RTU

Dedicated power supply output port specifications for GT series programmable display

Output terminal $^{\text {(Note 1) }}$	Connecting programmable display model
5 V	For 5 V DC type GT series Programmable Display
24 V (Note 2)	For 24 V DC type GT series Programmable Display

Notes: 1) 5 V and 24 VDC types are not usable at the same time.
2) Use 21.6 to 26.4 VDC to power the CPU unit.
Please check the "GT Series Manual" for grounding of the GT series programmable Please
display. The AFP7CPS21 is not provided with this port.
LAN port communication specifications [excepf for AFPCCPS33[|s) / APPCPPS22]

Item	Specifications
Communication interface	Ethernet 100BASE-TX / 10BASE-T
Baud rate	$100 \mathrm{Mbps}, 10 \mathrm{Mbps}$ auto negotiation function
Total cable length	$100 \mathrm{~m} 328 \mathrm{ft}(500 \mathrm{~m} \mathrm{1,640} \mathrm{ft} \mathrm{when} \mathrm{a} \mathrm{repeater} \mathrm{is} \mathrm{used)}$
Number of nodes	Max. 254 units
Number of simultaneous connections	Max. 220 connections (user connection: 216 , system connection: 4)
Communication protocol (Communication layer)	TCP / IP, UDP
DNS	Supports name servers
DHCP / DHCPV6	Automatic IP address acquisition
FTP server / Client (SSL compatible)	Server function, file transfer, number of user: 3 Client function, data and file transfer
HTTP server / Client (SSL compatible)	Server function, system web, Customer web (8 MB), number of concurrent session: 16 Client function, data transfer
SMTP client (SSL compatible)	Client function, mail transfer
SNTP	Time adjustment function
General-purpose communication	$16 \mathrm{kB} / 1$ connection (user connection: 1 to 16)
Dedicated communication	```Slave communication (MEWTOCOL-COM, MEWTOCOL7-COM, MEWTOCOL-DAT, MODBUS-TCP, MC protocol (Nae 1) Master communication (MEWTOCOL-COM, MEWTOCOL-DAT, MODBUS-TCP, MC protocol (Noie1)```
Note: 1) MC protocol is a short form denoting MELSEC communication protocol; MELSEC is a registered trademark of Mitsubishi Electric Corporation. QnA compatible 3E frame, only binary (bulk writing and bulk reading) use is available.	

Expansion units

Connect a maximum of 3 blocks and a total of 64 units

Three blocks can be expanded on one CPU unit. Distributed installation achieved while maintaining high-speed bus transmission.

Specifications

8 Product name Item Part No.		Expansion master unit	Expansion slave unit
		AFP7EXPM	AFP7EXPS
Number of expansion	Block	Max. 3 blocks (total 4 blocks)	
	Unit	Max. 48 units (total 64 units)	
Transmission distance	Distance between blocks	Length of expansion cable ($0.5 \mathrm{~m} 1.640 \mathrm{ft}, 1 \mathrm{~m} 3.281 \mathrm{ft}, 3 \mathrm{~m} 9.843 \mathrm{ft}$ and 10 m 32.808 ft)	
	Total extension	Max. 30 m 98.425 ft (Expansion cable $\times 3$ expansions) ${ }^{\text {(Note 1) }}$	
Current consumption ${ }^{\text {(Note } 2)}$		120 mA or less	100 mA or less
Max. allowable current		-	3.0 A (at 24 V DC power supply terminal)
Expansion bus connector		MIL 40 pins	MIL 40 pins $\times 2$
Net weight		120 g approx.	200 g approx. (including end unit)
Accessories		-	Power supply cable (Part No.: AFPG805) End unit (Part No.: AFP7END)

[^0]
Add-on cassettes (communication cassettes)

For communication with programmable displays or PCs and for data exchange between PLCs

1. Serial communication and Ethernet communication can be added to the CPU.
6 types are available including cassettes that support any combination of RS232C, RS485 and Ethernet.
[Configuration example]

2. Protocol supports MODBUS-RTU.

Communication can easily be accomplished using comfortable
communication instructions. communication instructions. -

Add-on cassettes (function cassettes)

Add Analog I/O, temperature input function

1. Analog I/O and temperature input functions can be added to the CPU unit.
Low cost expansion of the CPU unit with an analog function is easy and installation space can be reduced.

Analog cassette

- Analog input (2 channels)
- Analog input and output (input: 2 channels, output: 1 channel)
- Thermocouple (2 channels)

2. Low cost addition of functions

Reduced cost and space are realized compared to the analog input and output unit.

ANALOG INPUT CASSETTE / ANALOG INPUT AND OUTPUT CASSETTE
■Input specifications (AFP7FCAD2 / AFP7FCA21)

Item			AFP7FCAD2 / AFP7FCA21
	Number of input points		2 channels (non-insulated between channels)
	Input range	Voltage	0 to $10 \mathrm{~V} / 0$ to $5 \mathrm{~V} *$ Switch setting (individual settings possible)
		Current	0 to 20 mA
	Digital conversion value		K0 to K4000
	Resolution		1/4000 (12 bits)
	Conversion speed		$1 \mathrm{~ms} /$ channel
	Overall precision		± 1 \% F.S. or less (0 to $55^{\circ} \mathrm{C} 32$ to $131^{\circ} \mathrm{F}$)
	Input impedance	Voltage	$1 \mathrm{M} \Omega$
		Current	250Ω
	Absolute maximum input	Voltage	$-0.5 \mathrm{~V},+15 \mathrm{~V}$
		Current	+30 mA
	Insulation method		- Between analog input terminal and internal digital circuit: transformer insulation, isolation IC insulation - Between analog input terminal and analog output terminal: transformer insulation, isolation IC insulation
	Connection method		Connector type terminal block

Note: Input specifications of the analog I/O cassette and analog input cassette are the same.

THERMOCOUPLE CASSETTE

■Specifications (AFP7FCTC2)

Item		AFP7FCTC2
Number of input points		2 channels (insulated between channels)
Input range ${ }^{(N o t e)}$	K type thermocouple	-50.0 to $500.0^{\circ} \mathrm{C}-58.0$ to $932.0^{\circ} \mathrm{F}$
	J type thermocouple	-50.0 to $500.0^{\circ} \mathrm{C}-58.0$ to $932.0^{\circ} \mathrm{F}$
Digital conversion value	Normal time	K-500 to K5000
	When range over	K-501, K5001 or K8000
	When the themocouple broken	K8000
	When data preparation	K8001
Resolution		$0.2{ }^{\circ} \mathrm{C} 3.3 .36^{\circ} \mathrm{F}$ (Display is $0.1^{\circ} \mathrm{C} 32.18^{\circ} \mathrm{F}$ with the sotware averaging process.)
Sampling cycle		$100 \mathrm{~ms} \mathrm{/} 2$ channels
Overall precision		
Input impedance		$344 \mathrm{~K} \Omega$
Insulation method		- Between thermocouple input terminal and internal digital circuit transformer insulation, isolation IC insulation - Between thermocouples: transformer insulation, isolation IC insulation
Connection method		Connector type terminal block

ANALOG INPUT AND OUTPUT CASSETTE ■Output specifications (AFP7FCA21)

Item			AFP7FCA21
	Number of output points		1 channel
	Output range	Voltage	0 to $10 \mathrm{~V} / 0$ to 5 V *Switch setting
		Current	0 to 20 mA
	Digital conversion value		K0 to K4000
	Resolution		1/4000 (12 bits)
	Conversion speed		$1 \mathrm{~ms} / \mathrm{channel}$
	Overall precision		± 1 \% F.S. or less (0 to $55^{\circ} \mathrm{C} 32$ to $131{ }^{\circ} \mathrm{F}$)
	Output impedance		0.5Ω (voltage output)
	Max. output current		10 mA (voltage output)
	Absolute output load resistance		600Ω or less (current output)
	Insulation method		- Between analog input terminal and internal digital circuit: transformer insulation, isolation IC insulation - Between analog input terminal and analog output terminal: transformer insulation, isolation IC insulation
	Connection method		Connector type terminal block

Note: There is no analog output functionality in the analog input cassette.

Digital input and output units

I/O points can be added as

necessary.

* Photograph shows typical models for each shape.

1. Input/output mixed units are available.

The necessary I/O points can be efficiently obtained, resulting in a compact PLC at reduced cost.
2. The 64 points transistor output unit is designed for 300 mA current capacity.
The 64 points transistor output unit is equipped with 8 contact points with 300 mA current capacity. Large indicator lamps, magnetic contacts, etc. can be driven directly.

3. The noise countermeasure is possible by an adjustment of the input time constants.
Response speed can be selected from $0.1 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}, 10$ $\mathrm{ms}, 20 \mathrm{~ms}$ or 70 ms , depending on the output equipment to be used.

■Input specifications

Item		DC input units			I/O mixed unit (input side)	
		16 points type	32 points type	64 points type	DC input / sink type	DC input / source type
Insulation method		Photocoupler				
Rated input voltage		12 to 24 V DC	24 V DC		24 V DC	
		6 mA approx. (at 24 V)	2.7 mA		2.7 mA	3.4 mA
Impedance		3.6 k Ω	$8.2 \mathrm{k} \Omega$		$8.2 \mathrm{k} \Omega$	$7.5 \mathrm{k} \Omega$
Min. ON volta	min. ON current	$9.6 \mathrm{~V} / 2 \mathrm{~mA}$	$19.2 \mathrm{~V} / 2.5 \mathrm{~mA}$		$19.2 \mathrm{~V} / 2.5 \mathrm{~mA}$	
Max. OFF voltage / max. OFF current		$2.5 \mathrm{~V} / 1 \mathrm{~mA}$	$5 \mathrm{~V} / 1.5 \mathrm{~mA}$		$5 \mathrm{~V} / 1.5 \mathrm{~mA}$	
Response time	OFF \rightarrow ON	0.1 ms or less (Note)	0.2 ms or less (Note)		0.2 ms or less (Note)	
	ON \rightarrow OFF	0.2 ms or less ${ }^{\text {(Note) }}$	0.2 ms or less ${ }^{\text {(Note) }}$		0.2 ms or less (Note)	
Input points per common		8 points / common	32 points / common		32 points / common	
Connection method		$\begin{gathered} \text { Terminal block } \\ \text { (M3 terminal screws) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Connector } \\ \text { (MIL-compliant } 40 \text { pins) } \end{gathered}$	Connector (MIL-compliant 40 pins, two use)	Connector (MIL-compliant 40 pins)	

Note: Changeable by settable input time constant
■Otput specifications

Item		Relay output unit	Transistor output units				I/O mixed unit (output side)
		16 points type	16 points (NPN)	32 points (NPN)	64 points (NPN)	16 points (PNP)	32 points (NPN)
Insulation method		Relay	Photocoupler			Photocoupler	
Nominal switching capacity		$2 \mathrm{~A} 250 \mathrm{VAC} / 2 \mathrm{~A} 30 \mathrm{VDC}$	-	-	-	-	-
Min. load		1 mA 100 mVDC (resistive load)	-	-	-	-	-
Output type		-	Open collector				
Rated load voltage		-	5 to 24 VDC				
Operating load voltage range		-	4.75 to 26.4 VDC				
Max. load current	$\begin{aligned} & .3 \mathrm{~A} \\ & \mathrm{YO} \text { to } \mathrm{Y} 7 \end{aligned}$	-	1 A	$\begin{gathered} 0.3 \mathrm{~A} \\ (26.4 \text { to } 20.4 \mathrm{VDC}) \\ 30 \mathrm{~mA}(4.75 \mathrm{VDC}) \end{gathered}$	$\begin{gathered} 0.3 \mathrm{~A}(20.4 \text { to } 26.4 \mathrm{VDC}) \\ 30 \mathrm{~mA}(4.75 \mathrm{VDC}) \\ \hline \end{gathered}$	1 A	$\begin{gathered} 0.3 \mathrm{~A}(20.4 \text { to } 26.4 \mathrm{VDC}) \\ 30 \mathrm{~mA}(4.75 \mathrm{VDC}) \\ \hline \end{gathered}$
	0.1 A (other than that above)	-			$\begin{gathered} 0.1 \mathrm{~A}(20.4 \text { to } 26.4 \mathrm{VDC}) \\ 15 \mathrm{~mA}(4.75 \mathrm{VDC}) \end{gathered}$		$\begin{gathered} 0.1 \mathrm{~A}(20.4 \text { to } 26.4 \mathrm{VDC}) \\ 15 \mathrm{~mA}(4.75 \mathrm{VDC}) \end{gathered}$
Common restriction		5 A	5 A	$3.2 \mathrm{~A} /$ common		5 A	$3.2 \mathrm{~A} / \mathrm{common}$
Max. surge current		-	3 A	0.6 A		3 A	0.6 A
OFF state leakage current		-	$1 \mu \mathrm{~A}$ or less			$1 \mu \mathrm{~A}$ or less	
ON state voltage drop		-	0.5 V or less			0.5 V or less	
Repose time	OFF \rightarrow ON	10 ms approx.	0.05 ms or less (at load current 0.5 mA or more)	0.1 ms or less (at load current 1 mA or more)	0.1 ms or less (at load current 2 mA or more)	0.05 ms or less (at load current 0.5 mA or more)	0.1 ms or less (at load current 2 mA or more)
	ON \rightarrow OFF	8 ms approx.	0.3 ms or less (at load current 0.5 mA or more)	0.3 ms or less (at load current 1 mA or more)	0.3 ms or less (at load current 1 mA or more)	0.3 ms or less (at load current 0.5 mA or more)	0.3 ms or less (at load current 2 mA or more)
Life time	Mechanical life	2×10^{7} operations or more	-	-	-	-	-
	Electrical life	1×10^{5} operations or more	-	-	-	-	-
External power supply	Voltage	-	4.75 to 26.4 V DC			4.75 to 26.4 V DC	
	Current (at 24 V)	-	70 mA	110 mA	$70 \mathrm{~mA} /$ common	70 mA	70 mA
Surge absorber		Snubber circuit (leakage current: 0.2 mA or less)	Zener diode			Zener diode	
Short circuit protection		-	-			-	
Output points per common		16 points / common	16 points / common	32 points / common		16 points / common	32 points / common
External connection method		Terminal block (M3 terminal screws)	Terminal block (M3 terminal screws)	Connector (MIL-compliant 40 pins)	$\begin{gathered} \text { Connector (MIL-compliant } \\ 40 \text { pins, two use) } \\ \hline \end{gathered}$	Terminal block (M3 terminal screws)	$\begin{gathered} \text { Connector } \\ \text { (MIL-compliant } 40 \text { pins) } \end{gathered}$

Output specifications

Item		Transistor output units		I/O mixed unit (output side)
		Source type (PNP open collector)		
		32 points type	64 points type	32 points type
Insulation method		Photocoupler		
Output type		Open collector		
Rated load voltage		5 to 24 V DC		
Load voltage allowable range		4.75 to 26.4 V DC		
Max. load current	$\begin{aligned} & 0.3 \mathrm{~A} \\ & \text { (Y0 to Y7) } \end{aligned}$	$\begin{gathered} 0.3 \mathrm{~A} \\ (26.4 \text { to } 20.4 \mathrm{~V} \text { DC) }) \\ 30 \mathrm{~mA}(4.75 \mathrm{~V} \text { DC }) \end{gathered}$	$\begin{gathered} 0.3 \mathrm{~A}(20.4 \text { to } 26.4 \mathrm{~V} \text { DC) } \\ 30 \mathrm{~mA}(4.75 \mathrm{~V} \mathrm{DC}) \end{gathered}$	
	0.1 A (other than that above)		$\begin{gathered} 0.1 \mathrm{~A}(20.4 \text { to } 26.4 \mathrm{~V} \mathrm{DC}) \\ 15 \mathrm{~mA}(4.75 \mathrm{~V} \mathrm{DC}) \\ \hline \end{gathered}$	
Common restriction		3.2 A / common		
Max. surge current		0.6 A		
OFF state leakage current		$1 \mu \mathrm{~A}$ or less		

Item		Transistor output units		I/O mixed unit (output side)
		Source type (PNP open collector)		
		32 points type	64 points type	32 points type
ON state maximum voltage drop		0.5 V or less		
Repose time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	0.1 ms or less (at load current 2 mA or more)		
	ON \rightarrow OFF	0.5 ms or less (at load current 2 mA or more)		
External power supply	Voltage	4.75 to 26.4 V DC		
	Current (at 24 V)	130 mA	$90 \mathrm{~mA} / \mathrm{common}$	90 mA
Surge absorber		Zener diode		
Short circuit protection		-		
Output points per common		32 points / common		
Operating mode indicator		32 points LED display (lights when ON)	32 points LED display (lights when ON, selectable by switch)	
External connection method		Connector (MIL-compliant 40 pins)	Connector (MIL-compliant 40 pins, two use)	Connector (MIL-compliant 40 pins, one use)

■I/O circuit diagrams

- DC input unit [input circuit diagrams] [16 points]

[32 points / 64 points]

Reduce simultaneous ON points according to the graph below.

Relay output unit [output circuit diagram]

■Limitations on power supply voltage
Reduce power supply voltage according to the graph below by the ambient temperature.

- Transistor output unit [output circuit diagram] [Sink type, 16 points]

Limitations on simultaneous
[Source type, 32 points / 64 points]

ON points [64 points]

temperature $\left({ }^{\circ} \mathrm{C}{ }^{\circ} \mathrm{F}\right) \longrightarrow$

Note: Reduce load current according to the graph below by the external power supply voltage.

■I/O circuit diagrams

- I/O mixed unit [I/O circuit diagram]
[Input circuit, sink type]

[Output circuit, sink type]

Limitations on simultaneous ON points (common to input and output)

Note: Reduce load current according to the graph below by the external power supply voltage.

[Input circuit, source type]

[Output circuit, source type]

Limitations on simultaneous ON points (common to input and output)

Note: Reduce load current according to the graph below by the external power supply voltage.

- 0.3 A (Y0 to Y7)

- 0.1 A (except Y0 to Y7)

Analog input and output units

Channel insulation is switchable to support various devices

1. 20 times faster conversion than in previous model: $25 \mu \mathrm{~s} /$ channel
2. High-speed sampling that doesn't depend on CPU unit scanning Sampling and data collection in the analog unit!
Use the measurement applications because with the fixed cycle, analog signal can be held in the buffer.

Dependent on scan of CPU

The scan gets delayed when the CPU slows down due to other processes and sampling becomes sporadic

Occurrence of failure
Sampling in the analog unit
Accurate sampling possible with fixed
cycle.
3. High-accuracy of $\pm 0.05 \%$ F.S. (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$) can be achieved.
4. Noise-resistant with isolated channels

Analog input specifications (AFP7AD4H / AFP7AD8)

ItemPart No. Number of channels			AFP7AD4H	AFP7AD8
			4 channels	8 channels
Input range Resolution, Max. 16 bits	Voltage		-10 to +10 V (resolution: $1 / 62,500)$0 to 10 V (resolution: $1 / 31,250$)0 to 5 V (resolution: $1 / 31,250$)1 to 5 V (resolution: $1 / 25,000$) (Note)	
	Current		0 to 20 mA (resolution: 1/31,250) 4 to 20 mA (resolution: $1 / 25,000$) (Note)	
Conversion speed	Volta curre		$25 \mu \mathrm{~s} /$ channel (at non-insulated channels) $5 \mathrm{~ms} /$ channel (at insulated channels)	$25 \mu \mathrm{~s} /$ channel (at non-insulated channels)
Overall accuracy			$\begin{aligned} & \pm 0.05 \% \text { F.S. or less } \\ & \text { (at } 25^{\circ} \mathrm{C} 77{ }^{\circ} \mathrm{F} \text {) } \\ & \pm 0.1 \% \text { F.S. or less } \\ & \text { (at } 0 \text { to } 55^{\circ} \mathrm{C} 32 \text { to } 131^{\circ} \mathrm{F} \text {) } \\ & \hline \end{aligned}$	$\pm 0.1 \%$ F.S. or less (at $25^{\circ} \mathrm{C} 777^{\circ} \mathrm{F}$) $\pm 0.3 \%$ F.S. or less (at 0 to $55^{\circ} \mathrm{C} 32$ to $131^{\circ} \mathrm{F}$)
Input impedance	Voltag Curre	input / t input	$1 \mathrm{M} \Omega$ approx. / 250Ω	
Max. input range			-15 to +15 V voltage input -2 to +30 mA current input	
Insulation method	Between input terminals and internal circuit		Photocoupler and isolated DC / DC converter	
	Between channels		PhotoMOS relay	
Digital processing	Averaging	Number of times	Setting range: 2 to 60,000 times	
		Time duration	Time setting range: 1 to 1,500 ms (at non-insulated channels), 200 to $60,000 \mathrm{~ms}$ (at insulated channels)	Time setting range: 1 to 1,500 ms (at non-insulated channels)
		Moving	Range setting: 2 to 2,000 times	
	Scale conversion setting		Any value within $\pm 30,000$	
	Offset setting		Any value within $\pm 3,000$	
	Gain setting		Any value within 9,000 to 11,000	
Input range change method			Selectable per channel	
Conversion execution / non-execution channel setting			Selectable per channel unit	
Max. and min. value holding			Possible to make settings on a channel-bychannel basis	
Comparison of upper and lower limit values			Possible to make settings on a channel-bychannel basis (hysteresis)	
Broken wire detection			When less than $0.7 \mathrm{~V} / 2.8 \mathrm{~mA}$ (only when voltage input range 1 to 5 V or current input range 4 to 20 mA is set.)	When less than 2.8 mA (only when current input range 4 to 20 mA is set.)
Buffer function			3 trigger types: Soft trigger, External trigger and Input level	
Note: The full scale (F.S.) on the accuracy of an analog voltage input range from +1 to +5 V and that of an analog current input range from +4 to +20 mA are 0 to +5 V and 0 to +20 mA , respectively.				

ItemPart No. Number of channels			AFP7AD4H	AFP7AD8
			4 channels	8 channels
Trigger input section	Insulation method		Photocoupler	
	Rated input voltage / Rated input current		$24 \mathrm{VDC} / 4.5 \mathrm{~mA}$ approx. (at 24 VDC)	$24 \mathrm{~V} \mathrm{DC} \mathrm{/} 12 \mathrm{~mA}$ approx. (at 24 V DC)
	Input impedance		$5.1 \mathrm{k} \Omega$ approx.	$2 \mathrm{k} \Omega$ approx.
	Operating voltage range		21.6 to 26.4 V DC	
	Min. ON voltage / Min. ON current		$19.2 \mathrm{~V} / 3.5 \mathrm{~mA}$	
	Max. OFF voltage / Max. OFF current		$5 \mathrm{~V} / 1.5 \mathrm{~mA}$	
	Response time	OFF \rightarrow ON	0.2 ms or less	0.1 ms or less
		ON \rightarrow OFF	0.2 ms or less	0.1 ms or less
	Input points per common		2 points/common	1 point/common
Connection method			Terminal block (M3 terminal screw)	

Item		AFP7DA4H
Number of output channels		4 channels
Output range (Resolution, Max. 16 bits)	Voltage	$\begin{aligned} & -10 \text { to }+10 \mathrm{~V} \text { (resolution: } 1 / 62,500) \\ & 0 \text { to } 10 \mathrm{~V} \text { (resolution: } 1 / 31,250) \\ & 0 \text { to } 5 \mathrm{~V} \text { (resolution: } 1 / 31,250) \\ & 1 \text { to } 5 \mathrm{~V} \text { (resolution: } 1125,000) \end{aligned}$
	Current	0 to 20 mA (resolution: $1 / 31,250$) 4 to 20 mA (resolution: $1 / 25,000$)
Conversion speed	Voltage / current	$25 \mu \mathrm{~s} / \mathrm{channel}$
Overall accuracy		$\pm 0.1 \%$ F.S. or less (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$) $\pm 0.3 \%$ F.S. or less (at 0 to $55^{\circ} \mathrm{C} 32$ to $131^{\circ} \mathrm{F}$)
Output impedance (voltage output)		0.5Ω or less
Max. output current (voltage output)		10 mA
Permissible output load resistance (Current output)		500Ω or less
Insulation method	Between the input terminals and internal circuit	Photocoupler and isolated DC / DC converter
	Between channels	Not insulated
Scale conversion setting		Any value within $\pm 30,000$
Offset and gain function	Offset setting	Any value within $\pm 3,000$
	Gain setting	Any value within 9,000 to 11,000
Output range change method		Selectable per channel
Conversion execution / non-execution channel setting		Selectable per channel unit
Upper and lower output limit clip function		Possible to make settings on a channel-by-channel basis
Analog output holding (in PROG mode)		Present value/any value/not holding
Connection method		Terminal block (M3 terminal screws)

Temperature input units

High-speed, high-accuracy and multi-channel input

1. Easy to perform highaccuracy measurement
Equipped with a variety of functions required for
temperature measurement

Averaging processing	Number of times, time, moving
Insulation	Channels are insulated from one another and from the internal circuit.
Simple setting	Initial settins can be completed on the configuration screen.

Easy to obtain measurement results
2. Capable of highspeed and highaccuracy temperature input

	High-speed conversion	High-accuracy
Thermocouple multiple analog input unit	$5 \mathrm{~ms} /$ channel (high-speed mode) $25 \mathrm{~ms} /$ channel (normal mode)	± 0.1 \% F.S. (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$) ± 0.3 \% F.S.
Resistance temperature detector input unit	$25 \mathrm{~ms} /$ channel (normal mode)	$\begin{aligned} & \left(\text { at } 0 \text { to } 55^{\circ} \mathrm{C}\right. \\ & \left.32 \text { to } 131^{\circ} \mathrm{F}\right) \end{aligned}$

3. Multi-channel input

One unit can control the input of up to 8 channels. With so many channels, the unit eliminates the need to purchase additional units, reducing required space and costs. The thermocouple multiple analog input unit can also control voltage and current inputs.

Thermocouple multiple
analog input unit

Resistance temperature detector input unit
\square Specifications

$\underset{\text { Item }}{ } \quad \frac{\text { Product name }}{}$		Thermocouple multiple analog input unit
		AFP7TC8
Number of channels		8 channels
Input range (resolution)	Thermocouple (resolution: $0.1^{\circ} \mathrm{C}$ $32.18{ }^{\circ} \mathrm{F}$)	
	Voltage	-10 to 10 VDC (resolution: $1 / 62,500$) 0 to 5 V DC (resolution: $1 / 31,250$) 1 to 5 VDC (resolution: $1 / 25,000$) (Note 1) -100 to 100 mV (resolution: $1 / 62,500$) Resolution: max. 16 bits
	Current	0 to 20 mA (resolution: 1/31,250) 4 to 20 mA (resolution: $1 / 25,000$) (Note 1) Resolution: max. 16 bits
Conversion speed		$5 \mathrm{~ms} /$ channel +5 ms (Note 2) $25 \mathrm{~ms} /$ channel +25 ms Add the drift compensation measuring time to the number of measuring channels.
Overall accuracy		$\pm 0.1 \%$ F.S. or less (at $25^{\circ} \mathrm{C} 77^{\circ}$) $\pm 0.3 \%$ F.S. or less (at 0 to $+55^{\circ} \mathrm{C}+32$ to $+131^{\circ} \mathrm{F}$)
Reference contact compensation accuracy		$\pm 1.0^{\circ} \mathrm{C} 33.8{ }^{\circ} \mathrm{F}$ (with thermocouple input)
Input impedance	Voltage / current	$1 \mathrm{M} \Omega / 250 \Omega$
Insulation method	Between input terminals and internal circuit	Photocoupler and isolated DC/DC converter
	Between channels	PhotoMOS relay
Conversion execution / non-execution channel setting		Selectable per channel unit
Input range change method		Selectable per channel
Digital processing	Averaging	Number of times, time, moving
	Scale conversion setting	Any value within $\pm 30,000$ (Voltage and current range only)
	Offset setting	Any value within $\pm 3,000$
	Gain setting	± 10 \%
Comparison of upper and lower limit values		Possible to make settings on a channel-by-channel basis.
Max. and min. value holding		Possible to make settings on a channel-by-channel basis.
Broken wire detection		Available
Connection method		Connector type terminal block
Notes: 1) The full scale (F.S.) ranges of accuracy are 1 to 5 V DC for voltage and 0 to 20 mA for current input, respectively. 2) The AC noise removal is disabled.		

$\underset{\text { Item }}{ } \quad \frac{\text { Product name }}{\text { Part No. }}$		Resistance temperature detector input unit
		AFP7RTD8
Number of channels		8 channels
Input range (resolution)	Resistance temperature detector (resolution: $0.1^{\circ} \mathrm{C}$ $32.18{ }^{\circ} \mathrm{F}$)	Pt100 (1): - 100.0 to $200.0^{\circ} \mathrm{C}-148.0$ to $392.0^{\circ} \mathrm{F}$ Pt100 (2): -200.0 to $650.0^{\circ} \mathrm{C}-328.0$ to $1202.0^{\circ} \mathrm{F}$ JPt100(1): - -100.0 to $200.0^{\circ} \mathrm{C}-148.0$ to $392.0^{\circ} \mathrm{F}$ JPt100(2): -200.0 to $650.0^{\circ} \mathrm{C}-328.0$ to $1202.0^{\circ} \mathrm{F}$ Pt1000: - 100.0 to $100.0^{\circ} \mathrm{C}-148.0$ to $212.0^{\circ} \mathrm{F}$
Conversion speed		$25 \mathrm{~ms} /$ channel +25 ms Add the drift compensation measuring time to the number of measuring channels.
Overall accuracy		$\pm 0.1 \%$ F.S. or less (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$) $\pm 0.3 \%$ F.S. or less (at 0 to $+55^{\circ} \mathrm{C}+32$ to $+131^{\circ} \mathrm{F}$)
Allowable signal source resistance		R.T.D. input: 30Ω (three wires balanced)
Insulation method	Between input terminals and internal circuit	Photocoupler and isolated DC / DC converter
	Between channels	PhotoMOS relay
Conversion execution / non-execution channel setting		Selectable per channel unit
Input range change method		Selectable per channel
Digital processing	Averaging	Number of times, time, moving
	Offset setting	Any value within $\pm 3,000$
	Gain setting	± 10 \%
Comparison of upper and lower limit values		Possible to make settings on a channel-by-channel basis.
Max. and min. value holding		Possible to make settings on a channel-by-channel basis.
Broken wire detection		Available
Connection method		Connector type terminal block

One of the fastest in industry added in lineup

1. Industry-leading class speed of 16 Mpps (for differential input and 2-phase, 4-multiple)
Accurate, real-time surveillance of inverter and motor rotation speed variation.
2. Supports 5 / 12 / 24 V DC and differential input.

Supports wide range of interface from 12 to 24 V DC, 5 V DC and differential input with one unit.

3. Powerful application support

Input pulse string frequency (period) can be measured inside the unit with built in periodical pulse counter function. Built-in ring counter function can easily detect index table position. Line speed adjustment and work length measurement are available with built-in clock that allows accurate time measurement.
4. Various functions can be used without a ladder program

| Capture function of count value | Finite difference calculation of capture value | Interrupt using comparison match |
| :--- | :---: | :---: | :---: |
| Comparison match and band comparison | Measurement of frequency and number of fevolution | Reset of Z number and preset |
| Reset and preset of external signal | Built-in clock selection | |

■Specifications

Prer Type			2 channels type	4 channels type
Item Part No.		Part No.	AFP7HSC2T	AFP7HSC4T
Input	Insulation method		Photocoupler	
	Rated input voltage		12 to 24 V DC / 3.5 to 5 V DC	
	Input impedance Usage voltage range	$24 \mathrm{VDC} / 5 \mathrm{~V}$ DC	$3.0 \mathrm{k} \Omega$ approx. / 390Ω approx.	
		24 V DC/5V DC	10.8 to 26.4 V DC / 3.5 to 5.25 V DC	
	Min. ON voltage / Min. ON current	24 V DC	10 V DC / 4 mA	
		5 VDC	3.0 V DC / 4 mA	
	Min. OFF voltage / Min. OFF current	24 VDC	2.0 V DC / 2 mA	
		5VDC	1.0 V DC / 0.5 mA	
	Input time constant setting		None, $0.1 \mu \mathrm{~s}, 0.2 \mu \mathrm{~s}, 0.5 \mu \mathrm{~s}, 1.0 \mu \mathrm{~s}, 2.0 \mu \mathrm{~s}$ and $10.0 \mu \mathrm{~s}$	
Count function	Number of counters		2 channels	4 channels
	Counter type		Linear counter / Ring counter	
	Counting range		Signed 32-bit ($-2,147,483,648$ to +2,147,483,647)	
	Max. input frequency		$4 \mathrm{MHz} / 8 \mathrm{MHz}$ for individual input (phases A and B) (Duty ratio $50 \pm 10 \%$) $4 \mathrm{MHz} / 8 \mathrm{MHz}$ for direction discrimination input (Duty ratio $50 \pm 10 \%$) $4 \mathrm{MHz} / 8 \mathrm{MHz} / 16 \mathrm{MHz}$ for 2-phase input (Duty ratio $50 \pm 10 \%$, Phase shifting below 5%)	
	Input signal		Phases A, B and Z	
	External I/O		Control signal input: 4 points (2 points/ch) External output: 4 points (2 points/ch)	Control signal input: 8 points (2 points/ch) External output: 8 points (2 points/ch)
	Counter input type		Individual input: 1 multiple, 2-multiple Direction discrimination input: 1 multiple, 2-multiple 2-phase input: 1 multiple, 2-multiple, 4-multiple	
Measurement function	Frequency measurement function		Measures the intervals between the variations of count values, and calculates the frequency.	
Comparison function	Target value match function		Depending on the count direction, sets or resets the output when the counter value reaches the target value.	
External output	Comparison result output function		Outputs the result of comparison function.	
Other functions	Capture function		Acquires the current count value from the edges of input signals, and stores it in the capture 0 register or capture 1 register. The value of the specified capture register will be overwritten by a new value and the old value will be discarded every time a counter value is captured.	
	Interrupt input function		Available (2 points/ch, Max. 8 points/unit) ${ }^{\text {(Note 1, 2) }}$	

[^1]
Positioning units

3. Dedicated configuration tool

Start positioning dedicated configuration tool using Control FPWIN GR7. Parameter and positioning operation settings can be made easily.
Test operation is also supported. Positioning operations can be checked even-while the CPU unit is in program mode.

Combined multi-axle control can be achieved at reduced cost.

1. Equipped with electronic cam and electronic gear functions Ladder program is capable of controlling electronic cams and gears. Virtual axes are supported and operable without connecting to external encoders.

2. Organized wiring to servo amplifier

A servo ON output terminal is provided that allows simple and neat wiring to the servo amplifier. Also, wiring from the I/O unit is
unnecessary, and a test run is possible by only a positioning soft tool.
CPU unit, I/O units
and positioning unit

CPU unit and Reduced space and cost positioning unit Reduced debugging time

■Performance specifications

Item				Specifications			
				2 axes type		4 axes type	
Part No.				AFP7PP02T	AFP7PP02L	AFP7PP04T	AFP7PP04L
Output type				Transistor	Line driver	Transistor	Line driver
Max. operation speed				500 kpps	4 Mpps	500 kpps	4 Mpps
Number of axes controlled				2 axes		4 axes	
Interpolation control				2 axes linear interpolation and 2 axes circular interpolation		2 axes linear interpolation, 3 axes linear interpolation, 2 axes circular interpolation and 3 axes spiral interpolation	
Position command units				pulse yn (The minimum command unt can be selected fom 0.1 mor 1 um.) inch (The minimum command unitcan be sesected foom 0.0000 inch oro.000 inch.) degree (The minimum command unit can be selected tomon 0.1 degree or 1 degree.)			
Position command range							
Speed command range				pulse: 1 to $32,767,000 \mathrm{pps}$ $\mu \mathrm{m}: 1$ to $32,767,000 \mu \mathrm{~m} / \mathrm{sec}$. inch: 0.001 to $32,767.000$ inch $/ \mathrm{sec}$. degree: 0.001 to $32,767.000 \mathrm{rev} / \mathrm{sec}$. *Specify an output speed that is below the maximum operating speed.			
な	Position control	Position co method	mmand	Absolute (Absolute position designation), Increment (Relative position designation)			
		Acceleration /decle	retion method	Linear acceleration/deceleration, S -urve acceleration/ decleration			
		Acceleratio	n time	0 to $10,000 \mathrm{~ms}$ (in increments of 1 ms)			
		Deceleratio	n time	0 to $10,000 \mathrm{~ms}$ (in increments of 1 ms)			
		Number of positioning	tables per axis	Standard area: 600 points, expansion area: 25 points			
		이등	dent	PTP control (E point control, C point control), CP control (P point control), Speed control (J point control)			
		$\stackrel{\text { E }}{ \pm}$ 2-axis	Linear	Epoint, Ppointand C point contock: Specity yjntesis speed ormajoraxis speed			
		- ${ }^{2}$ interpolation	Circular	Epoint, P point and C point controls: Center point or passing point			
		$5_{0} 3$-axis	Linear	Epoint, Ppoint and P point contock: Speitis synthesis speed o omjojoxis speed			
		O interpolation	Spiral	E point, P point and C point controls: center point or passing point			
		Startup time		Standard area: 3 ms or less, expansion area: 5 ms or less			
		Other function	Dwell time	0 to $32,767 \mathrm{~ms}$ (in increments of 1 ms)			

Item			Specifications	
			2 axes type	4 axes typ
Part No.			AFP7PP02T AFP7PP0	P7PP04T AFP7P
	JOG operation	Acceleration / deceleration method	Linear acceleration / deceleration, S-curve acceleration / deceleration	
		Acceleration / deceleration time	0 to $10,000 \mathrm{~ms}$ (in increments of 1 ms)	
	Home return	Acceleration \& deceleration method	Linear acceleration / deceleration	
		Acceleration / deceleration time	0 to 10,000 ms (in increments of 1 m	
		Return methods	7 methods: DOG method (3 types), Limit method (2 types), Data set method, Z-phase method	
	Pulser operation	Speed command range	Operates in synchronization with pulser input	
¢ 0 0 ¢ 0 0 0 0	Decelearion stop	Deceleration time	Deceleration time of running operation	
	Emeregncy stop	Deceleration time	0 to $10,000 \mathrm{~ms}$ (in increments of 1 ms)	
	Limit stop	Deceleration time	0 to $10,000 \mathrm{~ms} \mathrm{(in} \mathrm{increments} \mathrm{of} 1 \mathrm{~ms}$)	
	Error stop	Deceleration time	0 to $10,000 \mathrm{~ms}$ (in increments of 1 ms)	
	System stop	Deceleration ti	Immediate stop (0 ms), all axes stop	
	Synchron	Master axis	Existing axes, virtual axes or pulse input (1 to 4)	
	basic setting	Slave axis	Max. 2 axes	Max. 4 axes
	Ele	Operation setting	Gear ratio setting	
	gear	Operation method	Direct method, Acceleration / deceleration method	
		Clutch ON trigger	Contact input	
		Clutch method	Direct method, Linear slip method	
	Electronic cam function	Cam curve	Select from 20 types Multiple curves can be specified within a phase (0 to 100%).	
		Resolution	1024, 2048, 4096, 8192, 16384, 32768	
		Number of can patterns	4 to 16 (Depends on resolution)	
$\stackrel{\square}{\circ}$	Output mode		1 pulse output (pulse + direction), 2 pulse outputs (CW / CCW)	
-	High-speed counter function Note	Countable range	$-1,073,741,823$ to $+1,073,741,823$ pulse	
$\stackrel{\circ}{\circ}$		Input mode	Phase difference input, Direction distinction input, Individual input (transfer multiple available for each)	
	Built-in servo ON output			

Note: Pulser input and high-speed counter functions cannot be used simultaneously,
as the same pulse input terminal is used.

Pulse output units

Super high-speed positioning control achieved

1. Startup speed is fastest in industry*

The pulse output request is received from the CPU unit and the startup speed up to output of the pulse is the industry's fastest at $1 \mu \mathrm{~s}$. Tact time is reduced with repeat of short-distance positioning operations, etc.

2. Neater wiring to servo and amplifier

Equipped with a servo ON output terminal, wiring to the servo amplifier is neater.
3. Replacement from FP2 series is easy

Usage is same as the previous FP2 positioning unit (multi-function type). Program transfer is easy.

* Based on our research as of October, 2013

■Performance specifications

Item		AFP7PG02T	AFP7PG04T	AFP7PG02L	AFP7PG04L
Output type		Transistor		Line driver	
Occupied points		Each 32 points of I/O	Each 64 points of I/O	Each 32 points of I/O	Each 64 points of I/O
Number of axes controlled		2 axes, independent	4 axes, independent	2 axes, independent	4 axes, independent
Position command	Command units	Pulse (The program specifies whether increment or absolute is used.)			
	Max. pulse count	Signed 32 bits (+2,147,483,647 to -2,147,483,648 pulses)			
Speed command	Command range	1 pps to 500 kpps (can set in 1 pps)		1 pps to 4 Mpps (can set in 1 pps)	
Acceleration/ deceleration command	Acceleration/deceleration	Linear acceleration / deceleration, S acceleration / deceleration			
	"S" Acceleration/deceleration	Can select from sin curve, secondary curve, cycloid curve and third curve.			
	Acceleration/deceleration time	0 to $32,767 \mathrm{~ms}$ (can set in 1 ms)			
Home return	Home return speed	Speed setting possible (changes return speed and search speed)			
	Input signal	Home input, near home input, limit input (+), limit input (-)			
	Output signal	Deviation counter clear signal			
Operation mode		- E point control (linear and S acceleration/decelerations) - P point control (linear and S acceleration/decelerations) - Home return operation (home search) - JOG operation ${ }^{\text {(Note 1) }}$ - JOG positioning operation - Pulser input function (Note ${ }^{2)}$ transfer multiplication ratio $(\times 1, \times 2, \times 5, \times 10, \times 50, \times 100, \times 500, \times 1000)$ - Real-time frequency change - Infinity output			
Startup time		$0.02 \mathrm{~ms}, 0.005 \mathrm{~ms}$ or 0.001 ms selecting possible ${ }^{\text {(Note 3) }}$			
Output interface	Output mode	1 pulse output (pulse and sign), 2 pulse output (CW and CCW)			
High-speed counter function (Note 2)	Countable range	Signed 32 bits (+2,147,483,647 to -2,147,483,648 pulse)			
	Input mode	Two-phase input, direction distinction input, individual input (with multiplier function mode)			
Other functions		- Startup using I/O contact - Built-in limit (+) and limit (-) - With servo ON output			
External power supply	Voltage	21.6 to 26.4 V DC			
	Current	50 mA (at 24 V)	90 mA (at 24 V)	50 mA (at 24 V)	90 mA (at 24 V)

[^2]2) Since the pulsar input function and the high-speed counter function use the same pulse input terminal, both functions cannot be used at the same time.
3) Startup time can be changed using the common memory control code setting. The factory (default) setting is 0.02 ms . Startup time is defined as the time between startup and output of the first pulse.

PHLS (remote I/O) units

Speedy, resistant to noise Remote I/O Line up

1. High speed communication

A 12 Mbps maximum transmission speed can be selected. Fast response at update cycle of 1,000 points / 2 ms can be achieved.
2. High resistance to noise

Data can be transferred accurately, even in inadequate wiring environments.
3. Various types of compact slave units Compact slave units $(60 \times 70 \times 40 \mathrm{~mm} 2.36 \times 2.76 \times$ 1.57 in) are smaller than common screw terminal types and are lined up to contribute to space savings. A wide variety of slave units are available.

Communication specifications (common)

Item	Specifications
Communication method	Two-wire system half duplex
Insulation method	Pulse transformer insulation
Communication speed	6 Mbps / 12 Mbps
Synchronous method	Bit synchronization
Error check	CRC-12
Communication distance	Total length 200 m 656 ft (at 6 Mbps$) / 100 \mathrm{~m} \mathrm{328} \mathrm{ft} \mathrm{(at}$ 12 Mbps) (Note)
Connection method	Multi-drop method
Impedance	100Ω
Terminator	Mounted on unit
External interface	Master unit: terminal block (2 channels) Slave unit (standard type): screw-type terminal block Slave unit (compact type): connector-type terminal block
Note: Performance when the recommended cable is used Use of the recommended cable is	
necessary to achieve the maximum transmission distance and number of slave units.	
Input side specifications	

Item	Specifications	
	Standard type	Compact type
Insulation method	Photocoupler insulation	Non-isolated
Rated input voltage	24 V DC	
Rated input current	3 mA approx.	4.3 mA approx.
Input impedance	$7.5 \mathrm{k} \Omega$ approx.	$5.6 \mathrm{k} \Omega$ approx.
Min. ON voltage / Min. ON current	$15 \mathrm{~V} / 2 \mathrm{~mA}$	$17 \mathrm{~V} / 2 \mathrm{~mA}$
Max. OFF voltage / Max. OFF current	$5 \mathrm{~V} / 0.5 \mathrm{~mA}$	
Response $\mathrm{OFF} \rightarrow \mathrm{ON}$	1 ms or less	
time \quad ON \rightarrow OFF	1 ms or less	

Introduction of remote analog units
Our PHLS (remote I/O) unit complies with HLS (Hi-speed Link System) specification. This product is used when you want to connect analog units from other manufacturers that comply with the HLS specification.
Other manufacturers that comply with the
PHLS specification.
AFP7PHLS $)$ master unit Our product PHLS (remote I/O) slave unit Other companies' analog units compliant with HLS (Hi-speed Link System)

- Standard type (screw-type terminal block)
[Input type]
AFPRP1X08D2 / AFPRP1X16D2

[Output type]

electromotive force from inductive load.
- Compact type (relay output)

AFPRP2Y04R [When connecting to separated common terminal]

- Compact type (e-CON)

- Compact type (connector-type terminal block) [Input type]
AFPRP2X16D2

[Output type]
AFPRP2Y16T

Note: Attach diodes to absorb counter electromotive force from inductive load.

electromotive force from inductive load.

[^0]: Notes: 1) Can support a maximum of 100 m 328 ft length between blocks. Please inquire with us for details.
 2) Differs depending on power supply voltage and number of expansion units.
 3) You cannot use the expansion units with the AFP7CPS21 CPU unit.

[^1]: Notes: 1) The interrupt input function can be used for 8 points per unit and for a maximum of 8 units (max. 64 points) in the whole system. However, the entire scan time slows down as more interrupt programs are used. Minimize the use of interrupt programs.
 2) The priority order for interrupt inputs is as follows; In a unit, from the smallest interrupt bit. In the whole system, from the smallest unit number.

[^2]: Notes: 1) When linear acceleration/deceleration operation is selected, it is possible to change the target speed during operation

