imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

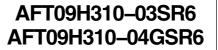
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Document Number: AFT09H310–03S Rev. 1, 9/2013

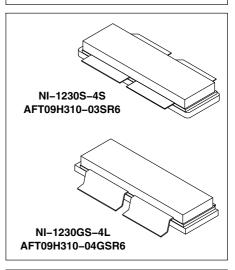
VRoHS

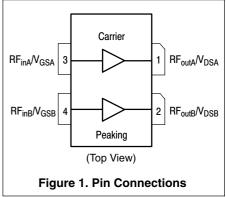
RF Power LDMOS Transistors

N–Channel Enhancement–Mode Lateral MOSFETs


These 56 watt asymmetrical Doherty RF power LDMOS transistors are designed for cellular base station applications covering the frequency range of 920 to 960 MHz.

• Typical Doherty Single–Carrier W–CDMA Performance: $V_{DD} = 28$ Volts, $I_{DQA} = 680$ mA, $V_{GSB} = 0.4$ Vdc, $P_{out} = 56$ Watts Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
920 MHz	17.9	47.4	8.2	-28.5
940 MHz	18.0	48.5	8.1	-31.2
960 MHz	18.2	47.3	7.9	-35.0


Features

- Advanced High Performance In-Package Doherty
- Greater Negative Gate–Source Voltage Range for Improved Class C Operation
- Designed for Digital Predistortion Error Correction Systems
- In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel.

920–960 MHz, 56 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTORS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain–Source Voltage	V _{DSS}	-0.5, +70	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	Τ _J	-40 to +225	°C
CW Operation @ T _C = 25°C Derate above 25°C	CW	256 0.9	W W/°C

Table 2. Thermal Characteristics

Characteristic		Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 75°C, 56 W W–CDMA, 28 Vdc, I _{DQA} = 680 mA, V _{GSB} = 0.4 Vdc, 940 MHz	$R_{ extsf{ heta}JC}$	0.41	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22–C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	1	μAdc
Gate-Source Leakage Current $(V_{GS} = 5 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}	_	—	1	μAdc
Dn Characteristics – Side A ⁽⁴⁾ (Carrier)					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 242 μ Adc)	V _{GS(th)}	0.9	1.5	1.9	Vdc
Gate Quiescent Voltage $(V_{DD} = 28 \text{ Vdc}, I_{DA} = 680 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GSA(Q)}	1.7	2.1	2.5	Vdc
Drain–Source On–Voltage ($V_{GS} = 10 \text{ Vdc}, I_D = 1.0 \text{ Adc}$)	V _{DS(on)}	0.05	0.2	0.4	Vdc
Dn Characteristics – Side B ⁽⁴⁾ (Peaking)					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 310 μ Adc)	V _{GS(th)}	0.9	1.5	1.9	Vdc
Drain–Source On–Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 1.0 \text{ Adc})$	V _{DS(on)}	0.05	0.2	0.4	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes – AN1955.

4. Each side of device measured separately.

(continued)

ſ

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system	n) V _{DD} = 28 Vo	dc, I _{DQA} = 680) mA, V _{GSB} =	0.4 Vdc, P _{out}	= 56 W Avg.,
f = 920 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signa	al PAR = 9.9 c	B @ 0.01% F	robability on	CCDF. ACPR	measured in
3.84 MHz Channel Bandwidth @ ±5 MHz Offset.					

Power Gain	G _{ps}	17.7	17.9	20.7	dB			
Drain Efficiency	η_D	45.3	47.4	—	%			
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.6	8.2	—	dB			
Adjacent Channel Power Ratio ACPR 28.5 27.3 dBc								
Load Mismatch (In Freescale Test Fixture, 50 ohm system) I _{DQA} = 680 mA, f = 940 MHz								

VSWR 10:1 at 32 Vdc, 280 W CW ⁽⁴⁾ Output Power (3 dB Input Overdrive from 180 W CW Rated Power)	No Device Degradation

Typical Performances ⁽²⁾ (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQA} = 680$ mA, $V_{GSB} = 0.4$ Vdc, 920–960 MHz Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	—	180	_	W
Pout @ 3 dB Compression Point (5)	P3dB	—	390	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 920 to 960 MHz frequency range)		—	31.7	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)		_	45	_	MHz
Gain Flatness in 40 MHz Bandwidth @ P _{out} = 56 W Avg.		—	0.3	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	—	0.015	—	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	—	0.035	_	dB/°C

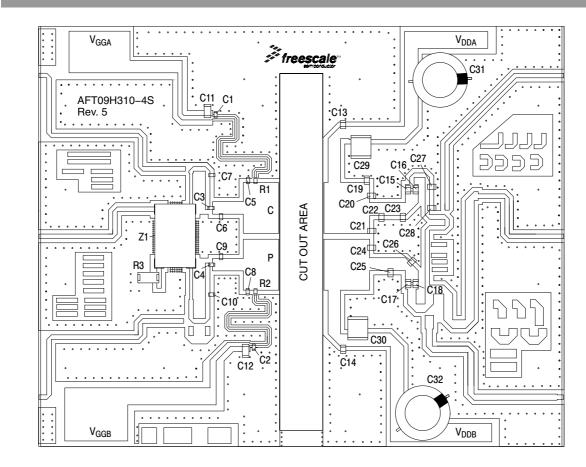
1. Part internally matched both on input and output.

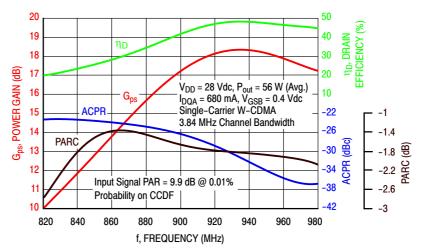
2. Measurements made with device in an asymmetrical Doherty configuration.

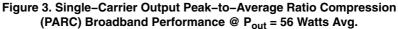
3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GS) parts.

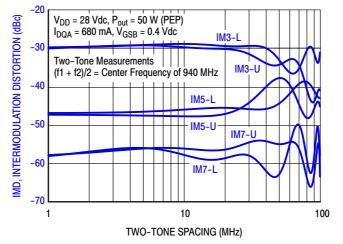
4. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

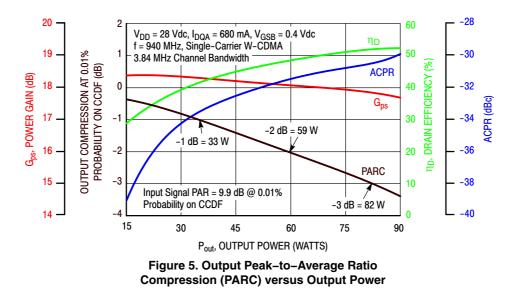
5. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W–CDMA single–carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

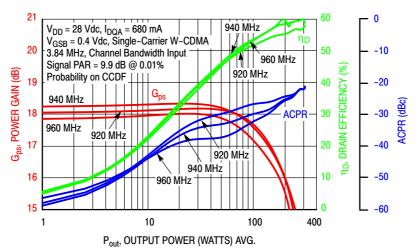


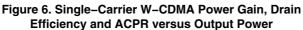

Figure 2. AFT09H310-03SR6 Test Circuit Component Layout - 920-960 MHz


Table 5. AFT09H310–03SR6 Test Circuit Component Designations and Values — 920–960 MHz


Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	47 pF Chip Capacitors	GQM1875C2E470JB15	Muruta
C5, C6 8.2 pF Chip Capacitors		GQM1875C2E8R2CB12D	Muruta
C7, C10	1.2 pF Chip Capacitors	GQM1875C2E1R2BB15	Muruta
C8, C9	6.8 pF Chip Capacitors	GQM1875C2E6R8BB15	Muruta
C11, C12	10 μF Chip Capacitors	GQM1875C2E6R8CB12D	Muruta
C13, C14, C15, C16, 68 pF Chip Capacitors C17, C18		GQM2195C2E680GB15	Muruta
C19, C20, C21	6.8 pF Chip Capacitors	GQM2195C2E6R8BB15	Muruta
C22 3.3 pF Chip Capacitor		GQM2195C2E3R3BB15	Muruta
C23, C24	3.9 pF Chip Capacitors	GQM2195C2E3R9BB15	Muruta
C25, C26	4.7 pF Chip Capacitors	GQM2195C2E4R7BB15	Muruta
C27, C28	1.8 pF Chip Capacitors	GQM2195C2E1R8BB15	Muruta
C29, C30	10 μF Chip Capacitors	C5750X7S2A106M230K	TDK
C31, C32	470 μF, 63 V Chip Capacitors	MCGPR100V477M16X32-RH	Multicomp
R1, R2	5.1 Ω, 1/10 W Chip Resistors	CRCW06035R10FKEA	Vishay
R3	50 Ω, 10 W Termination	06012A25X50-2	Anaren
Z1	800–1000 MHz, 5 dB, Directional Coupler	XC0900A-05S	Anaren
PCB	0.020″, ε _r = 3.5	RO4350	Rogers


TYPICAL CHARACTERISTICS





TYPICAL CHARACTERISTICS

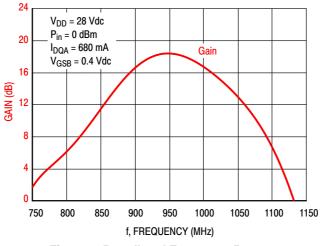


Figure 7. Broadband Frequency Response

NC

V_{DD} = 28 Vdc, I_{DOA} = 694 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Output Power						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
920	1.16 - j2.31	1.24 + j2.27	3.28 - j1.37	20.3	52.8	190	54.5	-8.1	
940	1.35 - j2.39	1.40 + j2.40	3.44 - j1.49	20.2	52.9	193	55.0	-7.5	
960	1.63 - j2.70	1.64 + j2.55	3.64 - j1.33	20.1	53.0	200	55.7	-8.2	

			Max Output Power						
			P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
920	1.16 - j2.31	1.26 + j2.47	4.06 - j1.21	17.9	53.9	244	56.5	-13	
940	1.35 - j2.39	1.44 + j2.60	4.14 - j1.14	18.0	53.9	247	57.5	-12	
960	1.63 - j2.70	1.72 + j2.76	4.29 - j0.91	17.8	54.0	252	58.0	-13	

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

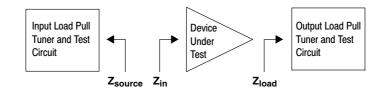
Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning

V_{DD} = 28 Vdc, I_{DQA} = 694 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

				Мах	Drain Efficie	ency		
			P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
920	1.16 - j2.31	0.81 + j1.89	0.96 - j0.03	24.8	49.9	99	68.9	-21
940	1.35 - j2.39	0.94 + j1.98	0.95 - j0.14	24.9	49.9	98	69.9	-21
960	1.63 - j2.70	1.07 + j2.08	0.86 - j0.21	25.0	49.6	92	71.0	-24

				Мах	Drain Efficie	ency		
			P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
920	1.16 - j2.31	0.89 + j2.16	1.06 + j0.03	22.8	50.8	121	70.9	-29
940	1.35 - j2.39	1.06 + j2.28	1.10 - j0.07	22.8	50.9	124	72.0	-27
960	1.63 - j2.70	1.39 + j2.49	1.40 - j0.21	21.7	51.8	153	71.6	-23

(1) Load impedance for optimum P1dB efficiency.


(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning

V_{DD} = 28 Vdc, V_{GSB} = 0.4 Vdc, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Output Power							
			P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
920	1.72 - j3.65	1.84 + j3.30	4.60 - j2.13	13.7	53.8	241	55.6	-8.3		
940	2.37 - j3.46	2.28 + j3.50	5.46 - j2.55	13.3	53.9	245	53.1	-7.3		
960	2.89 - j3.77	2.85 + j3.70	5.68 - j2.16	13.3	54.0	250	54.1	-7.9		

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
920	1.72 - j3.65	1.99 + j3.42	5.63 - j2.02	11.2	54.9	312	56.1	-11		
940	2.37 - j3.46	2.43 + j3.61	6.13 - j1.80	11.1	55.0	313	55.8	-10		
960	2.89 - j3.77	3.06 + j3.78	6.35 - j1.22	11.1	55.0	318	56.3	-10		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

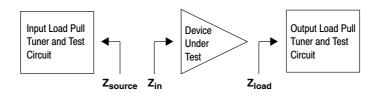
Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning

V _{DD} = 28 Vdc, V _{GSB} = 0.4 Vdc, Pulsed CW	. 10 usec(on), 10% Duty Cycle
100 = 20 100 ; $1000 = 0.1$ 1000 ; $10000 = 0.1$, to pool only, to to bally ogolo

				Мах	Drain Efficie	ency		
			P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
920	1.72 - j3.65	1.63 + j3.16	1.40 - j0.57	14.9	51.3	135	70.4	-15
940	2.37 - j3.46	1.95 + j3.29	0.95 - j0.75	14.8	50.1	102	72.3	-17
960	2.89 - j3.77	2.52 + j3.52	1.33 - j0.87	14.8	51.1	130	72.7	-16

			Max Drain Efficiency						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
920	1.72 - j3.65	1.74 + j3.32	1.57 - j0.45	12.9	52.2	167	71.4	-19	
940	2.37 - j3.46	2.16 + j3.51	1.67 - j0.54	12.8	52.3	171	72.1	-18	
960	2.89 - j3.77	2.71 + j3.69	1.55 - j0.69	12.8	52.2	164	73.2	-20	


(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency. Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

= Impedance as measured from gate contact to ground. Zin

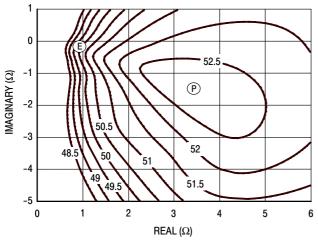

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 940 MHz

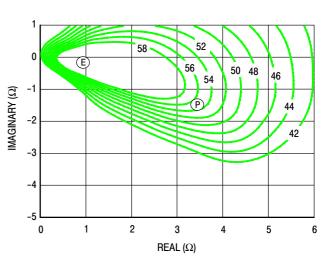


Figure 12. P1dB Load Pull Output Power Contours (dBm)

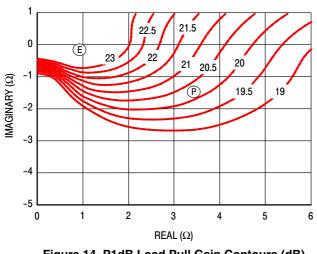


Figure 14. P1dB Load Pull Gain Contours (dB)

Figure 13. P1dB Load Pull Efficiency Contours (%)

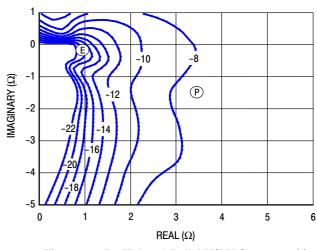
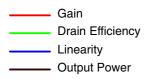



Figure 15. P1dB Load Pull AM/PM Contours (°)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 940 MHz

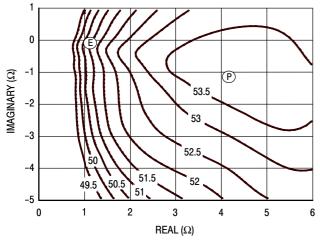


Figure 16. P3dB Load Pull Output Power Contours (dBm)

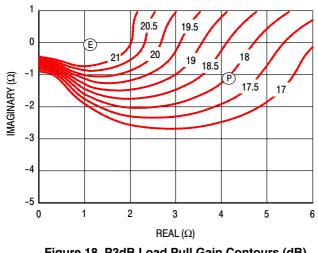


Figure 18. P3dB Load Pull Gain Contours (dB)

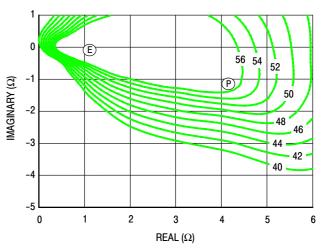


Figure 17. P3dB Load Pull Efficiency Contours (%)

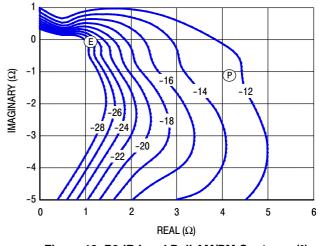
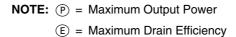



Figure 19. P3dB Load Pull AM/PM Contours (°)

 Gain
 Drain Efficiency
 Linearity

Output Power

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 940 MHz

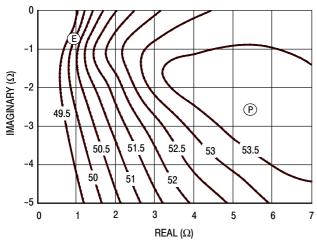


Figure 20. P1dB Load Pull Output Power Contours (dBm)

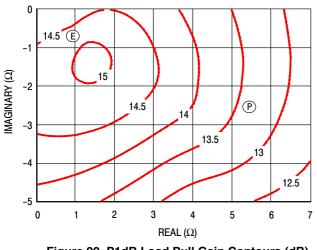


Figure 22. P1dB Load Pull Gain Contours (dB)

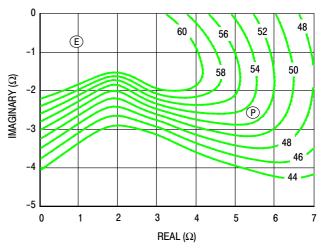


Figure 21. P1dB Load Pull Efficiency Contours (%)

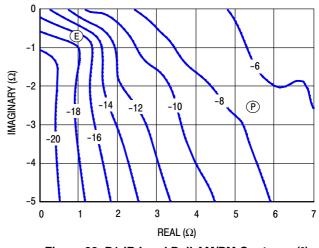


Figure 23. P1dB Load Pull AM/PM Contours (°)

 Gain
 Drain Efficiency
 Linearity
 Output Power

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 940 MHz

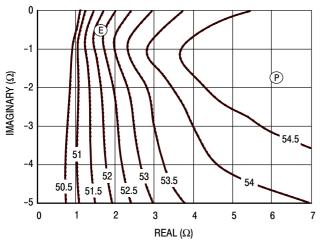


Figure 24. P3dB Load Pull Output Power Contours (dBm)

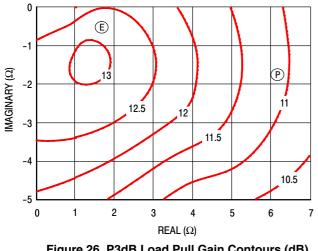


Figure 26. P3dB Load Pull Gain Contours (dB)

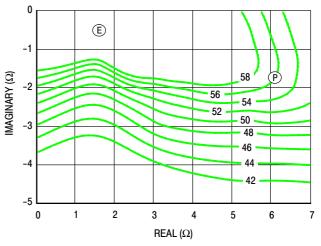


Figure 25. P3dB Load Pull Efficiency Contours (%)

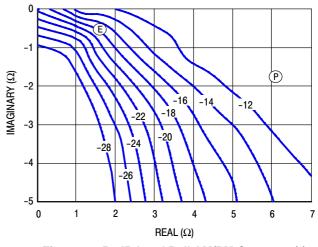
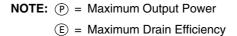
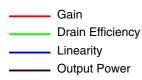
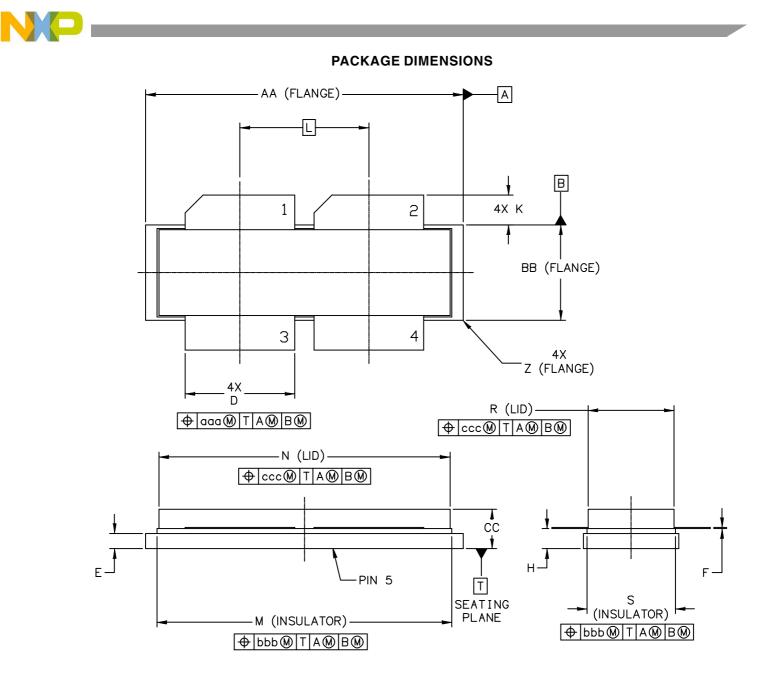
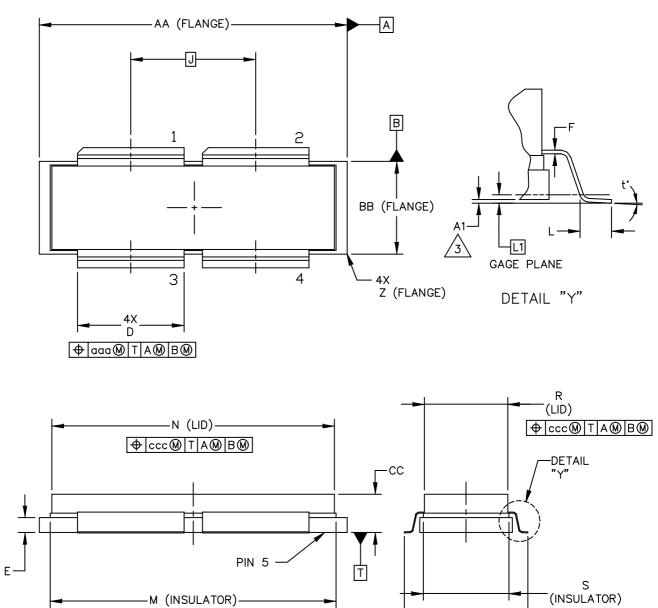





Figure 27. P3dB Load Pull AM/PM Contours (°)

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUMEN	NT NO: 98ARB18247C	REV: G
NI-1230-4S		STANDAF	RD: NON-JEDEC	
			01	MAR 2013



NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

	INC	HES	MIL	LIMETERS		IN	ICHES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27
BB	.395	.405	10.03	10.29	S	.365	.375	9.27	9.53
сс	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02
D	.455	.465	11.56	11.81					
E	.062	.066	1.57	1.68	aaa		.013	0.	33
F	.004	.007	0.10	0.18	bbb		.010	0.	25
н	.082	.090	2.08	2.29	ccc	.020		0.51	
к	.117	.137	2.97	3.48					
L	.540	BSC	13.	.72 BSC					
м	1.219	1.241	30.96	31.52					
N	1.218	1.242	30.94	31.55					
© F	REESCALE SEN ALL RIGHT	ICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VEF	RSION NOT	TO SCALE
TITLE:						DOCUME	NT NO: 98ARE	318247C	REV: G
	NI-1230-4S					STANDARD: NON-JEDEC			
	01 MAR 2013							MAR 2013	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT	TO SCALE		
TITLE:		DOCUMEN	NT NO: 98ASA00459D	REV: A		
NI-1230-45 GULL			STANDARD: NON-JEDEC			
	07 MAR 2013					

—_M (INSULATOR)— —_M (INSULATOR)—

⊕ bbb⊛ T A B

·B1

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

 $\overline{3.}$ dimension at is measured with reference to datum t. The positive value implies that the package bottom is higher than the lead bottom.

	INCHES		MILLIMETERS			INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27	
A1	001	.011	-0.03	0.28	S	.365	.375	9.27	9.53	
BB	.395	.405	10.03	10.29	Z	R.000	R.040	R0.00	R1.02	
B1	.564	.574	14.32	14.58	t۰	0.	8.	0.	8.	
сс	.170	.190	4.32	4.83						
D	.455	.465	11.56	11.81	aaa	.013		0.	0.33	
E	.062	.066	1.57	1.68	bbb	.010 0.25		25		
F	.004	.007	0.10	0.18	ccc	.020 0.51		.51		
J	J .540 BSC		13.72 BSC							
L	.038	.046	0.97	1.17						
L1	.01	BSC	0.	25 BSC						
м	1.219	1.241	30.96	31.52						
N	1.218	1.242	30.94	31.55						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANI			MECHANICA	L OUT	OUTLINE PRINT VERSION			TO SCALE		
TITLE:					DOCUMENT NO: 98ASA00459D REV: A					
	NI-1230-45 GULL					STANDARD: NON-JEDEC				
					07 MAR 2013					

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- **Engineering Bulletins**
- EB212: Using Data Sheet Impedances for RF LDMOS Devices
- Software
- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	July 2013	Initial Release of Data Sheet			
1	Sept. 2013	On Characteristics table, Side B (Peaking): corrected V _{GS(th)} Typ value from 2.0 to 1.5 Vdc, p. 2			

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc.

