: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High sensitivity, 100 mW Nominal operating power, 2 Form C and 1 A GN RELAYS (AGN) Slim body type relays

FEATURES

1. Slim compact size
$10.6(\mathrm{~L}) \times 5.7(\mathrm{~W}) \times 9.0(\mathrm{H}) \mathrm{mm}$
$.417(\mathrm{~L}) \times .224(\mathrm{~W}) \times .354(\mathrm{H})$ inch
2. High sensitivity single side stable type (Nominal operating power: 100 mW) is available
3. Outstanding surge resistance $1,500 \mathrm{~V} 10 \times 160 \mu \mathrm{~s}$ (FCC part 68) (open contacts)
$2,500 \vee 2 \times 10 \mu \mathrm{~s}$ (Telcordia) (contact and coil)
4. The use of twin crossbar contacts ensures high contact reliability AgPd contact is used because of its good sulfide resistance. Adopting lowgas molding material. Coil assembly molding technology which avoids generating volatile gas from coil.

TYPICAL APPLICATIONS

1. Telephonic equipment
2. Telecommunications equipment
3. Security equipment
4. Test and Measurement equipment
5. Electronic Consumer and Audio Visual equipment

ORDERING INFORMATION

AGN $2 \square 0$	
Contact arrangement 2: 2 Form C	
Operating function 0 : Single side stable 1: 1 coil latching 6: High sensitivity single side stable type	
Type of operation 0: Standard type (B.B.M.)	
Terminal shape Nil: Standard PC board terminal A: Surface-mount terminal A type S: Surface-mount terminal S type	
Nominal coil voltage (DC) 1H: $1.5 \mathrm{~V} \quad 03: 3 \mathrm{~V} \quad 4 \mathrm{H}: 4.5 \mathrm{~V} \quad 06: 6 \mathrm{~V} \quad 09: 9 \mathrm{~V}$ 12: 12V 24: 24 V	
Packing style Nil: Tube packing X: Tape and reel packing (picked from $1 / 2 / 3 / 4$ pin side) Z: Tape and reel packing (picked from 5/6/7/8 pin side)	

TYPES

1. Standard PC board terminal

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No.	Part No.	Part No.
1.5 V DC	AGN2001H	AGN2101H	AGN2601H
3 V DC	AGN20003	AGN21003	AGN26003
4.5 V DC	AGN2004H	AGN2104H	AGN2604H
6 V DC	AGN20006	AGN21006	AGN26006
9 V DC	AGN20009	AGN21009	AGN26009
12 V DC	AGN20012	AGN21012	AGN26012
24 V DC	AGN20024	AGN21024	AGN26024

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2. Surface-mount terminal

1) Tube packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No.	Part No.	Part No.
1.5 V DC	AGN200 $\square 1 \mathrm{H}$	AGN210 $\square 1 \mathrm{H}$	AGN260 $\square 1 \mathrm{H}$
3 V DC	AGN200 $\square 03$	AGN210 $\square 03$	AGN260 $\square 03$
4.5 V DC	AGN200 $\square 4 \mathrm{H}$	AGN210 $\square 4 \mathrm{H}$	AGN260 $\square 4 \mathrm{H}$
6 V DC	AGN200 $\square 06$	AGN210 $\square 06$	AGN260 $\square 06$
9 V DC	AGN200 $\square 09$	AGN210 $\square 09$	AGN260 $\square 09$
12 V DC	AGN200 $\square 12$	AGN210 $\square 12$	AGN260 $\square 12$
24 V DC	AGN200 $\square 24$	AGN210 $\square 24$	AGN260 $\square 24$

\square : For each surface-mounted terminal identification, input the following letter. A type: \underline{A}, S type: \underline{S} Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2) Tape and reel packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No.	Part No.	Part No.
1.5 V DC	AGN200 $\square 1 \mathrm{HZ}$	AGN210 $\square 1 \mathrm{HZ}$	AGN260 $\square 1 \mathrm{HZ}$
3 V DC	AGN200 $\square 03 Z$	AGN210 $\square 03 Z$	AGN260 $\square 03 Z$
4.5 V DC	AGN200 $\square 4 \mathrm{HZ}$	AGN210 $\square 4 \mathrm{HZ}$	AGN260 $\square 4 \mathrm{HZ}$
6 V DC	AGN200 $\square 06 Z$	AGN210 $\square 06 Z$	AGN260 $\square 06 Z$
9 V DC	AGN200 $\square 09 Z$	AGN210 $\square 09 Z$	AGN260 $\square 09 Z$
12 V DC	AGN200 $\square 12 Z$	AGN210 $\square 12 Z$	AGN260 $\square 12 Z$
24 V DC	AGN200 $\square 24 Z$	AGN210 $\square 24 Z$	AGN260 $\square 24 Z$

\square : For each surface-mounted terminal identification, input the following letter. A type: $\underline{A}, \mathrm{~S}$ type: \underline{S}
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1 . Tape and reel packing symbol " Z " is not marked on the relay. " X " type tape and reel packing (picked from $1 / 2 / 3 / 4$-pin side) is also available.
2. Please inquire if you require a relay, between 1.5 and 24 V DC, with a voltage not listed.

RATING

1. Coil data
1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			46.7 mA	64.2Ω		
4.5 V DC			31 mA	145Ω		
6 V DC			23.3 mA	257Ω		
9 VDC			15.5 mA	579Ω		
12 VDC			11.7 mA	1,028 Ω		
24 V DC			9.6 mA	2,504 Ω	230 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24 V DC			5.0 mA	4,800 Ω	120 mW	

*Pulse drive (JIS C 5442-1996)

3) High sensitivity single side stable type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{array} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24 V DC			5.0 mA	4,800 Ω	120 mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1996)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: AgPd+Au clad Movable contact: AgPd
Rating	Nominal switching capacity		1 A 30 V DC, $0.3 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		30 W (DC), 37.5 V A (AC) (resistive load)
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 230 mW (24 V DC)
		High sensitivity single side stable type	100 mW (1.5 to 12 V DC), 120 mW (24 V DC)
		1 coil latching	
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	2,500 V ($2 \times 10 \mu \mathrm{~s}$) (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (1 A 30 V DC resistive), 10^{5} (0.3 A $125 \mathrm{~V} \mathrm{AC} \mathrm{resistive)} \mathrm{(at} 20 \mathrm{cpm}$)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: (Single side stable, 1 coil latching type) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (High sensitivity single side stable type) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1 g .035 oz
Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2 Refer to "AMBIENT ENVIRONMENT" in GENERAL APPLICATION GUIDELINES.			

REFERENCE DATA

1. Max. switching capacity

2. Life curve

3. Mechanical life

Tested sample: AGN2004H, 15 pcs. Operating speed: 180 cpm
4. Electrical life (1A 30V DC resistive load)

Tested sample: AGN2004H, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

6-(1). Operate and release time (without diode)
Tested sample: AGN2004H, 6 pcs.

Change of contact resistance

5. Coil temperature rise

Tested sample: AGN2004H, AGN20024, 6 pcs.
Point measured: Inside the coil
Ambient temperature: Room temperature

7. Ambient temperature characteristics Tested sample: AGN2004H, 6 pcs.

Tested sample: AGN2004H, 6 pcs.

8. Malfunctional shock

Tested sample: AGN2004H

9-(1). Influence of adjacent mounting
Tested sample: AGN20012, 6 pcs.

9-(2). Influence of adjacent mounting Tested sample: AGN20012, 6 pcs.

DIMENSIONS (mm inch)

1. PC board terminal

CAD Data

External dimensions

Standard type

PC board pattern

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

Single side stable
1 coil latching High sensitivity single side stable

(Deenergized condition)

2. Surface-mount terminal

CAD Data

Type	External dimensions	Suggested mounting pad (Tolerance: $\pm 0.1 \pm .004$)
	Single side stable/1 coil latching/High sensitivity single side stable	Single side stable/1 coil latching/High sensitivity single side stable
A type		
S type		

Schematic (Top view)

Single side stable
High sensitivity single side stable

(Deenergized condition)

1 coil latching

(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing
(A type)
(1)-1 Tape dimensions

(S type)
(1)-2 Tape dimensions

(2) Dimensions of plastic peel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the Tomal portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

```
For general cautions for use,
please refer to the "Cautions for
use of Signal Relays" or "General
Application Guidelines".
```

