## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Small size controlled 3.5 A inrush current possible

## GQ RELAYS TH types

## FEATURES

1. Small size controlled 3.5 A inrush current possible
2. 2.4 coil voltage type newly available DC battery operation
3. Flat compact size
$10.6(\mathrm{~L}) \times 7.2(\mathrm{~W}) \times 5.2(\mathrm{H}) \mathrm{mm}$
$.417(\mathrm{~L}) \times .283(\mathrm{~W}) \times .205(\mathrm{H})$ inch

## TYPICAL APPLICATIONS

## 1. Thermostat (HVAC temperature controller)

2. Others, High-capacity control etc.

RoHS compliant

## ORDERING INFORMATION



## TYPES

1. Standard PC board terminal

| Nominal coil voltage | Single side stable | 1 coil latching |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 1.5 V DC | AGQ20T1H | AGQ21T1H |
| 2.4 V DC | AGQ20T2H | AGQ21T2H |
| 3 V DC | AGQ20T03 | AGQ21T03 |
| 4.5 VC | AGQ20T4H | AGQ21T4H |
| 6 V DC | AGQ20T06 | AGQ21T06 |
| 9 V DC | AGQ20T09 | AGQ21T09 |
| 24 V DC | AGQ20T12 | AGQ20T24 |

[^0]
## 2. Surface-mount terminal

1) Tube packing

| Nominal coil voltage | Single side stable | 1 coil latching |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 1.5 V DC | AGQ20T $\square 1 \mathrm{H}$ | AGQ21T $\square 1 \mathrm{H}$ |
| 2.4 V DC | AGQ20T $\square 2 \mathrm{H}$ | AGQ21T $\square 2 \mathrm{H}$ |
| 3 V DC | AGQ20T $\square 03$ | AGQ21T $\square 03$ |
| 4.5 V DC | AGQ20T $\square 4 \mathrm{H}$ | AGQ21T $\square 4 \mathrm{H}$ |
| 6 V DC | AGQ20T $\square 06$ | AGQ21T $\square 06$ |
| 9 V DC | AGQ20T $\square 09$ | AGQ21T $\square 09$ |
| 12 V DC | AGQ20T $\square 12$ | AGQ21T $\square 12$ |
| 24 V DC | AGQ20T $\square 24$ | AGQ21T $\square 24$ |

$\square$ : For each surface-mounted terminal identification, input the following letter. A type: $\underline{A}, \mathrm{~S}$ type: $\underline{S}$
Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

## 2) Tape and reel packing

| Nominal coil voltage | Single side stable | 1 coil latching |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 1.5 V DC | AGQ20T $\square 1 \mathrm{HZ}$ | AGQ21T $\square 1 \mathrm{HZ}$ |
| 2.4 V DC | AGQ20T $\square 2 \mathrm{HZ}$ | AGQ21T $\square 2 \mathrm{HZ}$ |
| 3 V DC | AGQ20T $\square 03 Z$ | AGQ21T $\square 03 Z$ |
| 4.5 V DC | AGQ20T $\square 4 \mathrm{HZ}$ | AGQ21T $\square 4 \mathrm{HZ}$ |
| 6 V DC | AGQ20T $\square 06 Z$ | AGQ21T $\square 06 Z$ |
| 9 V DC | AGQ20T $\square 09 Z$ | AGQ21T $\square 09 Z$ |
| 12 V DC | AGQ20T $\square 12 Z$ | AGQ21T $\square 12 Z$ |
| 24 V DC | AGQ20T $\square 24 Z$ | AGQ21T $\square 24 Z$ |

$\square$ : For each surface-mounted terminal identification, input the following letter. A type: $\underline{A}, S$ type: $\underline{S}$
Standard packing: Tape and reel: 900 pcs.; Case: 1,800 pcs.
Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. " $X$ " type tape and reel packing (picked from $1 / 2 / 3 / 4$-pin side) is also available.
2. Please inquire if you require a relay, between 1.5 and 24 V DC, with a voltage not listed.

## RATING

1. Coil data
1) Single side stable type

| Nominal coil voltage | Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | $\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[ \pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$ | Coil resistance [ $\pm 10 \%$ ] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | Nominal operating power | Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 V DC | $75 \% \mathrm{~V}$ or less of nominal voltage* (Initial) | $10 \% \mathrm{~V}$ or more of nominal voltage* (Initial) | 93.8 mA | $16 \Omega$ | 140 mW | $150 \% \mathrm{~V}$ of nominal voltage |
| 2.4 V DC |  |  | 58.5 mA | $41 \Omega$ |  |  |
| 3 V DC |  |  | 46.7 mA | $64.2 \Omega$ |  |  |
| 4.5 V DC |  |  | 31 mA | $145 \Omega$ |  |  |
| 6 V DC |  |  | 23.3 mA | $257 \Omega$ |  |  |
| 9 V DC |  |  | 15.5 mA | $579 \Omega$ |  |  |
| 12 VDC |  |  | 11.7 mA | 1,028 $\Omega$ |  |  |
| 24 V DC |  |  | 9.6 mA | 2,504 $\Omega$ | 230 mW | $120 \% \mathrm{~V}$ of nominal voltage |

2) 1 coil latching type

| Nominal coil voltage | $\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text { ) } \end{aligned}$ | Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | Nominal operating current $[ \pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | $\begin{gathered} \text { Coil resistance } \\ {[ \pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text { ) }} \end{gathered}$ | Nominal operating power | Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 V DC | $75 \% \mathrm{~V}$ or less of nominal voltage* (Initial) | $75 \% \mathrm{~V}$ or less of nominal voltage* (Initial) | 66.7 mA | $22.5 \Omega$ | 100 mW | $150 \% \mathrm{~V}$ of nominal voltage |
| 2.4 V DC |  |  | 41.7 mA | $57.6 \Omega$ |  |  |
| 3 V DC |  |  | 33.3 mA | $90 \Omega$ |  |  |
| 4.5 V DC |  |  | 22.2 mA | $202.5 \Omega$ |  |  |
| 6 V DC |  |  | 16.7 mA | 360 ת |  |  |
| 9 VDC |  |  | 11.1 mA | $810 \Omega$ |  |  |
| 12 VDC |  |  | 8.3 mA | 1,440 $\Omega$ |  |  |
| 24 V DC |  |  | 5.0 mA | $4,800 \Omega$ | 120 mW |  |

*Pulse drive (JIS C 5442-1996)

## 2. Specifications

| Characteristics | Item |  | Specifications |
| :---: | :---: | :---: | :---: |
| Contact | Arrangement |  | 2 Form C |
|  | Contact resistance (Initial) |  | Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A) |
|  | Contact material |  | $\mathrm{AgNi}+$ Au plating |
| Rating | Nominal switching capacity (resistive) |  | 2 A 30 V DC, 1 A 30 V DC, 0.3 A 125 V AC |
|  | Max. switching power (resistive) |  | 60 W (DC), 30 W (DC), 37.5 V A (AC) |
|  | Max. switching voltage |  | 110 V DC, 125 V AC |
|  | Max. switching current |  | 2 A (AC, DC) |
|  | Min. switching capacity (Reference value)*1 |  | $10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC |
|  | Nominal operating power | Single side stable | 140 mW (1.5 to 12 V DC), 230 mW ( 24 V DC) |
|  |  | 1 coil latching | 100 mW (1.5 to 12 V DC), 120 mW ( 24 V DC) |
| Electrical characteristics | Insulation resistance (Initial) |  | Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measured portion is the same as the case of dielectric voltage |
|  | Breakdown voltage (Initial) | Between open contacts | 750 Vrms for 1 min . (Detection current: 10 mA ) |
|  |  | Between contact and coil | 1,500 Vrms for 1 min . (Detection current: 10 mA ) |
|  |  | Between contact sets | $1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA ) |
|  | Surge breakdown voltage (Initial) | Between open contacts | 1,500 V ( $10 \times 160 \mu \mathrm{~s}$ ) (FCC Part 68) |
|  |  | Between contact and coil | 2,500 V ( $2 \times 10 \mu \mathrm{~s}$ ) (Telcordia) |
|  | Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) |  | Max. $50^{\circ} \mathrm{C}$ <br> (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A) |
|  | Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) (Initial) |  | Max. 4 ms [Max. 4 ms ] (Nominal coil voltage applied to the coil, excluding contact bounce time.) |
|  | Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) (Initial) |  | Max. 4 ms [Max. 4 ms ( Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode) |
| Mechanical characteristics | Shock resistance | Functional | Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (half -sine shock pulse: 6 ms ; detection time: $10 \mu \mathrm{~s}$.) |
|  |  | Destructive | Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (half -sine shock pulse: 6 ms .) |
|  | Vibration resistance | Functional | 10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10 ss .) |
|  |  | Destructive | 10 to 55 Hz at double amplitude of 5.0 mm |
| Expected life | Mechanical |  | Min. $5 \times 10^{7}$ (at 180 cpm ) |
|  | Electrical |  | Min. $1 \times 10^{5}$ ( 1 A 30 V DC resistive) <br> Min. $1 \times 10^{5}(3.5 \mathrm{~A}$ inrush ( 250 ms )/1A 30V AC ( $\cos \phi=0.4)$ ) (ON/OFF=1s/9s) |
| Conditions | Conditions for operation, transport and storage*2 |  | Ambient temperature: <br> (Single side stable, 1 coil latching type) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ <br> Humidity: 5 to $85 \%$ R.H. (Not freezing and condensing at low temperature) |
|  | Max. operating speed (at rated load) |  | 20 cpm |
| Unit weight |  |  | Approx. 1.0 g .035 oz |
| Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. <br> *2 Refer to "AMBIENT ENVIRONMENT" in GENERAL APPLICATION GUIDELINES. |  |  |  |

## REFERENCE DATA

1. Electrical life ( $1 \times 10^{5}$ operation is possible)

Tested sample: AGQ21TA03, 6 pcs.
Switching frequency: ON:OFF = 1s:9s
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$
Circuit


## *Precaution

When using at 3.5 A , connection of NO (pin \#5 and \#8) and COM (pin \#4 and \#9) in the circuit is required.

Condition: 30V AC
Inrush current: 3.5 A (effective value), Inrush time 250 ms
steady current: 1.0A (effective value),
(Inductive load $\cos \phi=0.4$ )


Pin layout and schematic (Bottom View) 1 coil latching


## 1. PC board terminal

## CAD Data



External dimensions


PC board pattern


Schematic (Bottom view) Single side stable 1 coil latching High sensitivity single side stable

(Deenergized condition)


## 2. Surface-mount terminal

CAD Data

| Type | External dimensions |  | Suggested mounting pad (Tolerance: $\pm 0.1 \pm .004$ ) |
| :---: | :---: | :---: | :---: |
|  | Single side stable/1 coil latching/L | High sensitivity single side stable | Single side stable/1 coil latching/High sensitivity single side stable |
| A type |  |  |  |
| S type |  |  |  |

## Schematic (Top view)

Single side stable
High sensitivity single side stable

(Deenergized condition)

1 coil latcing

(Reset condition)

## NOTES

## 1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.


Orientation (indicates PIN No.1) stripe

2) Tape and reel packing
(A type)
(1)-1 Tape dimensions


Tape coming out direction
General tolerance $\pm 0.1 \mathrm{~mm} .004$ inch
(S type)
(1)-2 Tape dimensions

(2) Dimensions of plastic peel
mm inch


## 2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less


Please chuck the سWald portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be also avoided.

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

Electromechanical Control Business Division
■ 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/


[^0]:    Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

