imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

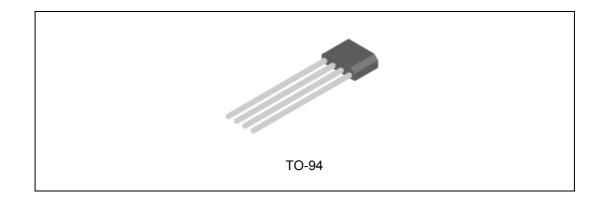
AH211

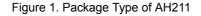
TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

General Description

The AH211 is an integrated Hall sensor with output driver and frequency generator designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall sensor for magnetic sensing, an amplifier that amplifies the Hall voltage, a Schmitt trigger to provide switching hysteresis for noise rejection, a temperature compensation circuit to compensate the temperature drift of Hall sensitivity, two complementary open-collector drivers for sinking large load current. It also includes an internal band-gap regulator which is used to provide bias voltage for internal circuits.

Place the device in a variable magnetic field, while the magnetic flux density is larger than threshold BOP, DO will be turned on (low) and DOB (and FG) will be turned off (high). This output state is held till the magnetic flux density reversal falls below BRP causing DO to be turned off (high) and DOB (and FG) turned on (low).


AH211 is available in TO-94 (SIP-4L) package.


Features

- On-Chip Hall Sensor
- 3.5V to 16V Supply Voltage
- 400mA (avg) Output Sink Current
- -20°C to 85°C Operating Temperature
- Built-in FG Output
- Low Profile TO-94 (SIP-4L) Package
- ESD Rating: 600V (Machine Model)

Applications

- Dual-Coil Brushless DC Motor
- Dual-Coil Brushless DC Fan
- Revolution Counting
- Speed Measurement

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

Pin Configuration

Z4 Package (TO-94)

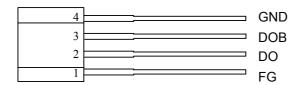


Figure 2. Pin Configuration of AH211 (Front View)

Pin Description

Pin Number	Pin Name	Function
1	FG	Frequency Generation
2	DO	Output 1
3	DOB	Output 2
4	GND	Ground

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

Functional Block Diagram

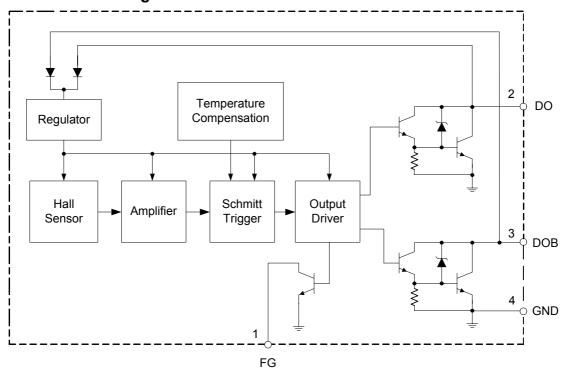
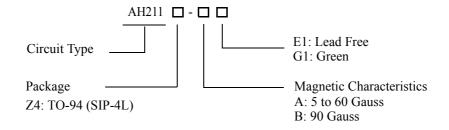



Figure 3. Functional Block Diagram of AH211

Ordering Information

Package Temperature		Part Number		Marki	Packing	
I ackage	Range	Lead Free	Green	Lead Free	Green	Туре
TO-94	94 -20 to 85 °C	AH211Z4-AE1	AH211Z4-AG1	AH211	AH211Z4-G1	Bulk
-20 10 85 °C	-20 10 85 °C	AH211Z4-BE1	AH211Z4-BG1	AH211	AH211Z4-G1	Bulk

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green package.

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

Absolute Maximum Ratings (Note 1)

(T_A=25°C)

Parameter	Symbol	Value	Unit	
Supply Voltage		V _{CC}	20	V
Magnetic Flux Density		В	Unlimited	Gauss
	Continuous		400	mA
Output Current	Hold	IO	600	mA
	Peak (Start up)		800	mA
FG Voltage		V _{FG}	30	V
FG Current		I _{FG}	20	mA
Power Dissipation		P _D	550	mW
Thermal Resistance	Die to Atmosphere	θ_{JA}	227	°C/W
Thermal Resistance	Die to Package Case	θ_{JC}	49	°C/W
Storage Temperature		T _{STG}	-50 to 150	°C
ESD (Machine Model)			600	V
ESD (Human Body Model)			6000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. "Absolute Maximum Ratings" for extended period may affect device reliability.

Recommended Operating Conditions

(T_A=25°C)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	3.5	16	V
Ambient Temperature	T _A	-20	85	°C

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

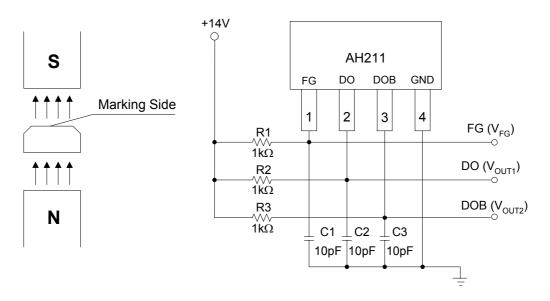
Electrical Characteristics

 $(T_A=25^{\circ}C, V_{CC}=14V, unless otherwise specified)$

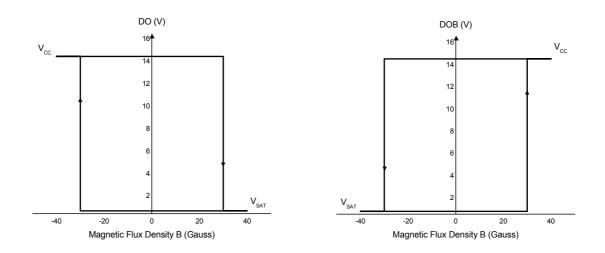
Parameter	Symbol	Test Condition	Min	Min Typ		Unit
Output Saturation Voltage	V _{SAT}	$\begin{array}{l} B{>}150Gauss, V_{CC}{=}3.5V, \\ V_{DOB}{=}V_{CC}, I_{DO}{=}100mA \\ (or B{<}{-}150Gauss, V_{CC}{=}3.5V, \\ V_{DO}{=}V_{CC}, I_{DOB}{=}100mA) \end{array}$		1.1		V
output Saturation voltage		$\begin{array}{l} B{>}150Gauss,\\ V_{DOB}{=}V_{CC},\ I_{DO}{=}400mA\\ (or\ B{<}150Gauss,\ V_{DO}{=}V_{CC},\\ I_{DOB}{=}400mA) \end{array}$		1.05	1.3	V
FG Saturation Voltage	V _{SATF}	B<-150Gauss, $V_{DO}=V_{CC}$, I _{FG} =20mA		0.35	0.6	V
FG Leakage Current	I _{OLF}	B>150Gauss, $V_{DOB}=V_{CC}$, $V_{FG}=16V$		0.1	10	μΑ
Supply Current	I _{CC}	$\begin{array}{l} B > 150 Gauss, V_{DOB} = V_{CC}, \\ (or \ B < -150 Gauss, V_{DO} = V_{CC}) \end{array}$		4	8	mA
Output Rise Time	tr	$R_L=1k\Omega, C_L=10pF$		3.0	10	μs
Output Fall Time	tf	$R_L=1k\Omega, C_L=10pF$		0.3	1.0	μs
Switch Time Differential	Δt	$R_L=1k\Omega, C_L=10pF$		3.0	10	μs
Output Zener Breakdown Voltage	VZ			31		V

Magnetic Characteristics

 $(T_A=25^{o}C)$


Parameter	Symbol	Grade	Min	Тур	Max	Unit
Operating Point	B _{OP}	А	5	30	60	Gauss
		В			90	Gauss
Releasing Point	B _{RP}	А	-60	-30	-5	Gauss
		В	-90			Gauss
Hysteresis	B _{HYS}			60		Gauss




TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

Magnetic Characteristics (Continued)

Feb. 2010 Rev. 1. 7

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

Typical Performance Characteristics

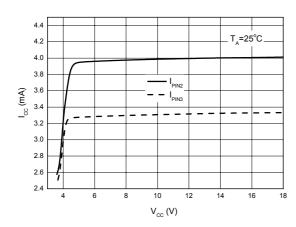


Figure 7. I_{CC} vs. V_{CC}

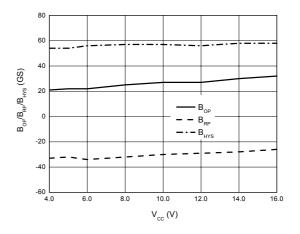


Figure 8. $B_{OP}/B_{RP}/B_{HYS}$ vs. V_{CC}

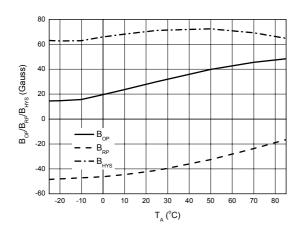


Figure 9. $B_{OP}/B_{RP}/B_{HYS}$ vs. Ambient Temperature

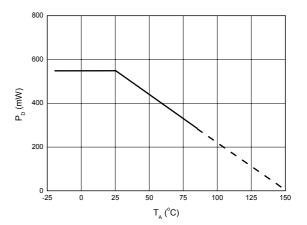


Figure 10. P_D vs. Ambient Temperature

Feb. 2010 Rev. 1. 7

V_{cc}=14V

 V_{PIN2}

 $V_{_{\rm PIN3}}$

40

I_{OUT}=400mA

60

80

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

1100

1050

1000

950

900 ∟ -40

-20

 $V_{\rm SAT}$ (mV)

AH211

Typical Performance Characteristics (Continued)



Figure 11. Supply Current vs. Ambient Temperature

Figure 12. V_{SAT} vs. Ambient Temperature

20

 $T_A (^{\circ}C)$

0

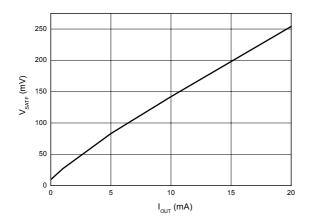


Figure 13. FG Saturation Voltage vs. Output Current

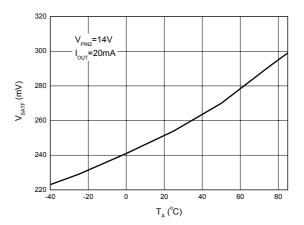


Figure 14. FG Saturation Voltage vs. Ambient Temperature

Feb. 2010 Rev. 1. 7

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

Application Information

Figure 15 is the typical application circuit for AH211. Usually, there are three wires for fan connection: the red is input of power supply; the yellow is the output of FG; the black is the ground. R1 is an external pull-up resister for the use of measuring FG signal from fan. The value of R1 could be decided by the transistor saturation voltage (V_{ON}), sink current (I_{FG}), and pull-up voltage (V_{DD}). The calculation formula is:

 $R1 = (V_{DD} - V_{ON}) / I_{FG}$

For example: V_{DD} =5V for TTL level. If saturation voltage is 0.6V (IC specification) I_{FG} =20mA (\leq 20mA), then R1=220 Ω ;

If saturation voltage is 0.1V, $I_{FG}{=}1mA~({=}{<}20mA)$, the value of R1=4.9k Ω

According AH211's specification, if V_{DD} =5V, R1 must be larger than 220 Ω

D1 is the reverse protection diode. If the red and black wires reversely connected, the current will flow from the ground via IC and coils L1 and L2 to power supply. Under such circumstances, the IC and coils are easy to be burned out. Therefore, the reverse protection diode D1 is necessary. However, D1 will also cause an extra voltage drop on the supply voltage.

C1 is a capacitor to reduce the ripple noise caused by the transient of the output stages. The amplitude of the ripple noise depends on the coil impedance and its characteristics.

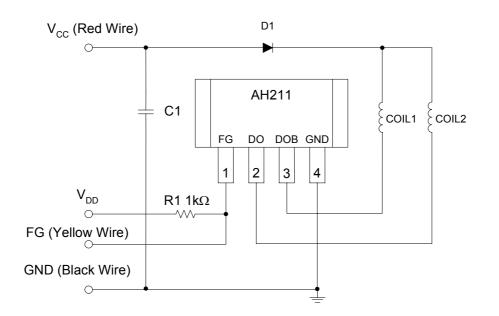


Figure 15. AH211 Typical Application Circuit

Feb. 2010 Rev. 1. 7

Unit: mm(inch)

TWO PHASE HALL EFFECT LATCH WITH FG OUTPUT

AH211

Mechanical Dimensions

 45° TYP 3.780(0.149) 0.500(0.020) 0.700(0.028) 4.080(0.161) 1.520(0.059) 1.720(0.067) 4.980(0.196) 0.360(0.014) 5.280(0.208) 0.510(0.020) 0.700(0.028) 0.900(0.035) 1.850(0.073) 1.250(0.050) 3.450(0.136) 0.380(0.015) 3.750(0.148) Package Sensor Location I 0.360(0.014) 0.500(0.020) <u>14.000(0.550)</u> 15.300(0.602) 1.270(0.050) TYP 3.710(0.146) 3.910(0.154)

TO-94

Feb. 2010 Rev. 1. 7

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan Tel: +886-2-2656 2808

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel : +1-510-324-2988 Fax: +1-510-324-2788