imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AH3769Q

HIGH-VOLTAGE, LOW-SENSITIVITY AUTOMOTIVE HALL-EFFECT LATCH

Description

The AH3769Q is an AEC-Q100 qualified high-voltage, low-sensitivity Hall-Effect latch IC designed for brushless DC-motor commutation, speed measurement, angular or linear encoders and position sensors in automotive applications. To support a wide range of demanding applications, the design is optimized to operate over the supply range of 3.0V to 28V. With chopper stabilized architecture and an internal bandgap regulator to provide temperature compensated supply for internal circuits, the AH3769Q provides a reliable solution over the whole operating range. For robustness and protection, the device has a reverse blocking diode with a Zener clamp on the supply. The output has an over current limit and a Zener clamp.

The single, open-drain output can be switched on with South pole of sufficient strength and switched off with North pole of sufficient strength. When the magnetic flux density (B) perpendicular to the package is larger than the operate point (B_{op}) the output is switched on (pulled low). The output is held latched until magnetic flux density reverses and becomes lower than the release point (B_{rp}).

Features

- Bipolar Latch Operation (South Pole: On, North Pole: off)
- High Sensitivity: B_{op} and B_{rp} of +220G and -220G Typical
- Single, Open-Drain Output with Overcurrent Limit
- 3.0V to 28V Operating Voltage Range
- Chopper Stabilized Design Provides
 - Superior Temperature Stability
 - Minimal Switch Point Drift
 - Enhanced Immunity to Stress
- Good RF Noise Immunity
- Reverse Blocking Diode
- · Zener Clamp on Supply and Output Pins
- -40°C to +150°C Operating Temperature
- ESD: HBM >8kV, CDM: >2kV
- AEC-Q100 Grade 0 Qualified

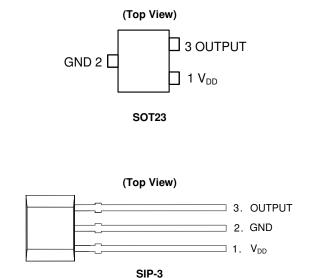
and Lead-free.

• Industry Standard SOT23 and SIP-3 Packages

<1000ppm antimony compounds.

Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.


Halogen and Antimony Free. "Green" Device (Note 3)

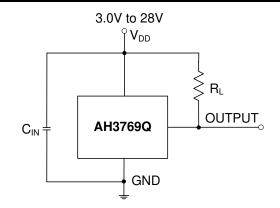
Notes:

Position Sensing/Indexing in Automotive Applications

ity

Pin Assignments

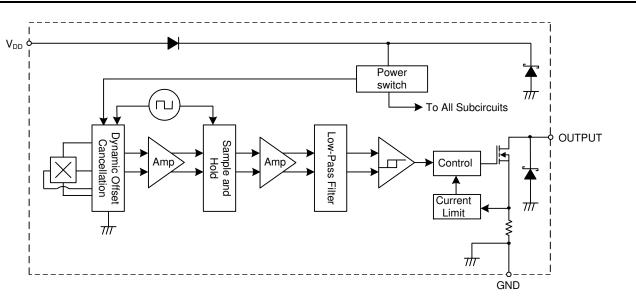
Applications


- Brushless DC-Motor Commutation
- · Revolution Per Minute (RPM) Measurement
- · Angular and Linear Encoder and Position Sensing and Indexing
- Flow Meters
- Contactless Commutation, Speed Measurement and Angular Position Sensing/Indexing in Automotive Applications

2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green"

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and

Typical Applications Circuit


Note: 4. C_{IN} is for power stabilization and to strengthen the noise immunity, the recommended capacitance is 10nF ~ 100nF. R_L is the pull-up resistor.

Pin Descriptions

Package: SOT23 and SIP-3

Pin Number	Pin Name	Function
1	V _{DD}	Power Supply Input
2	GND	Ground
3	OUTPUT	Output Pin

Functional Block Diagram

Absolute Maximum Ratings (Notes 5 & 6) (@T_A = +25°C, unless otherwise specified.)

Symbol	Characteristic		Value	Unit	
V _{DD}	Supply Voltage (Note 6)		32	V	
V _{DDR}	Reverse Supply Voltage (Note 6)	-32	V		
V _{OUT_MAX}	Output Off Voltage (Note 6)		32	V	
I _{OUT}	Continuous Output Current		60	mA	
I _{OUT_R}	Reverse Output Current	-50	mA		
В	Magnetic Flux Density	Unlimited	•		
D-	Package Power Dissipation	SIP-3	550	mW	
PD	Fackage Fower Dissipation	SOT23	230		
Ts	Storage Temperature Range		-65 to +165	°C	
TJ	Maximum Junction Temperature	+150	°C		
ESD HBM	Electros Static Discharge Withstand - Human Body Model (HMI	8	kV		
ESD MM	Electros Static Discharge Withstand - Machine Model (MM)	800	V		
ESD CDM	Electros Static Discharge Withstand - Charged Device Model (C	CDM)	2	kV	

Notes: 5. Stresses greater than the 'Absolute Maximum Ratings' specified above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.

6. The absolute maximum V_{DD} of 32V is a transient stress rating and is not meant as a functional operating condition. It is not recommended to operate the device at the absolute maximum rated conditions for any period of time.

Recommended Operating Conditions (@T_A = -40°C to +150°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit
V _{DD}	Supply Voltage	Operating	3.0 to 28	V
TA	Operating Temperature Range	Operating	-40 to +150	°C

Electrical Characteristics (Notes 7 & 8) (@TA = -40°C to +150°C, VDD = 3V to 28V, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vout_on	Output On Voltage	$I_{OUT} = 20 \text{mA}, \text{B} > \text{B}_{op}$	-	0.2	0.4	V
I _{LKG}	Output Leakage Current (when output is off)	$V_{OUT} = 28V, B < B_{rp}, Output off$	-	<0.1	10	μA
I _{DD}	Supply Current	Output open, T _A = +25°C	-	3	3.5	mA
		Output open, T _A = -40°C to +150°C	-	-	4	mA
		$V_{DD} = -18V, T_A = +25^{\circ}C$	-	0.6	-	μΑ
	Reverse Supply Current	V _{DD} = -18V, T _A = -40°C to +150°C	-	0.6	1,500	μΑ
IDD_R	neverse Supply Current	V _{DD} = -28V, T _A = +25°C	-	1.6	-	μΑ
		$V_{DD} = -28V, T_A = -40^{\circ}C \text{ to } +150^{\circ}C$	-	1.6	2,500	μΑ
tp on	Device Power-On Time (start-up time)	$V_{DD} \ge 3V, B \ge B_{op}$ (Note 7)	-	10		μs
f _c	Chopping Frequency	$V_{DD} \ge 3V$	-	800	-	kHz
t _d	Response Time Delay (time from magnetic threshold reached to the start of the output rise or fall)	(Note 9)	-	3.75	-	μs
tr	Output Rising Time (external pull-up resistor R∟ and load capacitance dependent)	$R_L = 1k\Omega, C_L = 20pF$	-	0.2	1	μs
t _f	Output Falling Time (Internal switch resistance and load capacitance dependent)	$R_L = 1k\Omega, C_L = 20pF$	-	0.1	1	μs
IOCL	Output Current Limit	B > B _{op} , (Note 10)	30	-	55	mA
Vz	Zener Clamp Voltage	$I_{DD} = 5 m A$	28	-	-	V

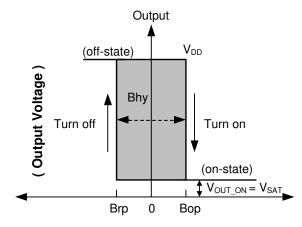
Notes:

7. When power is initially turned on, Vob must be within its correct operating range (3.0V to 28V) to guarantee the output sampling. The output state is valid after the start-up time of 10µs typical from the operating voltage reaching 3V.

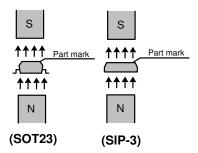
8. Typical values are defined at T_A = +25°C, V_{DD} = 12V. Maximum and minimum values over the operating temperature range is not tested in production but guaranteed by design, process control and characterization.

9. Guaranteed by design, process control and characterization. Not tested in production.

10. The device will limit the output current IOUT to current limit of IOCL.



Magnetic Characteristics (Notes 11 & 12) (T_A = -40°C to +150°C, V_{DD} = 3.0V to 28V, unless otherwise specified.)


				(1mT=10 0	Gauss)
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Bops (South pole to part marking side for	Operation Point	$V_{DD} = 12V, T_A = +25^{\circ}C$	-	220	-	
SOT23 and SIP-3 packages)	Operation Foint	$T_A = -40^{\circ}C \text{ to } +150^{\circ}C$	170	220	250	
Brps (North pole to part marking side for	Release Point	$V_{DD} = 12V, T_A = +25^{\circ}C$	-	-220	-	Gauss
SOT23 and SIP-3 packages)	nelease roint	$T_A = -40^{\circ}C \text{ to } +150^{\circ}C$	-250	-220	-170	Gauss
	Hysteresis (Note 13)	$V_{DD} = 12V, T_A = +25^{\circ}C$	-	340	-	
B _{hy} (B _{opx} - B _{rpx})	Tysteresis (Note 13)	$T_{A} = -40^{\circ}C \text{ to } +150^{\circ}C$	340	440	500	

Notes: 11. When power is initially turned on, VDD must be within its correct operating range (3.0V to 28V) to guarantee the output sampling. The output state is valid after the start-up time of 10µs typical from the operating voltage reaching 3V.

12. Typical values are defined at T_A = +25°C, V_{DD} = 12V. Maximum and minimum values over the operating temperature range is not tested in production but guaranteed by design, process control and characterization. 13. Maximum and minimum hysteresis is guaranteed by design, process control and characterization.

Brp

Brp

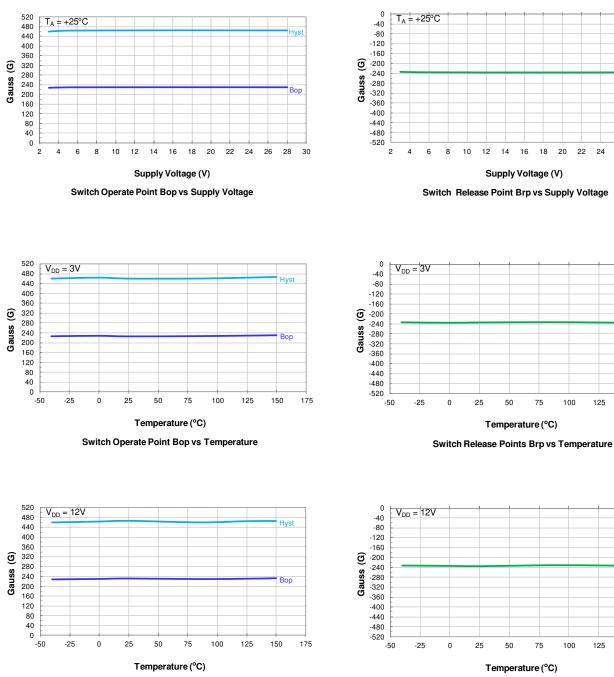
150

Brp

150

125

175

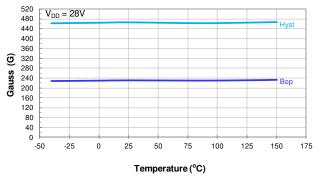

175

125

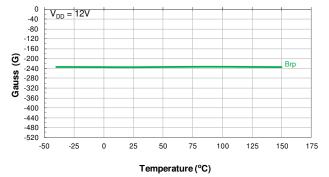
22 24 26 28 30

Typical Operating Characteristics

Output Switch Operate and Release Points (Magnetic Thresholds) – Bop and Brp

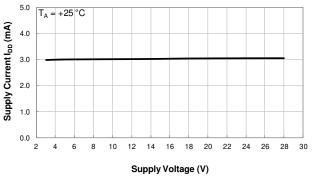

Switch Operate Point Bop vs Temperature

Switch Release Points Brp vs Temperature

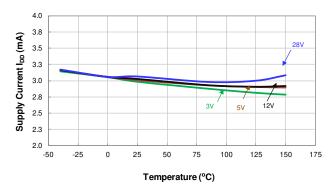


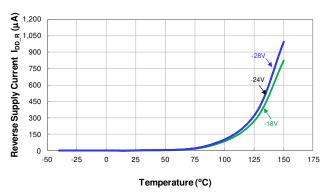
Typical Operating Characteristics

Output Switch Operate and Release Points (Magnetic Thresholds) - Bop and Brp (cont.)

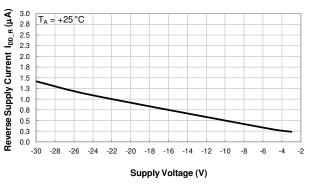


Switch Operate Point Bop vs Temperature




Supply Current

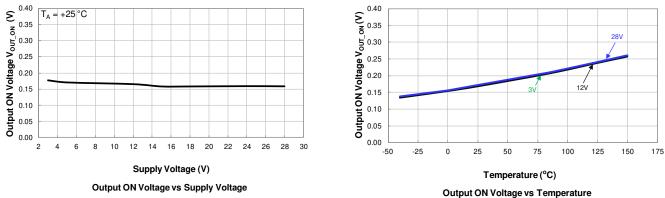
Supply Current vs Supply Voltage



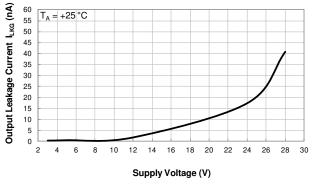
Supply Current vs Temperature

Reverse Supply Current vs Temperature

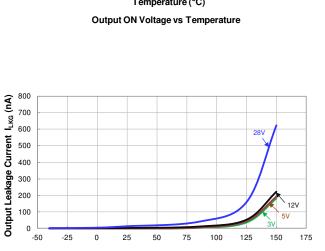
Reverse Supply Current

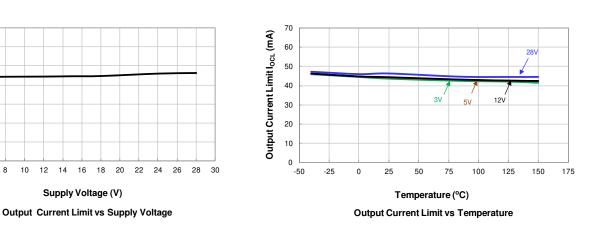


Reverse Supply Current vs Supply Voltage



Typical Operating Characteristics (cont.)


Output Switch On Voltage


Output Switch Leakage Current

Output Leakage Current vs Supply Voltage

Temperature (°C) **Output Leakage Current vs Temperature**

Output Current Limit

 $T_A = +25 \degree C$

70

60

50

40

30

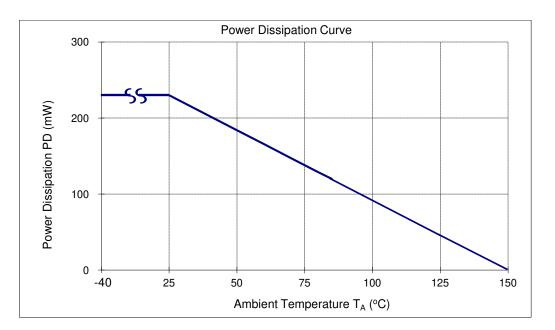
20

10

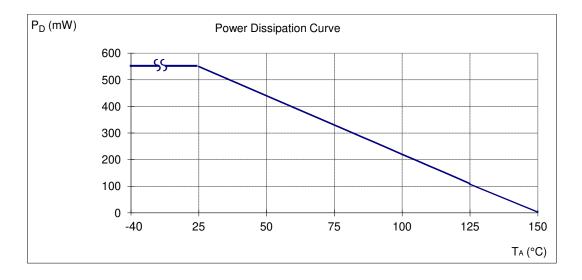
0

2 4 6 8

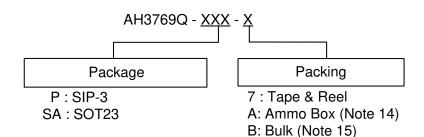
Output Current Limit I_{ocL} (mA)


10 12

Thermal Performance Characteristics

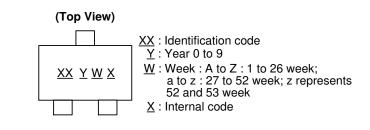

(1) Package type: SOT23

T _A (°C)	25	50	60	70	80	85	90	100	105	110	120	125	130	140	150
P _D (mW)	230	184	166	147	129	120	110	92	83	74	55	46	37	18	0


(2) Package type: SIP-3

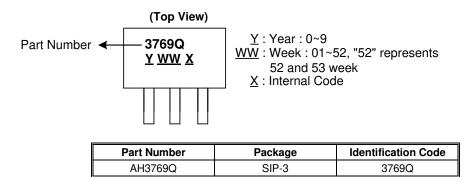
T _A (°C)	25	50	60	70	80	85	90	100	105	110	120	125	130	140	150
P _D (mW)	550	440	396	362	308	286	264	220	198	176	132	110	88	44	0

Ordering Information



	Dookogo	Package		Bulk		d Reel	Ammo Box		
Part Number	Code	Packaging	Quantity	Part Number Suffix	Quantity	Part Number Suffix	Quantity	Part Number Suffix	
AH3769Q-P-A	Р	SIP-3	NA	NA	NA	NA	4,000/Box	-A	
AH3769Q-P-B	Р	SIP-3	1,000	-B	NA	NA	NA	NA	
AH3769Q-SA-7	SA	SOT23	NA	NA	3,000/Tape & Reel	-7	NA	NA	

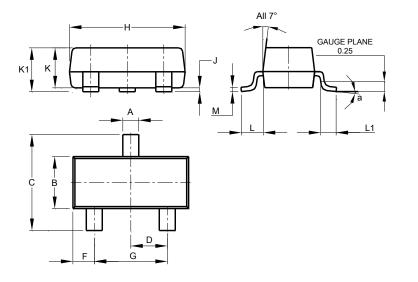
Notes: 14. Ammo Box is for SIP-3 Spread Lead. 15. Bulk is for SIP-3 Straight Lead.


Marking Information

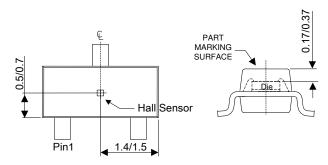
(1) Package Type: SOT23

Part Number	Package	Identification Code		
AH3769Q	SOT23	WU		

(2) Package Type: SIP-3



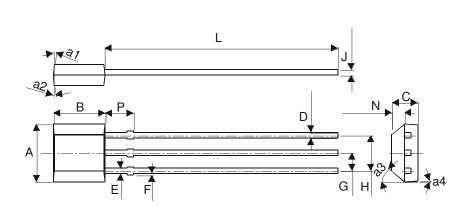
Package Outline Dimensions (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

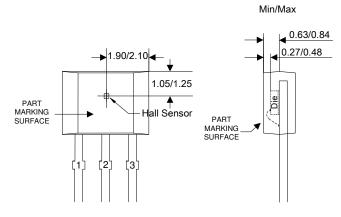
(1) Package Type: SOT23

	SO	T23	
Dim	Min	Max	Тур
Α	0.37	0.51	0.40
В	1.20	1.40	1.30
С	2.30	2.50	2.40
D	0.89	1.03	0.915
F	0.45	0.60	0.535
G	1.78	2.05	1.83
н	2.80	3.00	2.90
J	0.013	0.10	0.05
К	0.890	1.00	0.975
K1	0.903	1.10	1.025
L	0.45	0.61	0.55
L1	0.25	0.55	0.40
М	0.085	0.150	0.110
а		8°	
All	Dimens	ions in	mm

Sensor Location - To be updated



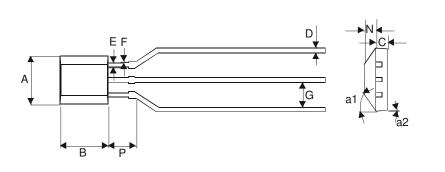
Package Outline Dimensions (cont.) (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

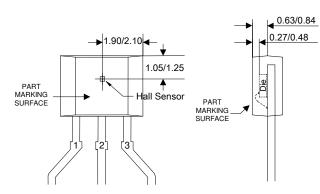
(2) Package Type: SIP-3 Bulk

Sensor location to be added

	SIP-3 (Bu	lk)
Dim	Min	Max
Α	3.9	4.3
a1	5°	Тур
a2	5°	Тур
a3	45°	' Тур
a4	3°	Тур
В	2.8	3.2
С	1.40	1.60
D	0.33	0.432
E	0.40	0.508
F	0	0.2
G	1.24	1.30
H	2.51	2.57
J	0.35	0.43
L	14.0	15.0
N	0.63	0.84
Р	1.55	-
All Di	mension	s in mm

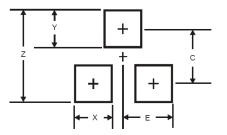

Sensor Location - To be updated

Package Outline Dimensions (cont.) (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

(3) Package Type: SIP-3 Ammo Pack

SIP-	3 (Amm	o Pack)
Dim	Min	Max
Α	3.9	4.3
a1	4	5° Typ
a2	3	° Тур
В	2.8	3.2
С	1.40	1.60
D	0.35	0.41
ш	0.43	0.48
F	0	0.2
G	2.4	2.9
Ν	0.63	0.84
Р	1.55	-
All Di	mensio	ns in mm



Sensor Location - To be updated

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

(1) Package Type: SOT23

Dimensions	Value (in mm)
Z	2.9
Х	0.8
Y	0.9
С	2.0
E	1.35

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2015, Diodes Incorporated

www.diodes.com