: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China
[AK1544]

AsahiKASEI
 ASAHI KASEI MICRODEVICES

1. Overview

Consisting a highly accurate charge pump that supports current adjustment in 9 steps, a reference divider, a programmable divider and a dual-modulus prescaler ($\mathrm{P} / \mathrm{P}+1$), the AK1544 provides high performance, low consumption current and small footprint for a wide range of frequency conversions. This synthesizer also has two general-purpose output pins which allow it to be used to control the RF front end.

An ideal Phase Locked Loop (PLL) can be achieved by combining the AK1544 with the external loop filter and VCO (Voltage Controlled Oscillator). Access to the registers is controlled via a 3-wire serial interface. The operating supply voltage is from 2.7 V to 5.5 V ; and the supply voltage for the charge pump and that for the serial interface can be driven separately.

		2. Features
\square	Operating frequency:	400 to 1300MHz
\square	Programmable charge pump current:	160 to $2530 \mu \mathrm{~A}$ typical The charge pump current can be changed in 9 steps, and the current range can be adjusted by the external resistance. Two current settings can be specified with the register and switched over from one to another using the timer.
\square	Supply Voltage:	2.7 to 5.5 V (PVDD pin)
\square	Separate power supply for the charge pump:	PVDD to 5.5V (CPVDD pin)
\square	On-chip power-saving features	
\square	On-chip lock detection feature of PLL:	Direct output to the PFD (Phase frequency detector) or digital filtering output can be selected.
\square	General-purpose output:	It has two general-purpose output ports to control peripheral parts.
\square	Very low consumption current:	2.8 mA typical
\square	Package:	24 pin QFN (0.5 mm pitch, $4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.7 \mathrm{~mm}$)
\square	Operating temperature:	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Table of Contents

1. Overview 1
2. Features 1
3. Block Diagram 3
4. Pin Functional Description 4
5. Absolute Maximum Ratings 6
6. Recommended Operating Range 6
7. Electrical Characteristics 7
8. Block Functional Descriptions 11
9. Register Map 18
10. Register Function Description 20
11. IC Interface Schematic 27
12. Recommended Schematic for Off-Chip Component 29
13. Power-up Sequence 31
14. Typical Evaluation Board Schematic 33
15. Block Diagram by Power Supply 34
16. Outer Dimensions 35
17. Marking 36

In this specification (draft version), the following notations are used for specific signal and register names:
[Name]: Pin name
<Name>: Register group name (Address name)
\{Name\}: Register bit name

3. Block Diagram

Fig. 1 Block Diagram
[AK1544]

4. Pin Functional Description

Table 1 Pin Functions

No.	Name	I/O	Pin Functions	Power down	Remarks
1	CPVDD	P	Power supply for charge pump		
2	TEST3	DI	Test pin 3		Internal pull-down, Schmidt trigger input
3	TEST1	DI	Test pin 1		Internal pull-down, Schmidt trigger input
4	LE	DI	Load Enable		Schmidt trigger input
5	DATA	DI	Serial data input		Schmidt trigger input
6	CLK	DI	Serial clock		Schmidt trigger input
7	LD	DO	Lock detect	"Low"	
8	PDN2	DI	Power down pin for PLL		Schmidt trigger input
9	PDN1	DI	Power down signal for VREF \& LDO		Schmidt trigger input
10	REFIN	AI	Reference input		
11	TEST2	DI	Test pin 2		Internal pull-down, Schmidt trigger input
12	GPO1	DO	General-purpose output pin 1	"Low"	
13	GPO2	DO	General-purpose output pin 2	"Low"	
14	DVSS	G	Digital ground pin		
15	VREF	AIO	Connect to LDO reference voltage capacitor	"Low"	
16	RFINN	AI	Prescaler input		
17	RFINP	AI	Prescaler input		
18	PVDD	P	Power supply for peripherals		
19	BIAS	AIO	Resistance pin for setting charge pump current		
20	PVSS	G	Ground pin for peripherals		
21	CP	AO	Charge pump output	"Hi-Z"	
22	CPZ	AIO	Connect to the loop filter capacitor		Notes 1) \& 2)
23	SWIN	AI	Connect to resistance pin for fast lockup		Notes 1) \& 2)
24	CPVSS	G	Ground pin for charge pump power supply		

Note 1) For detailed functional descriptions, see the section "Charge Pump and Loop Filter" in "8. Block Functional Description" below.

Note 2) The input voltage from the [CPZ] pin is used in the internal circuit. The [CPZ] pin must not be open even when the fast lockup feature is unused. For the output destination from the [CPZ] pin, see "P. 12 Fig. 5 Loop Filter Schematic". The [SWIN] pin could be open even when the first lockup feature is not used.

Note 3) The switch for Loop Filter setting is ON when "PDN1=0, PDN2=0" or "PDN1=1, PDN2=".
Note 4) Power down refers to the state where [PDN1]=[PDN2]="Low" after power-on.

AI: Analog input pin	AO: Analog output pin	AIO: Analog I/O pin	DI: Digital input pin
DO: igital output pin	P: Power supply pin	G: Ground pin	

Fig. 2 Package Pin Layout

5. Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	VDD1	-0.3	6.5	V	Note 1) Applied to [PVDD] pin
	VDD2	-0.3	6.5	V	Note 1) Applied to [CPVDD] pin
	VSS1	0	0	V	Voltage ground level applied to [PVSS] pin
	VSS2	0	0	V	Voltage ground level applied to [CPVSS] pin
	VSS3	0	0	V	Voltage ground level applied to [DVSS] pin
Analog Input Voltage	VAIN1	VSS1-0.3	VDD1+0.3	V	Notes 1), 2) \& 5)
	VAIN2	VSS2-0.3	VDD2+0.3	V	Notes 1), 3) \& 5)
	VDIN	VSS3-0.3	VDD1+0.3	V	Notes 1), 4) \& 5)
Input Current	IIN	-10	10	mA	
Storage Temperature	Tstg	-55	125	${ }^{\circ} \mathrm{C}$	

Note 1) $\quad 0 V$ reference for all voltages.
Note 2) Applied to the [REFIN], [RFINN] and [RFINP] pins.
Note 3) Applied to the [CPZ] and [SWIN] pins.
Note 4) Applied to the[CLK], [DATA], [LE], [PDN1], [PDN2], [TEST1], [TEST2] and [TEST3] pins.
Note 5) The maximum Voltage must not be over the absolute maximum rating, 6.5 V
Exceeding these maximum ratings may result in damage to the AK1544. Normal operation is not guaranteed at these extremes.

6. Recommended Operating Range

Table 3 Recommended Operating Range

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Operating Temperature	Ta	-40		85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VDD1	2.7	3.3	5.5	V	Applied to [PVDD] pin
	VDD2	VDD1	5.0	5.5	V	Applied to [CPVDD] pin

Note 1) VDD1 and VDD2 can be driven individually within the recommended operating range.
The specifications are applicable within the recommended operating range (supply voltage/operating temperature).

7. Electrical Characteristics

1. Digital DC Characteristics

Table 4 Digital DC Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	Remarks
High level input voltage	Vih		$0.8 \times$ VDD1			V	Note 1)
Low level input voltage	Vil				$0.2 \times$ VDD1	V	Note 1)
High level input current 1	lih1	Vih $=$ VDD1 $=5.5 \mathrm{~V}$	-1		1	$\mu \mathrm{~A}$	Note 2)
High level input current 2	lih2	Vih $=$ VDD1 $=5.5 \mathrm{~V}$	27	55	110	$\mu \mathrm{~A}$	Note 3)
Low level input current	lil	Vil $=0 \mathrm{~V}, \mathrm{VDD1}=5.5 \mathrm{~V}$	-1		1	$\mu \mathrm{~A}$	Note 1)
High level output voltage	Voh	loh $=-500 \mu \mathrm{~A}$	VDD1-0.4			V	Note 4)
Low level output voltage	Vol	lol $=500 \mu \mathrm{~A}$			0.4	V	Note 4)

Note 1) Applied to [CLK], [DATA], [LE], [PDN1], [PDN2], [TEST1], [TEST2] and [TEST3] pins.
Note 2) Applied to [CLK], [DATA], [LE] , [PDN1] and [PDN2] pins.
Note 3) Applied to [TEST1], [TEST2] and [TEST3] pins.
Note 4) Applied to [LD], [GPO1] and [GPO2] pins.

2. Serial Interface Timing

<Write-In Timing>

Fig. 3 Serial Interface Timing

Table 5 Serial Interface Timing

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Clock L level hold time	Tcl	40			ns	
Clock H level hold time	Tch	40			ns	
Clock setup time	Tcsu	20			ns	
Data setup time	Tsu	20			ns	
Data hold time	Thd	20			ns	
LE Setup Time	Tlesu	20			ns	
LE Pulse Width	Tle	40			ns	

Note 1) While LE pin is setting "Low", 24 iteration clocks have to be set with CLK pin. If 25 or larger clocks are set, the last 24 clocks synchronized data are valid.

3. Analog Circuit Characteristics

The resistance of $27 \mathrm{k} \Omega$ is connected to the [BIAS] pin, VDD1 $=2.7 \mathrm{~V}$ to 5.5 V , VDD2=VDD1 to $5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$

Parameter	Min.	Typ.	Max.	Unit	Remarks
RF Characteristics					
Input Sensitivity	-10		+5	dBm	
Input Frequency	400		1300	MHz	
REFIN Characteristics					
Input Sensitivity	0.4		2	Vpp	
Input Frequency	4		40	MHz	
Maximum Frequency Allowable Prescaler Output			81.25	MHz	
Phase Detector					
Phase Detector Frequency			3	MHz	
Charge Pump					
Charge Pump Maximum Value		2530		$\mu \mathrm{A}$	
Charge Pump Minimum Value		160		$\mu \mathrm{A}$	
Icp TRI-STATE Leak Current		1		nA	$0.7 \leq \mathrm{Vcpo} \leq \mathrm{VDD2} 2-0.7$ Vcpo : Voltage at CP pin
Mismatch between Source and Sink Currents Note 1)			10	\%	$\mathrm{Vcpo}=\mathrm{VDD} 2 / 2, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Icp vs. Vcpo Note 2)			15	\%	$0.5 \leq \mathrm{Vcpo} \leq \mathrm{VDD} 2-0.5, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Others					
VREF Rise Time			50	$\mu \mathrm{s}$	
Consumption Current					
IDD1			10	$\mu \mathrm{A}$	[PDN1]="Low", [PDN2]="Low"
IDD2		2.4	3.5	mA	[PDN1]="High", [PDN2]="High" IDD not including VDD2
IDD3		0.4	0.9	mA	[PDN1]="High", [PDN2]="High" IDD for VDD2

Note 1) Mismatch between Source and Sink Currents: [(|lsink|-||source|)/\{(|lisink|+||source|)/2\}] $\times 100$ [\%]
Note 2) See "Fig. 4 Charge Pump Characteristics - Voltage vs. Current": Icp vs. Vcpo: $[\{1 / 2 \times(||1|-||2|)\} /\{1 / 2 \times(|11|+||2|)\}] \times 100[\%]$
Note 3) [PDN1]="High", [PDN2]="High", the total current consumption = IDD2 + IDD3
Note 4) In the shipment test, the exposed pad on the center of the back of the package is connected to ground.

Resistance Connected to the BIAS Pin for Setting Charge Pump Output Current

Parameter	Min.	Typ.	Max.	Unit	Remarks
BIAS resistance	22	27	33	$\mathrm{k} \Omega$	

Fig. 4 Charge Pump Characteristics - Voltage (Vcpo) vs. Current (Icp)

8. Block Functional Descriptions

1. Frequency Setup

The following formula is used to calculate the frequency setting for the AK1544.
Frequency setting (external VCO output frequency) $=\mathrm{F}_{\text {PFD }} \times \mathrm{N}$
$N \quad:$ Dividing number $N=[(P \times B)+A]$
$F_{\text {PFD }} \quad:$ Phase detector frequency $\mathrm{F}_{\text {PFD }}=[$ REFIN $]$ pin input frequency $/ \mathrm{R}$ counter dividing number
P : Prescaler Value (See< Address2>:\{Pre[1:0]\})
B : B (Programmable) counter value (See <Address1>:\{B[12:0]\})
A : A (Swallow) counter value (See <Address1>:\{A[5:0]\})

- Calculation examples

When the [REFIN] pin input frequency is 10 MHz , the phase detector frequency $\mathrm{F}_{\text {PFD }}=5 \mathrm{kHz}$ and the frequency setting $=780.1 \mathrm{MHz}$;
[The AK1544 Settings]
$R=10000000 / 5000=2000$ (<Address3> : $\{R[13: 0]\}=2000 \mathrm{dec}$)
P=32 (<Address2> : Pre[1:0]=10bin)
$\mathrm{B}=4875$ (<Address1> : B[12:0]=4875dec)
A=20 (<Address1>: A[5:0]=20dec)
Frequency setting $=5000 \times[(32 \times 4875)+20]=780.1 \mathrm{MHz}$

- Division conditions

The conditions for division settings for A and B counters are as follows:

$$
\begin{array}{ll}
A \geq 0 & \text { A counter (6 bits): } \\
B \geq 3 & \text { A decimal number from } 0 \text { to } 63 \text { can be set. } \\
B \geq A &
\end{array}
$$

- Lower limit for setting consecutive dividing numbers

In the AK1544, it is not possible to set consecutive dividing numbers below the lower limit.
The lower limit can be calculated by the following formula;

$$
N \min =P^{2}-P
$$

For example, in the case of $\mathrm{P}=16,240$ or over can be set as consecutive dividing number.

2. Charge Pump and Loop Filter

In the AK1544, the fast lockup could be achieved by changing a charge pump current and enabling the loop filter. This is called Fast Lockup mode. For details, see "3. Fast Lockup Mode" on page 14.

The loop filter is external and connected to [CP], [SWIN] and [CPZ] pins. The [CPZ] pin should be connected to the R2 and C2, which are intermediate nodes, even if the Fast Lockup is not used. Therefore, R2 must be connected to the [CP] pin, while C 2 must be connected to the ground.

Fig. 5 Loop Filter Schematic

3. Fast Lockup Mode

Setting $D[16]=\{F S T E N\}$ in <Address4> to 1 enables the Fast Lock Up mode for the AK1544.
Changing a frequency setting (The frequency is changed at the rising edge of [LE] when <Address1> is accessed.) or [PDN2] pin is set to "High" from "High" with $\{F S T E N\}=1$ enables the Fast Lockup mode. The loop filter switch turns ON during the timer period specified by the counter value in $\mathrm{D}[12: 0]=\{$ FAST[12:0] in <Address4>, and the charge pump for the Fast Lockup mode (Charge Pump 2) set by $D[9: 6]=\{C P 2[3: 0]\}$ in <Address2> is enabled.

After the timer period elapsed, the loop filter switch turns OFF, the charge pump for normal operation (Charge Pump 1) set by $\mathrm{D}[3: 0]=\{\mathrm{CP} 1[3: 0]\}$ in <Address > is enabled and thus normal operation returns.

The register $\mathrm{D}[12: 0]=\{F A S T[12: 0]\}$ in <Address4> is used to set the timer period for this mode. The following formula is used to calculate the time period:

Phase detector frequency cycle \times counter value set in $\{$ FAST[12:0] \}

The charge pump current could be adjusted with 9 steps for both normal operation (Charge Pump 1) and the Fast Lockup operation (Charge Pump 2).

The absolute value of the charge pump current is determined by the resistance connected to the [BIAS] pin. The following formula shows the relationship between the resistance value, the register setting and the electric current value.

Charge pump minimum current (Icp_min) [A] = 8.55 / Resistance connected to the [BIAS] pin ohm]
When CP1 or CP2 is 0000 to 0111 , charge pump current $[A]=I c p _m i n[A] \times(C P 1$ or CP2 setting +1)
When CP1 or CP2 is 1000, charge pump current $[\mathrm{A}]=\mathrm{Icp}$ _min $[\mathrm{A}] / 2 \quad(\mathrm{X}$ is don't care.)
The allowed range value for the resistance connected to the [BIAS] pin is from 22 to $33[\mathrm{k} \Omega$]. For details of current settings, see "Register Functional Description".

Fig. 6 Timing Chart for Fast Lockup Mode

4. Lock Detect (LD) Signal

In the AK1544, the lock detect output can be selected by $D[13]=\{L D\}$ in $<$ Address $4>$. When $D[13]$ is set to " 1 ", the phase detector outputs provide a phase detection as an analog level (comparison result). This is called analog lock detect. When $\mathrm{D}[13]$ is set to " 0 ", the lock detect signal is output according to the internal logic. This is called digital lock detect.

4.1 Analog Lock Detect

In analog lock detect, the phase detector output comes from the LD pin.

Fig. 7 Analog Lock Detect Operation

4.2 Digital Lock Detect

In the digital lock detect, the [LD] pin outputs is "Low" every time when the frequency is set. And the [LD] pin outputs is "High" (which means the locked state) when a phase error smaller than T is detected for N times consecutively. If the phase error is larger than T is detected for N times consecutively then the [LD] pin outputs is "High" and then the [LD] pin outputs is "Low"(which means the unlocked state).

The threshold counts for lock detection N could be set by $\mathrm{D}[18: 17]=\{$ LDCNTSEL[1:0]\} in <Address4>. \{LDCNTSEL[1:0]\} settings and corresponding counts (N) are as follows:

$$
\begin{aligned}
& 00: N=7 \\
& 01: N=15 \\
& \text { 10: } N=31 \\
& \text { 11: } N=63
\end{aligned}
$$

The lock detect signal is shown below:

Fig. 8 Lock Detect Operations

Fig. 9 Transition Flow Chart: Unlock State to Lock State

Fig. 10 Transition Flow Chart: Lock State to Unlock State

5. Reference Input

The reference input could be set to a dividing number in the range of 4 to 16383 using $\{R 1[13: 0]\}$, which is a 14 -bit address of $\mathrm{D}[13: 0]$ in <Address3>. A dividing number from 0 to 3 could not be set.

6. Prescaler and Swallow Counter

The dual modular prescaler $(P / P+1)$ and the swallow counter are used to provide a large dividing ratio. The prescaler is set by $\{$ PRE[1:0]\}, which is a 2-bit address of $\mathrm{D}[15: 14]$ in <Address3>.

```
{PRE[1:0]}="00": Prohibited
{PRE[1:0]}="01": P=16, dividing ratio = 16/17
{PRE[1:0]}="10": P=32, dividing ratio = 32/33
{PRE[1:0]}="11": P=64, dividing ratio = 64/65
```


7. Power Save Mode

The AK1544 can be operated in the power-down or power-save mode as necessary by using the external control pins [PDN1] and [PDN2].

- Power On

See "13. Power-up Sequence". It is necessary to bring [PDN1] to "High" first, then [PDN2]. Bringing [PDN1] and [PDN2] to "High" simultaneously is prohibited.

- Normal Operation

Pin name		
PDN1	PDN2	
"Low"	"Low"	Power down
"Low"	"High"	Prohibited
"High"	"Low"	Power save Note 1) and Note 2)
"High"	"High"	Normal Operation

Note 1) Register setup can be made $50 \mu \mathrm{~s}$ after [PDN1] is set to "High". The charge pump is in the Hi-Z state.
Note 2) Register settings are maintained when [PDN2] is set to "Low" during normal operation.

9. Register Map

Name	Data	Address			
A/B	D19 to D0	0	0	0	1
CP		0	0	1	0
Ref/Pres		0	0	1	1
Function		0	1	0	0
GPO		0	1	0	1

	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Address
A/B	0	$\begin{gathered} \text { B } \\ {[12]} \end{gathered}$	$\begin{gathered} \hline \text { B } \\ {[11]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[10]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[9]} \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[8]} \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[7]} \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[6]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[5]} \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[4]} \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[3]} \end{gathered}$	$\begin{aligned} & \hline \mathrm{B} \\ & {[2]} \end{aligned}$	$\begin{gathered} \hline \mathrm{B} \\ {[1]} \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ {[0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { A } \\ {[5]} \end{gathered}$	$\begin{gathered} \hline \text { A } \\ {[4]} \end{gathered}$	$\begin{gathered} \hline \text { A } \\ {[3]} \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ {[2]} \end{gathered}$	$\begin{gathered} A \\ {[1]} \end{gathered}$	$\begin{gathered} \hline \text { A } \\ {[0]} \end{gathered}$	0×01
CP	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { CP2 } \\ {[3]} \\ \hline \end{gathered}$	CP2 [2]	$\begin{gathered} \text { CP2 } \\ {[1]} \end{gathered}$	$\begin{aligned} & \hline \mathrm{CP2} 2 \\ & {[0]} \\ & \hline \end{aligned}$	0	0	CP1 [3]	CP1 [2]	CP1 [1]	$\begin{gathered} \hline \text { CP1 } \\ {[0]} \\ \hline \end{gathered}$	0x02
Ref/Pres	0	0	0	0	$\begin{array}{\|c\|} \hline \text { PRE } \\ {[1]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { PRE } \\ {[0]} \\ \hline \end{array}$	$\begin{gathered} \mathrm{R} \\ {[13]} \end{gathered}$	$\begin{gathered} R \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} \text { R } \\ {[11]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[10]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[9]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[8]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[7]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[6]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[4]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[3]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[2]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[1]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[0]} \\ \hline \end{gathered}$	0x03
Function	0	$\begin{aligned} & \text { LDCNT } \\ & \text { SEL[1] } \end{aligned}$	$\begin{aligned} & \text { LDCNT } \\ & \text { SEL[0] } \end{aligned}$	$\begin{aligned} & \text { FAST } \\ & \text { EN } \end{aligned}$	$\begin{aligned} & \mathrm{CP} \\ & \mathrm{Hiz} \end{aligned}$	$\begin{array}{\|c} \text { CP } \\ \text { POLA } \end{array}$	LD	FAST [12]	$\begin{gathered} \text { FAST } \\ {[11]} \end{gathered}$	$\begin{aligned} & \text { FAST } \\ & {[10]} \end{aligned}$	FAST [9]	FAST [8]	FAST [7]	$\begin{gathered} \text { FAST } \\ {[6]} \end{gathered}$	FAST [5]	$\begin{array}{c\|} \hline \text { FAST } \\ \hline[4] \end{array}$	$\begin{array}{\|c} \hline \text { FAST } \\ \hline \end{array}$	FAST [2]	FAST $[1]$	$\left\|\begin{array}{c} \text { FAST } \\ {[0]} \end{array}\right\|$	0x04
GPO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { GPO } \\ 2 \end{gathered}$	$\begin{gathered} \text { GPO } \\ 1 \end{gathered}$	0x05

Note 1) The data in Addresses 0×02 and 0×03 are committed to all related circuits when address 0×01 is written, which means that the data of these 3 Addresses ($0 \times 01,0 \times 02$ and 0×03) are committed to all related circuits at a time.

Note 2) Addresses 0×04 and 0×05 could be written separately from other Addresses.
Note 3) The initial register values are not defined. Therefore, even after [PDN1] is set to "High", each bit value remains undefined. In order to set all register values, it is required to write the data in all Addresses of the register.

- Examples of writing into registers

(Ex. 1) Power-On \Rightarrow Writing these three-word data is required.
(1) Write a charge pump current value to Address 0×02.

The data at Address 0×02 is not committed to all related circuits at this time. Instead, it is stored in the on-chip buffer.
(2) Write a division number for the prescaler and a reference counter value to Address 0×03.

The data at the Address 0×03 is not committed to all related circuits at this time. Instead, it is stored in the on-chip buffer.
(3) Write values for A counter and B counter at the Address 0×01.

The data of these 3 Addresses $(0 \times 01,0 \times 02$ and 0×03) are committed to all related circuits at this time.

(Ex. 2) Changing frequency settings

(1) Write values for A counter and B counter at the Address 0×01.

The data of these 3 Addresses ($0 \times 01,0 \times 02$ and 0×03) are committed to all related circuits at a time. The latest data written into Address 0×02 and 0×03 are committed.
(Ex. 3) Changing charge pump current \Rightarrow Writing these two-word data is required.
(1) Write a charge pump current value at the Address 0×02.

The data in Address 0×02 is not committed to all related circuits at this time. Instead, it is stored in the on-chip buffer.
(2) Write values for A counter and B counter at the Address 0×01.

The data of these 3 Addresses ($0 \times 01,0 \times 02$ and 0×03) are committed to all related circuits at a time. The latest data written into Address 0×03 is committed.

(Ex. 4) Changing reference dividing number \Rightarrow Writing these two-word data is required.

(1) Write a division number for the prescaler and a reference counter value at the Address 0×03.

The data at the Address 0×03 is not committed to all related circuits at this time. Instead, it is stored in the on-chip buffer.
(2) Write values for A counter and B counter at the Address 0×01.

The data of these 3 Addresses ($0 \times 01,0 \times 02$ and 0×03) are committed to all related circuits at a time. The latest data written into Address 0×02 is committed.

10. Register Function Description

< Address 1: A/B >

D 19	$\mathrm{D}[18: 6]$	$\mathrm{D}[5: 0]$	Address
0	$\mathrm{~B}[12: 0]$	$\mathrm{A}[5: 0]$	0001

$B[12: 0]$: B (Programmable) counters value

D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	Function	Remarks
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	1	1 Dec	Prohibited
0	0	0	0	0	0	0	0	0	0	0	1	0	2 Dec	Prohibited
0	0	0	0	0	0	0	0	0	0	0	1	1	3 Dec	
DATA														
1	1	1	1	1	1	1	1	1	1	1	0	1	8189 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	0	8190 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	1	8191 Dec	

A[5:0]: A (Swallow) counter value

D5	D4	D3	D2	D1	D0	Function	Remarks
0	0	0	0	0	0	0	
0	0	0	0	0	1	1 Dec	
0	0	0	0	1	0	2 Dec	
0	0	0	0	1	1	3 Dec	
DATA							
1	1	1	1	0	1	61 Dec	
1	1	1	1	1	0	62 Dec	
1	1	1	1	1	1	63 Dec	

[AK1544]

* Requirements for $\mathrm{A}[5: 0]$ and $\mathrm{B}[12: 0]$

The data at $\mathrm{A}[5: 0]$ and $\mathrm{B}[12: 0]$ must meet the following requirements:
$A[5: 0] \geq 0, B[12: 0] \geq 3, B[12: 0] \geq A[5: 0]$
See "1. Frequency Setup" on P. 11 for details of the relationship between a frequency division number and the data at $\mathrm{A}[5: 0]$ and $\mathrm{B}[12: 0]$.

< Address 2: CP >

D19	D18	D17	D16	D15	D14	D13	D12	D[11:10]	D[9:6]	D[5:4]	D[3:0]	Address
0	0	0	0	0	0	0	0	0	$\mathrm{CP} 2[3: 0]$	0	$\mathrm{CP} 1[3: 0]$	0010

CP1[3:0] : Charge pump current for normal operation
CP2[3:0] : Charge pump current for the Fast Lockup mode

In the AK1544, two types of charge pump current CP1 and CP2 could be set.
CP1 is the charge pump current setting for normal operation.
CP2 is the charge pump current setting for the Fast Lockup mode.
The following formula shows the relationship between the resistance value, the register setting and the electric current value.

Charge pump minimum current $\left(\operatorname{Icp} _\min \right)[A]=8.55 /$ Resistance connected to the $[B I A S]$ pin ohm] When CP1 or CP2 is 0000 to 0111 , charge pump current $[A]=I c p _\min [A] \times(C P 1$ or CP2 +1$)$.

When CP1 or CP2 is 1000, charge pump current $[A]=I c p _m i n ~[A] / 2$.

CP1[3:0] CP2[3:0]	Charge pump currents $[\mu \mathrm{A}]$		
	$22 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega$	$33 \mathrm{k} \Omega$
0001	780	320	260
0010	1170	950	520
0011	1550	1270	780
0100	1940	1580	1300
0101	2330	1900	1550
0110	2720	2220	1810
0111	3110	2530	2070
1000	195	160	130

[AK1544]
< Address 3: Ref/Pres >

D19	D18	D17	D16	D[15:14]	$\mathrm{D}[13: 0]$	Address
0	0	0	0	PRE[1:0]	$\mathrm{R}[13: 0]$	0011

PRE[1:0] : Prescaler division ratio (16/17, 32/33, 64/65)
The following settings can be chosen for the prescaler division.

D15	D14	Function	Remarks
0	0	Prohibited	
0	1	$16 / 17(\mathrm{P}=16)$	
1	0	$32 / 33(\mathrm{P}=32)$	
1	1	$64 / 65(\mathrm{P}=64)$	

R[13:0]: Reference clock division number

The following settings can be chosen for the reference clock division.
The allowed range is 4 ($1 / 4$ division) to 16383 ($1 / 16383$ division).
0 to 3 cannot be set.

D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function	Remarks
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	0	1	$1 / 1$ division	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	1	0	$1 / 2$ division	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	1	1	$1 / 3$ division	Prohibited
0	0	0	0	0	0	0	0	0	0	0	1	0	0	$1 / 4$ division	

< Address 4: Function >

D19	D18	D17	D16	D15	D14	D13	D[12:0]	Address
0	$\begin{aligned} & \text { LDCNT } \\ & \text { SEL[1] } \end{aligned}$	$\begin{aligned} & \text { LDCNT } \\ & \text { SEL[0] } \end{aligned}$	$\begin{gathered} \text { FAST } \\ \text { EN } \end{gathered}$	$\begin{aligned} & \text { CP } \\ & \mathrm{HiZ} \end{aligned}$	$\begin{aligned} & \text { CP } \\ & \text { POLA } \end{aligned}$	LD	FAST[12:0]	0100

LDCNTSEL[1:0] : Counter value for lock detect
The counter value for digital lock detect can be set

D18	D17	Function	Remarks
0	0	Counter value $=7$	
0	1	Counter value $=15$	
1	0	Counter value $=31$	
1	1	Counter value $=63$	

FASTEN : The Fast Lockup mode enable/disable setting

The Fast Lockup mode can be enabled or disabled.

D16	Function	Remarks
0	The data in CP2[3:0] and FAST[12:0] are disabled.	
1	The data in CP2[3:0] and FAST[12:0] are enabled.	

CPHIZ: TRI-STATE output setting for charge pumps 1 and 2

D15	Function	Remarks
0	Charge pumps are activated.	Use this setting for normal operation.
1	TRI-STATE	Note 1)

Note 1) The charge pump output is turned OFF and put in the high-impedance (Hi-Z) state.

CPPOLA: Selects positive or negative output polarity for CP1 and CP2.

D14	Function	Remarks
0	Positive	
1	Negative	

Fig. 11 Charge Pump Output Polarity

LD: Selects analog or digital for Lock Detect.

D13	Function	Remarks
0	Digital lock detect mode	
1	Analog lock detect mode	

For detailed functional descriptions, see the section "Lock Detect (LD) Signal" in "8. Block Functional Description".

FAST[12:0] : FAST counter value

A decimal number from 1 to 8191 can be set. This value determines the time period during which the CP2 is ON for the Fast Lockup mode.

After the time period calculated by [phase detector frequency cycle $\times\{$ FAST[12:0]\} setting], the CP2 is turned OFF.

0 could not be set.

D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function	Remarks
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	1	1 Dec	
0	0	0	0	0	0	0	0	0	0	0	1	0	2 Dec	
DATA														
1	1	1	1	1	1	1	1	1	1	1	0	1	8189 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	0	8190 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	1	8191 Dec	

