: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

AsahiKASEI
 AK1546

3GHz Low Noise Integer-N Frequency Synthesizer

1. Overview

The AK1546 is an Integer-N PLL (Phase Locked Loop) frequency synthesizer, covering a wide range of frequency from 500 MHz to 3 GHz . Consisting of a highly accurate charge pump, a reference divider, a programmable divider and a dual-modulus prescaler $(P / P+1)$, this product provides high performance, very low Phase Noise and small footprints.

An ideal PLL can be achieved by combining the AK1546 with the external loop filter and VCO (Voltage Controlled Oscillator). Access to the registers is controlled via a 3 -wire serial interface. The operating supply voltage is from 2.7 V to 3.3 V , and the charge pump circuit and the serial interface can be driven by individual supply voltage.

2. Features

\square Operating frequency :
$\square \quad$ Programmable charge pump current
\square Fast lock mode for improved lock time :

- Supply Voltage :
- Separate Charge Pump Power Supply
\square Excellent Phase Noise :
\square On-chip lock detection feature of PLL :
\square Package :
\square Operating temperature :

500 MHz to 3 GHz
$647 \mu \mathrm{~A}$ to $5176 \mu \mathrm{~A}$ typical with 8 steps
The current range can be controlled by an external resistor.
The programmable timer can switch two charge pump current setting.
2.7 to 3.3 V (PVDD, AVDD pins)

PVDD to 5.5V (CPVDD pin)
$-226 \mathrm{dBc} / \mathrm{Hz}$
Selectable Phase Frequency Detector (PFD) Output or Digital filtered lock detect

20 in QFN (0.5 mm pitch, $4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.75 \mathrm{~mm}$)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

AKM

- Table of Contents -

1. Overview1
2. Features 1
3. Block Diagram 3
4. Pin Functional Description and Assignments 4
5. Absolute Maximum Ratings 6
6. Recommended Operating Range 6
7. Electrical Characteristics 7
8. Block Functional Descriptions 11
9. Register Map 17
10. Function Description - Registers 19
11. IC Interface Schematic 30
12. Recommended Connection Schematic of Off-Chip Component 32
13. Block Power-Up Timing Chart (Recommended Flow) 34
14. Frequency Change Timing Chart (Recommended Flow) 35
15. Typical Evaluation Board Schematic 36
16. Outer Dimensions 37
17. Marking 38

In this specification, the following notations are used for specific signal and register names.
[Name] : Pin name
<Name> : Register group name (Address name)
\{Name\} : Register bit name

AKM

3. Block Diagram

AKM

4. Pin Functional Description and Assignments

1. Pin Functions

No.	Name	I/O	Pin Functions	Power down (Note 1)	Remarks
1	CPVSS	G	Charge pump ground		
2	TEST1	DI	Test pin 1		Internal pull-down, Schmidt trigger input
3	AVSS	G	Analog ground		
4	RFINN	AI	Complementary input to the RF Prescaler		
5	RFINP	AI	Input to the RF Prescaler		
6	AVDD	P	Power supply for analog blocks		
7	VREF1	AO	Connect reference voltage capacitor for LDO	"Low"	
8	REFIN	AI	Reference signal input		
9	PVSS	G	Peripherals ground		
10	TEST2	DI	Test pin 2		Internal pull-down, Schmidt trigger input
11	PDN	DI	Power down		Schmidt trigger input
12	CLK	DI	Serial clock input		Schmidt trigger input
13	DATA	DI	Serial data input		Schmidt trigger input
14	LE	DI	Load enable input		Schmidt trigger input
15	LD	DO	Lock detect output	"Low"	
16	PVDD	P	Power supply for peripherals		
17	VREF2	AO	Connect reference voltage capacitor	"Low"	
18	CPVDD	P	Power supply for charge pump		
19	BIAS	AIO	Resistance pin for setting charge pump current		
20	CP	AO	Charge pump output	"Hi-Z"	

Note 1) "Power Down" means the state of [PDN]="Low" after power on.

The following table shows the meaning of abbreviations used in the "I/O" column.

AI: Analog input pin	AO: Analog output pin	AIO: Analog I/O pin	DI: Digital input pin
DO: Digital output pin	P: Power supply pin	G: Ground pin	

AKM

2. Pin Assignments

20pin QFN (0.5 mm pitch, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$)

AKM

5. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	VDD1	-0.3	3.6	V	[AVDD], [PVDD] (Note 1)
	VDD2	-0.3	6.5	V	[CPVDD] (Note 1)
Ground Level	VSS1	0	0	V	[AVSS], [PVSS]
	VSS2	0	0	V	[CPVSS]
Analog Input Voltage	VAIN	VSS1-0.3	VDD1+0.3	V	[RFINN], [RFINP], [REFIN] (Notes 1 \& 2)
Digital Input Voltage	VDIN	VSS1-0.3	VDD1+0.3	V	[CLK], [DATA], [LE], [PDN], [TEST1], [TEST2] (Notes 1 \& 2)
	IIN	-10	10	mA	
Storage Temperature	Tstg	-55	125	${ }^{\circ} \mathrm{C}$	

Note 1) 0 V reference for all voltages.
Note 2) Maximum must not be over 3.6 V .

Exceeding these maximum ratings may result in damage to the AK1546. Normal operation is not guaranteed at these extremes.

6. Recommended Operating Range

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Operating Temperature	Ta	-40		85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VDD1	2.7	3.0	3.3	V	Applied to [AVDD],[PVDD] pins
	VDD2	VDD1	5.0	5.5	V	Applied to [CPVDD] pin

Note 1) VDD1 and VDD2 can be driven individually within the Recommended Operating Range.
Note 2) All specifications are applicable within the Recommended Operating Range (operating temperature / supply voltage) .

AKM

7. Electrical Characteristics

1. Digital DC Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	Remarks
High level input voltage	Vih		$0.8 \times$ VDD1			V	Note 1)
Low level input voltage	Vil				0.2×VDD1	V	Note 1)
High level input current 1	lih1	$\mathrm{Vih}=\mathrm{VDD1} 1=3.3 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$	Note 2)
High level input current 2	lih2	Vih $=$ VDD1 $=3.3 \mathrm{~V}$	17	33	66	$\mu \mathrm{A}$	Note 3)
Low level input current	lil	$\mathrm{Vil}=0 \mathrm{~V}, \mathrm{VDD} 1=3.3 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$	Note 1)
High level output voltage	Voh	$\mathrm{loh}=-500 \mu \mathrm{~A}$	VDD1-0.4			V	Note 4)
Low level output voltage	Vol	$\mathrm{lol}=500 \mu \mathrm{~A}$			0.4	V	Note 4)

Note 1) Applied to [CLK], [DATA], [LE], [PDN], [TEST1] and [TEST2] pins.
Note 2) Applied to [CLK], [DATA], [LE] and [PDN] pins.
Note 3) Applied to [TEST1] and [TEST2] pins.
Note 4) Applied to [LD] pin.

AKM

2. Serial Interface Timing

<Write-In Timing>

Serial Interface Timing Chart

Serial Interface Timing

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Clock L level hold time	Tcl	25			ns	
Clock H level hold time	Tch	25			ns	
Clock setup time	Tcsu	10			ns	
Data setup time	Tsu	10			ns	
Data hold time	Thd	10			ns	
LE setup time	Tlesu	10			ns	
LE pulse width	Tle	20			ns	

AKM

3. Analog Circuit Characteristics

The resistance of $27 \mathrm{k} \Omega$ is connected to the [BIAS] pin.
$\mathrm{VDD} 1=2.7 \mathrm{~V}$ to 3.3 V , $\mathrm{VDD} 2=\mathrm{VDD1}$ to 5.5 V , $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Min.	Typ.	Max.	Unit	Remarks
RF Characteristics					
Input Sensitivity	-10		5	dBm	
Input Frequency	500		3000	MHz	
REFIN Characteristics					
Input Sensitivity	0.4		VDD1	Vpp	REFIN $\leq 200 \mathrm{MHz}$
	0.4		2	Vpp	REFIN>200MHz
Input Frequency	10		300	MHz	
Maximum Allowable Prescaler Output Frequency			300	MHz	
Phase Detector					
Phase Detector Frequency			104	MHz	
Charge Pump					
Charge Pump Maximum Value		5176		$\mu \mathrm{A}$	
Charge Pump Minimum Value		647		$\mu \mathrm{A}$	
Icp TRI-STATE Leak Current		1		nA	$0.7 \leq \mathrm{Vcpo} \leq \mathrm{VDD2} 2-0.7, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Mismatch between Source and Sink Currents (Note 1)			10	\%	Vcpo=VDD2/2, $\mathrm{Ta}=25^{\circ} \mathrm{C}$
Icp vs. Vcpo (Note 2)			15	\%	$0.5 \leq \mathrm{Vcpo} \leq \mathrm{VDD} 2-0.5, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Regulator					
VREF1 Rise Time			10	ms	$470 \mu \mathrm{~F}$ Capacitance connected to VREF2
VREF2 Rise Time			10	ms	470 FF Capacitance connected to VREF2
Current Consumption					
IDD1			10	$\mu \mathrm{A}$	[PDN]="0"
IDD2		11	19	mA	[PDN]="1", \{PD1\}=0, IDD for VDD1
IDD3 (Note3)		0.8	1.6	mA	[PDN]="1", \{PD1\}=0, IDD for VDD2
IDD4		0.55	0.9	mA	[PDN]="1", \{PD1\}=1, IDD for VDD1

AKM

Note 1) Mismatch between Source and Sink Currents : [(|lsink|-|lsource|)/\{(|lsink|+|lsource|)/2\}] $\times 100$ [\%]
Note 2) See "Charge Pump Characteristics - Voltage vs. Current". Vcpo is the output voltage at [CP].
Icp vs. Vcpo : [\{1/2×(||1|-||2|)\}/\{1/2×(||1|+||2|)\}]×100 [\%]
Note 3) IDD3 doesn't include the current depending on Phase Detector Frequency. IDD3 is the current the Charge Pump circuit consumes constantly.

Note 4) The test is done with the exposed pad at the center of backside connected to VSS.

Resistance Connected to the BIAS Pin for Setting Charge Pump Output Current

Parameter	Min.	Typ.	Max.	Unit	Remarks
BIAS resistance	22	27	33	$\mathrm{k} \Omega$	

Charge Pump Characteristics - Voltage (Vcpo) vs. Current (Icp)

AKM

8. Block Functional Descriptions

1. Frequency Setup

The following formula is used to calculate the frequency setting for the AK1546.
Frequency setting (external VCO output frequency) $=\mathrm{F}_{\text {PFD }} \times \mathrm{N}$

Where :

N	: Dividing number $\mathrm{N}=[(\mathrm{P} \times \mathrm{B})+\mathrm{A}]$
$\mathrm{F}_{\text {PFD }}$: Phase detector frequency $\mathrm{F}_{\text {PFD }}=[\mathrm{REFIN}]$ pin input frequency / R counter dividing number
P	$:$ Prescaler Value (See <Address2>:\{Pre[1:0]\})
B	$: \mathrm{B}$ (Programmable) counter value (See <Address1>:\{B[12:0]\})
A	: A (Swallow) counter value (See <Address1>:\{A[5:0]\})

Calculation example

The output frequency of external reference frequency oscillator is 10 MHz , and $\mathrm{F}_{\text {PFD }}$ is 200 kHz and VCO frequency is 2460 MHz .

AK1546 setting :
R (Reference counter)=10000000/200000 = 50 (<Address0>:\{R[13:0]\}="50")
P=32 (<Address2>:\{PRE[1:0]\}="10Bin")
B=384 (<Address1>:\{B[12:0]\}="384")
A=12 (<Address $1>:\{A[5: 0]\}=" 12 ")$
Frequency setting $=200 \mathrm{kHz} \times[(32 \times 384)+12]=2460 \mathrm{MHz}$

Lower limit for setting consecutive dividing numbers

In the AK1546, it is impossible to set consecutive dividing numbers below the lower limit. The lower limit is calculated by the following formula;

$$
N_{\min }=P^{2}-P
$$

For example, in the case of $\mathrm{P}=16$, it can be set 240 and over as consecutive dividing numbers.

AKM

2. Charge Pump, Loop Filter

The current setting of charge pump can switch with the built-in timer for Fast Lock.

Loop Filter Schematic

The charge pump current for normal operation (CP1) is determined by the setting in \{CP1[2:0]\}, which is a 3-bit address of $\{\mathrm{D}[15: 13]\}$ in <Address2> and a value of the resistance connected to the [BIAS] pin. The charge pump current for the Fast Lock Up mode operation (CP2) is determined by the setting in \{CP2[2:0]\}, which is a 3-bit address of D[18:16] in <Address2> and a value of the resistance connected to the [BIAS] pin.

The following formula shows the relationship among the resistance value, the register setting and the electric current value.
charge pump minimum current (Icp_min) $[A]=17.46 /$ Resistance connected to the BIAS pin $[\Omega]$
charge pump current $(\mathrm{Icp})[\mathrm{A}]=\mathrm{Icp} _\min [\mathrm{A}] \times(\{\mathrm{CP} 1\}$ or $\{\mathrm{CP} 2\}$ setting +1$)$

The allowed value range for the resistance connected to the [BIAS] pin is from 22 to $33 \mathrm{k} \Omega$ for both normal and Fast Lock Up mode operations.

AKM

3. Fast Lock Up Mode

Setting \{FAST[1:0]\} in <Address2> to "11Bin" and \{CPGAIN\} in <Address1> to "1" enables the Fast Lock Up mode for the AK1546.

The Fast Lock Up mode is enabled only during the time period set by the timer according to the counter value in \{TIMER[3:0]\} in <Address2>. The charge pump current is set to the value specified by \{CP2\}. When the specified time period elapses, the Fast Lock Up mode operation is switched to the normal operation, and \{CPGAIN\} in <Address1> is reset to " 0 ".
\{TIMER[3:0]\} in <Address2> is used to set the time period for this mode. The following formula is used to calculate the time period :

```
Switchover time = 1/FPFD }\times\mathrm{ Counter Value
Counter Value = 3 + (Timer[3:0] setting x 4)
```


Fast Lock Up Mode Timing Chart

AKM

4. Lock Detect

Lock detect output can be selected by \{LD[2:0]\} in <Address2>. When $\{L D\}$ is set to "101Bin", the phase detector outputs an unmanipulated phase detection (comparison) result. (This is called "analog lock detect".) When \{LD\} is set to "001Bin", the lock detect signal is output according to the on-chip logic. (This is called "digital lock detect".)

The lock detect can be done as following:
The [LD] pin is in unlocked state (which outputs "Low") when a frequency setup is made.
In the digital lock detect, the [LD] pin outputs "High" (which means the locked state) when a phase error smaller than a cycle of [REFIN] clock (T) is detected for N times consecutively. When a phase error larger than T is detected for N times consecutively while the [LD] pin outputs "High", then the [LD] pin outputs "Low" (which means the unlocked state). The counter value N can be set by $\{\mathrm{LDP}\}$ in <Address $0>$. The N is different between "unlocked to locked" and "locked to unlocked".

\{LDP\}	unlocked to locked	locked to unlocked
0	$\mathrm{~N}=15$	$\mathrm{~N}=3$
1	$\mathrm{~N}=31$	$\mathrm{~N}=7$

The lock detect signal is shown below:

Case of " $R=1$ "

Case of "R > 1 "
Digital Lock Detect Operations

Unlock to Lock Operation Flow

Lock to Unlock Operation Flow

AKM

5. Reference counter

The reference input can be set with a dividing number in the range of 1 to 16383 using $\{R$ [13:0]\}, which is an 14-bit address of $\{\mathrm{D}[13: 0]\}$ in <Address $0>$. 0 cannot be set as a dividing number.

6. Prescaler

The dual modulus prescaler $(P / P+1)$ and the swallow counter are used to provide a large dividing ratio. The prescaler is set by \{PRE[1:0]\}, which is a 2-bit latch of \{D[21:20]\} in <Address2>.
\{PRE[1:0]\}="00Bin", P=8, Dual modulus prescaler 8/9
$\{\operatorname{PRE}[1: 0]\}=" 01$ Bin", $P=16$, Dual modulus prescaler 16/17
\{PRE[1:0]\}="10Bin", P=32, Dual modulus prescaler 32/33
\{PRE[1:0]\}="11Bin", P=64, Dual modulus prescaler 64/65
The Maximum Allowable Prescaler Output Frequency is 300 MHz . "P" must be set as "RF Input Frequency/P \leq 300MHz".

7. Power-down and Power-save mode

It is possible to operate in the power-down or power-save mode if necessary by using the external control pin.

Power On

Follow the power-up sequence.

Normal Operation

[PDN]	<Address2>		Function	
	\{PD2 $\}$	\{PD1 \}		
"Low"	X	X	Power Down	
"High"	X	0	Normal Operation	
"High"	0	1	VBG \& LDO : Power UP Synthesizer Circuits : Asynchronous Power Down	
"High"	1	1	VBG \& LDO : Power UP Synthesizer Circuits : Synchronous Power Down	

AKM

9. Register Map

Name	Data	Address	
R Counter		0	0
N Counter (A and B)	D21 - D0	0	1
Function		1	0
Initialization		1	1

Name	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Addr
$\left\lvert\, \begin{gathered} \mathbf{R} \\ \text { Count } \end{gathered}\right.$	0	0	0	LDP	0	0	$\begin{array}{\|l} \text { Low } \\ \text { Noise } \end{array}$	0	$\underset{[13]}{\mathrm{R}}$	$\begin{gathered} \mathrm{R} \\ {[12]} \end{gathered}$	$\begin{gathered} \text { R } \\ {[11]} \end{gathered}$	$\begin{gathered} \text { R } \\ {[10]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[9]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[8]} \end{gathered}$	$\begin{gathered} R \\ {[7]} \\ {[7} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[6]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[5]} \end{gathered}$	$\begin{gathered} R \\ {[4]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[3]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[2]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[1]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[0]} \end{gathered}$	0x0
$\underset{\text { Count }}{N}$	0	0	$\begin{gathered} \text { CP } \\ \text { GAIN } \end{gathered}$	$\begin{gathered} B \\ {[12]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[11]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[10]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[9]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[8]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[7]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[6]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[5]} \end{gathered}$	$\begin{gathered} \text { B } \\ {[4]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[3]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[2]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[1]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {[0]} \end{gathered}$	$\begin{gathered} \text { A } \\ {[5]} \end{gathered}$	$\begin{gathered} A \\ {[4]} \end{gathered}$	$\begin{gathered} \text { A } \\ {[3]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[2]} \end{gathered}$	$\begin{gathered} \text { A } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { A } \\ {[0]} \end{gathered}$	0x1
Func.	$\begin{gathered} \text { PRE } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { PRE } \\ {[0]} \end{gathered}$	PD2	$\begin{gathered} \text { CP2 } \\ {[2]} \end{gathered}$	$\begin{gathered} \text { CP2 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { CP2 } \\ {[0]} \end{gathered}$	CP1 [2]	$\begin{gathered} \text { CP1 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { CP1 } \\ {[0]} \end{gathered}$	$\begin{gathered} \hline \text { TIME } \\ \mathrm{R} \\ {[3]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TIME } \\ \mathrm{R} \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TIME } \\ \mathrm{R} \\ {[1]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TIME } \\ \mathrm{R} \\ {[0]} \\ \hline \end{gathered}$	FAST [1]	$\begin{array}{\|c} \text { FAST } \\ {[0]} \end{array}$	$\begin{aligned} & \text { CP } \\ & \text { HiZ } \end{aligned}$	$\begin{gathered} \mathrm{CP} \\ \mathrm{POLA} \end{gathered}$	$\begin{aligned} & \text { LD } \\ & {[2]} \end{aligned}$	$\begin{aligned} & \text { LD } \\ & {[1]} \end{aligned}$	$\begin{aligned} & \text { LD } \\ & {[0]} \end{aligned}$	PD1	$\begin{array}{\|l} \text { CNTR } \\ \text { RST } \end{array}$	0x2
Initial.	PRE [1]	$\begin{gathered} \text { PRE } \\ {[0]} \end{gathered}$	PD2	$\begin{gathered} \mathrm{CP2} \\ {[2]} \end{gathered}$	$\begin{gathered} \text { CP2 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { CP2 } \\ {[0]} \end{gathered}$	CP1 [2]	$\begin{gathered} \text { CP1 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { CP1 } \\ {[0]} \end{gathered}$	$\begin{gathered} \hline \text { TIME } \\ \mathrm{R} \\ {[3]} \end{gathered}$	$\begin{gathered} \hline \text { TIME } \\ R \\ {[2]} \end{gathered}$	$\begin{array}{\|c} \hline \text { TIME } \\ \mathrm{R} \\ {[1]} \end{array}$	$\begin{array}{\|c} \hline \text { TIME } \\ \mathrm{R} \\ {[0]} \end{array}$	$\begin{array}{\|c} \text { FAST } \\ {[1]} \end{array}$	$\begin{array}{\|c} \hline \text { FAST } \\ {[0]} \end{array}$	$\begin{aligned} & \mathrm{CP} \\ & \mathrm{Hiz} \end{aligned}$	$\begin{gathered} \mathrm{CP} \\ \mathrm{POLA} \end{gathered}$	$\begin{aligned} & \text { LD } \\ & {[2]} \end{aligned}$	$\begin{gathered} \text { LD } \\ {[1]} \end{gathered}$	$\begin{aligned} & \text { LD } \\ & {[0]} \end{aligned}$	PD1	$\begin{array}{\|l} \text { CNTR } \\ \text { RST } \end{array}$	0x3

AKM

Notes for writing into registers

After powers on AK1546, the initial registers value are not defined. It is required to write the data in all addresses in order to commit it.

[Examples of writing into registers]

(Ex. 1) Power-On

- Bring [PDN] to "0 (Low)"
- Apply VDD
- Program Address0, Address1 and Address2 (\{PD1\}="1" is recommended)
- Bring [PDN] to "1 (High)"
- Program \{PD1\} in Address 2 to "0"
(Ex. 2) Changing frequency settings : Initialization
- Program Address3
- Program Address1
(Ex. 3) Changing frequency settings : Counter reset
- Program Address2. As part of this, load "1" to both \{PD1\} and \{CNTR_RST\}.
- Program Address1
- Program Address2. As part of this, load "0" to both \{PD1\} and \{CNTR_RST\}.
(Ex. 4) Changing frequency settings : PDN pin method
- Bring [PDN] to "0 (Low)"
- Program Address1
- Bring [PDN] to "1 (High)"

AKM

10. Function Description - Registers

< Address0 : R Counter >

$\mathrm{D}[21: 19]$	D 18	$\mathrm{D}[17: 16]$	D 15	D 14	$\mathrm{D}[13: 0]$	Address
0	LDP	0	Low Noise	0	$\mathrm{R}[13: 0]$	00

D[21:19], D[17:16] , D14 : These bits are set to the following for normal operation.

D21	D20	D19		D17	D16		D14
0	0	0		0	0		0

LDP : Lock Detect Precision

The counter value for digital lock detect can be set.

D18	Function	Remarks
0	15 times Count	unlocked to locked
	3 times Count	locked to unlocked
1	31 times Count	unlocked to locked
	7 times Count	locked to unlocked

Low Noise : Selects Low Noise mode

D15	Function	Remarks
0	Normal Mode	
1	Low Noise Mode	IDD2 increases by 1.3mA

AKM

R[13:0] : Reference clock division number

The following settings can be selected for the reference clock division.
The allowed range is 1 ($1 / 1$ division) to 16383 ($1 / 16383$ division). 0 cannot be set.
The maximum frequency for $\mathrm{F}_{\text {PFD }}$ is 104 MHz .

D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function	Remarks
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	0	1	$1 / 1$ division	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	$1 / 2$ division	
0	0	0	0	0	0	0	0	0	0	0	0	1	1	$1 / 3$ division	
0	0	0	0	0	0	0	0	0	0	0	1	0	0	$1 / 4$ division	

AKM

< Address1: N Counter >

$\mathrm{D}[21: 20]$	D 19	$\mathrm{D}[18: 6]$	$\mathrm{D}[5: 0]$	Address
0	CPGAIN	$\mathrm{B}[12: 0]$	$\mathrm{A}[5: 0]$	01

D21, D20 : These bits are set to the following for normal operation

D21	D20
0	0

CPGAIN : Sets the charge pump current
When \{FAST[1:0]\} is NOT "11Bin" :

D19	Function	Remarks
0	CP1 is enabled	
1	CP2 is enabled	

When $\{$ FAST[1:0]\} is "11 $\mathrm{Bin} "$:

D19	Function	Remarks
0	CP1 is enabled	
1	CP2 is enabled, also Timer is enabled	Fast Lock Up Mode

B[12:0] : B (Programmable) counter value

D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	Function	Remarks
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	1	1 Dec	Prohibited
0	0	0	0	0	0	0	0	0	0	0	1	0	2 Dec	Prohibited
0	0	0	0	0	0	0	0	0	0	0	1	1	3 Dec	
DATA														
1	1	1	1	1	1	1	1	1	1	1	0	1	8189 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	0	8190 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	1	8191 Dec	

AKM

A[5:0] : A (Swallow) counter value

D5	D4	D3	D2	D1	D0	Function	Remarks
0	0	0	0	0	0	0	
0	0	0	0	0	1	1 Dec	
0	0	0	0	1	0	2 Dec	
0	0	0	0	1	1	3 Dec	
DATA							
1	1	1	1	0	1	61 Dec	
1	1	1	1	1	0	62 Dec	
1	1	1	1	1	1	63 Dec	

* Requirements for $\mathrm{A}[5: 0]$ and $\mathrm{B}[12: 0]$

The data at $\mathrm{A}[5: 0]$ and $\mathrm{B}[12: 0]$ must meet the following requirements:

$$
\mathrm{A}[5: 0] \geq 0, \mathrm{~B}[12: 0] \geq 3, \mathrm{~B}[12: 0] \geq \mathrm{A}[5: 0]
$$

See "Frequency Setup" in section "Block Functional Descriptions" for details of the relationship between a frequency division number N and the data at $\mathrm{A}[5: 0]$ and $\mathrm{B}[12: 0]$.

AKM

< Address2 : Function >

D[21:20]	D19	$\mathrm{D}[18: 16]$	$\mathrm{D}[15: 13]$	$\mathrm{D}[12: 9]$	$\mathrm{D}[8: 7]$
PRE[1:0]	PD2	$\mathrm{CP} 2[2: 0]$	$\mathrm{CP} 1[2: 0]$	TIMER[3:0]	FAST[1:0]

D6	D5	D[4:2]	D1	D0	Address
CPHIZ	CPPOLA	LD[2:0]	PD1	CNTR_RST	02

$\operatorname{PRE}[1: 0]$: Selects a dividing ratio for the prescaler

The prescaler value should be chosen so that the prescaler output frequency is always less than or equal to 300 MHz .

D21	D20	Function	Remarks
0	0	$\mathrm{P}=8$, Dual modulus prescaler 8/9	
0	1	$\mathrm{P}=16$, Dual modulus prescaler 16/17	
1	0	$\mathrm{P}=32$, Dual modulus prescaler 32/33	
1	1	$\mathrm{P}=64$, Dual modulus prescaler 64/65	

PD2, PD1 : Power Down Select

[PDN]	<Address2>		Function	
	\{PD2	\{PD1 \}		
"Low"	X	X	Power Down	
"High"	X	0	Normal Operation	
"High"	0	1	VBG \& LDO : Power UP Synthesizer Circuits : Asynchronous Power Down	
"High"	1	1	VBG \& LDO : Power UP Synthesizer Circuits : Synchronous Power Down	

$\{P D 2\}=1$ and $\{P D 1\}=1$:
Synthesizer circuits powers down at the timing when the Phase detector frequency signal reverses
$\{P D 2\}=0$ and $\{P D 1\}=1$:
Synthesizer circuits goes into Power Down during the rise up of LE signal that latches 1 into \{PD1\}.

AKM

CP2[2:0] : Charge pump current setting 2

CP1[2:0] : Charge pump current setting 1

AK1546 provides two setting for charge pump current. They can be set by \{CP1\} and \{CP2\}.

The following formula shows the relationship among the resistance value, the register setting and the electric current that is used for LPF band calculation (tran_Icp).

$$
\text { tran_Icp }[A]=\text { Icp_min }[A] \times(\{C P 1\} \text { or }\{C P 2\} \text { setting }+1)
$$

Charge pump minimum current (Icp_min)[A]

$$
=(0.85 \times 1.164 \times 15) / \text { Resistance connected to the BIAS pin }[\Omega]
$$

The following table shows the typical tran_Icp for each status.

tran_Icp (typical)						[Unit : $\mu \mathrm{A}]$
D18	D17	D16	Bias Resistance			Remarks
D15	$\mathbf{D 1 4}$	$\mathbf{D 1 3}$	$\mathbf{3 3} \mathbf{k} \boldsymbol{\Omega}$	$\mathbf{2 7} \mathbf{k} \boldsymbol{2}$	$\mathbf{2 2} \mathbf{k} \boldsymbol{\Omega}$	
0	0	0	450	550	675	
0	0	1	900	1100	1350	
0	1	0	1350	1650	2025	
0	1	1	1800	2200	2700	
1	0	0	2250	2750	3375	
1	0	1	2700	3300	4050	
1	1	0	3150	3850	4725	
1	1	1	3600	4400	5400	

The following formula shows the relationship among the resistance value, the register setting and the electric current that can be measured (Icp).

Charge pump minimum current (Icp_min)[A]

$$
=(1.164 \times 15) / \text { Resistance connected to the BIAS pin }[\Omega]
$$

Charge pump current $(\mathrm{Icp})[\mathrm{A}]=\mathrm{Icp} _\min [\mathrm{A}] \times(\{\mathrm{CP} 1\}$ or $\{\mathrm{CP} 2\}$ setting +1$)$

AKM

The following table shows the typical Icp for each status.

