imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Asahi KASEI ASAHI KASEI MICRODEVICES

AKM

AK1548

8GHz Low Noise Integer-N Frequency Synthesizer

1. Overview

The AK1548 is an Integer-N PLL (Phase Locked Loop) frequency synthesizer, covering a wide range of frequency from 1GHz to 8GHz. Consisting of a highly accurate charge pump, a reference divider, a programmable divider and a dual-modulus prescaler (P/P+1), this product provides high performance, very low Phase Noise and small footprints.

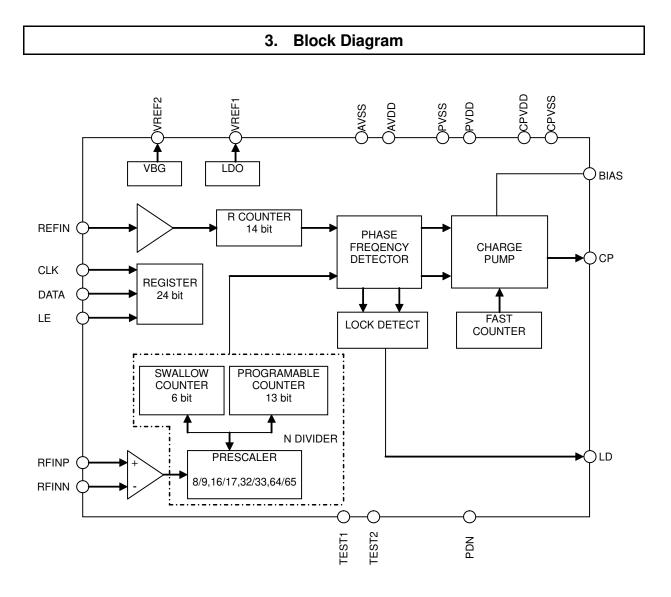
An ideal PLL can be achieved by combining the AK1548 with the external loop filter and VCO (Voltage Controlled Oscillator). Access to the registers is controlled via a 3-wire serial interface. The operating supply voltage is from 2.7V to 3.3V, and the charge pump circuit and the serial interface can be driven by individual supply voltage.

	2.	Features
Operating frequency :		1GHz to 8GHz
Programmable charge pump current :		650μA to 5200μA typical with 8steps
		The current range can be controlled by an external resistor.
Fast lock mode for improved lock time :		The programmable timer can switch two charge pump
		current setting.
Supply Voltage :		2.7 to 3.3 V (PVDD, AVDD pins)
Separate Charge Pump Power Supply :		PVDD to 5.5V (CPVDD pin)
Excellent Phase Noise :		-226dBc/Hz
On-chip lock detection feature of PLL :		Selectable Phase Frequency Detector (PFD) Output or
		Digital filtered lock detect
Package :		20pin QFN (0.5mm pitch, 4mm \times 4mm \times 0.75mm)
Operating temperature :		-40°C to 85°C

AKM

- Table of Contents -

1.	Overview	
2.	Features	1
З.	Block Diagram	
4.	Pin Functional Description and Assignments	
5.	Absolute Maximum Ratings	
6.	Recommended Operating Range	
7.	Electrical Characteristics	7
8.	Block Functional Descriptions	11
9.	Register Map	19
10.	Function Description - Registers	21
11.	IC Interface Schematic	31
12.	Recommended Connection Schematic of Off-Chip Component	33
13.	Block Power-Up Timing Chart (Recommended Flow)	35
14.	Frequency Change Timing Chart (Recommended Flow)	37
15.	Typical Evaluation Board Schematic	38
16.	Outer Dimensions	39
17.	Marking	40


In this specification, the following notations are used for specific signal and register names.

[Name] : Pin name

- <Name> : Register group name (Address name)
- {Name} : Register bit name

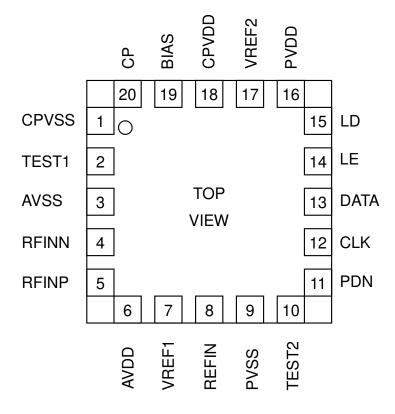
[AK1548]

4. Pin Functional Description and Assignments

1. Pin Functions

No.	Name	I/O	Pin Functions	Power down (Note 1)	Remarks
1	CPVSS	G	Charge pump ground		
2	TEST1	DI	Test pin 1		Internal pull-down, Schmidt trigger input
3	AVSS	G	Analog ground		
4	RFINN	AI	Complementary input to the RF Prescaler		
5	RFINP	AI	Input to the RF Prescaler		
6	AVDD	Р	Power supply for analog blocks		
7	VREF1	AO	Connect reference voltage capacitor for LDO	"Low"	
8	REFIN	AI	Reference signal input		
9	PVSS	G	Peripherals ground		
10	TEST2	DI	Test pin 2		Internal pull-down, Schmidt trigger input
11	PDN	DI	Power down		
12	CLK	DI	Serial clock input		Schmidt trigger input
13	DATA	DI	Serial data input		Schmidt trigger input
14	LE	DI	Load enable input		Schmidt trigger input
15	LD	DO	Lock detect output	"Low"	
16	PVDD	Р	Power supply for peripherals		
17	VREF2	AO	Connect reference voltage capacitor	"Low"	
18	CPVDD	Р	Power supply for charge pump		
19	BIAS	AIO	Resistance pin for setting charge pump current		
20	СР	AO	Charge pump output	"Hi-Z"	

Note 1) "Power Down" means the state of [PDN]="Low" after power on.


Note 2) The exposed pad at the center of the backside should be connected to ground.

The following table shows the meaning of abbreviations used in the "I/O" column.
--

AI: Analog input pin	AO: Analog output pin	AIO: Analog I/O pin	DI: Digital input pin
DO: Digital output pin	P: Power supply pin	G: Ground pin	

2. Pin Assignments

20pin QFN (0.5mm pitch, 4mm × 4mm)

Parameter	Symbol	Min.	Max.	Unit	Remarks
Cumply Valtage	VDD1	-0.3	3.6	V	[AVDD], [PVDD] (Note 1)
Supply Voltage	VDD2	-0.3	6.5	V	[CPVDD] (Note 1)
Ground Level	VSS1	0	0	V	[AVSS], [PVSS]
Ground Level	VSS2	0	0	V	[CPVSS]
Analog Input Voltage	VAIN	VSS1-0.3	VDD1+0.3	V	[RFINN], [RFINP], [REFIN] (Notes 1 & 2)
Digital Input Valtage	VDIN	VSS1-0.3	VDD1+0.3	V	[CLK], [DATA], [LE], [PDN], [TEST1],
Digital Input Voltage	VDIN	V331-0.3	VDD1+0.3	v	[TEST2] (Notes 1 & 2)
Input Current	IIN	-10	10	mA	
Storage Temperature	Tstg	-55	125	°C	

5. Absolute Maximum Ratings

Note 1) 0V reference for all voltages.

Note 2) Maximum must not be over 3.6V.

Exceeding these maximum ratings may result in damage to the AK1548. Normal operation is not guaranteed at these extremes.

6. Recommended Operating Range

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Operating Temperature	Та	-40		85	°C	
Supply Voltage	VDD1	2.7	3.0	3.3	V	Applied to the [AVDD],[PVDD] pins
Supply Voltage	VDD2	VDD1	5.0	5.5	V	Applied to the [CPVDD] pin

Note 1) VDD1 and VDD2 can be driven individually within the Recommended Operating Range.

Note 2) All specifications are applicable within the Recommended Operating Range (Operating Temperature / Supply Voltage).

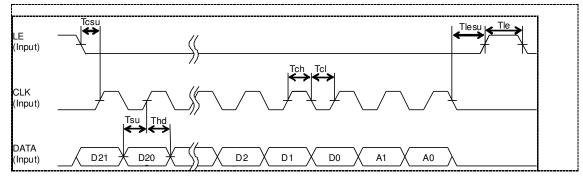
7. Electrical Characteristics

1. Digital DC Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Remarks
High level input voltage	Vih		0.8×VDD1			V	Note 1)
Low level input voltage	Vil				0.2×VDD1	V	Note 1)
High level input current 1	lih1	Vih = VDD1=3.3V	-1		1	μA	Note 2)
High level input current 2	lih2	Vih = VDD1=3.3V	17	33	66	μA	Note 3)
Low level input current	lil	Vil = 0V, VDD1=3.3V	-1		1	μA	Note 1)
High level output voltage	Voh	loh = -500μA	VDD1-0.4			V	Note 4)
Low level output voltage	Vol	lol = 500µA			0.4	V	Note 4)

Note 1) Applied to the [CLK], [DATA], [LE], [PDN], [TEST1] and [TEST2] pins.

Note 2) Applied to the [CLK], [DATA], [LE] and [PDN] pins.


Note 3) Applied to the [TEST1] and [TEST2] pins.

Note 4) Applied to the [LD] pin.

2. Serial Interface Timing

<Write-In Timing>

Serial Interface Timing Chart

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks		
Clock L level hold time	Tcl	25			ns			
Clock H level hold time	Tch	25			ns			
Clock setup time	Tcsu	10			ns			
Data setup time	Tsu	10			ns			
Data hold time	Thd	10			ns			
LE setup time	Tlesu	10			ns			
LE pulse width	Tle	25			ns			

Serial Interface Timing

3. Analog Circuit Characteristics

The resistance of $27k\Omega$ is connected to the [BIAS] pin.

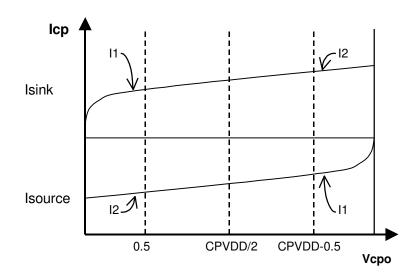
VDD1=2.7V to 3.3V, VDD2=VDD1 to 5.5V,-40°C≤Ta≤85°C, unless otherwise specified.

Parameter	Min.	Тур.	Max.	Unit	Remarks		
	RF Characteristics						
Input Sensitivity	-5		5	dBm			
Input Frequency	1000		8000	MHz			
	REFIN (Characte	ristics				
Input Sensitivity	0.4		VDD1	Vpp	REFIN≤200MHz		
	0.4		2	Vpp	REFIN>200MHz		
Input Frequency	10		300	MHz			
Maximum Allowable Prescaler Output Frequency			300	MHz			
	Pha	se Detec	tor				
Phase Detector Frequency			104	MHz			
	Cha	arge Pun	ıp				
Charge Pump Maximum Value		5200		μA			
Charge Pump Minimum Value		650		μA			
Icp TRI-STATE Leak Current		1		nA	0.7≤Vcpo≤VDD2-0.7, Ta=25°C Vcpo : CP terminal voltage		
Mismatch between Source and Sink Currents (Note 1)			10	%	Vcpo=VDD2/2, Ta=25°C		
Icp vs. Vcpo (Note 2)			15	%	0.5≤Vcpo≤VDD2-0.5, Ta=25°C		
	R	egulator					
VREF1 Rise Time			10	ms	Connect 470nF Capacitance at VREF2 Pin		
VREF2 Rise Time			10	ms	Connect 470nF Capacitance at VREF2 Pin		
	Current	Consun	nption				
IDD1			10	μA	[PDN]="0"		
IDD2		16	26	mA	[PDN]="1", {PD}=0, IDD for VDD1		
IDD3 (Note 4)		0.8	1.6	mA	[PDN]="1", {PD}=0, IDD for VDD2		
IDD4		0.55	0.9	mA	[PDN]="1", {PD}=1, IDD for VDD1		

Note 1) Mismatch between Source and Sink Currents : $[(|Sink|-|Source|)/{(|Sink|+|Source|)/2}] \times 100 [\%]$

Note 2) See "Charge Pump Characteristics - Voltage vs. Current". Vcpo is the output voltage at [CP].

lcp vs. Vcpo : [{1/2×(|I1|-|I2|)}/{1/2×(|I1|+|I2|)}]×100 [%]



Note 3) When [PDN] is "1", the total power supply current of the AK1548 is "IDD2+IDD3+ Charge pump current".

Note 4) The current depending on Phase Detector Frequency isn't included. IDD3 is the stationary current that charge pump circuit consumes.

Resistance Connected to the BIAS Pin for Setting Charge Pump Output Current

Parameter	Min.	Тур.	Max.	Unit	Remarks
BIAS resistance	22	27	33	kΩ	

Charge Pump Characteristics - Voltage (Vcpo) vs. Current (Icp)

8. Block Functional Descriptions

1. Frequency Setup

The following formula is used to calculate the frequency setting for the AK1548.

Frequence	Frequency setting (external VCO output frequency) = F _{PFD} x N				
Where :					
	Ν	: Dividing number N = [(P x B) + A]			
	F_{PFD}	: Phase detector frequency F_{PFD} = [REFIN] pin input frequency / R counter dividing number			
	Р	: Prescaler Value (See < Address2>:{Pre[1:0]})			
	В	: B (Programmable) counter value (See <address1>:{B[12:0]})</address1>			
	А	: A (Swallow) counter value (See <address1>:{A[5:0]})</address1>			

Calculation example

The output frequency of external reference frequency oscillator is 10MHz, and F_{PFD} is 1MHz and VCO frequency is 7400MHz.

AK1548 setting :

R (Reference counter)=10000000/1000000 = 10 (<Address0>:{R[13:0]}= "10")

P=32 (<Address2>:{PRE[1:0]}="10Bin")

B=231 (<Address1>:{B[12:0]}="231")

A=8 (<Address1>:{A[5:0]}="8")

Frequency setting = $1M \times [(32 \times 231) + 8] = 7400MHz$

Lower limit for setting consecutive dividing numbers

In the AK1548, it is not possible to set consecutive dividing numbers below the lower limit.

(The lower limit is determined by a dividing number set for the prescaler.)

The following table shows an example where consecutive dividing numbers below the lower limit cannot be set. The consecutive dividing numbers can be set when $B \ge P-1$.

P=8 (Dual modulus prescaler 8/9)

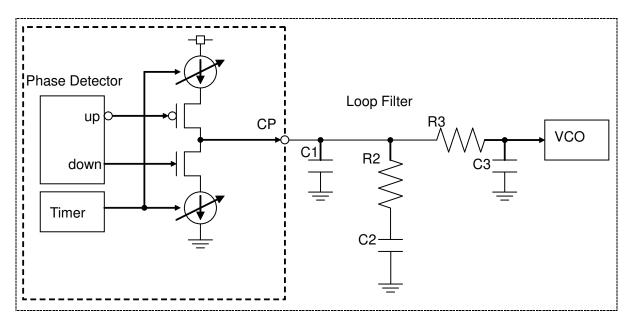
Р	B[12:0]	A[5:0]	N [(P×B) + A]	Remarks
8	6	6	54	55 cannot be set as an N divider.
8	7	0		This is the lower limit. 56 or over can consecutively be set as an N divider.
8	7	1	57	
•	•	•	•	
8	100	9	809	
•	•	•	•	
8	8191	62	65590	
8	8191	63	65591	

P=16 (Dual modulus prescaler 16/17)

Р	B[12:0]	A[5:0]	N [(P×B) + A]	Remarks
16	14	14	238	239 cannot be set as an N divider.
16	15	0	240	This is the lower limit. 240 or over can consecutively be set as an N divider.
16	15	1	241	
•	•	•	•	
16	4099	7	65591	
•	•	•	•	
16	8191	62	131118	
16	8191	63	131119	

P=32 (Dual modulus prescaler 32/33)

Р	B[12:0]	A[5:0]	N [(P×B) + A]	Remarks
32	30	30	990	991 cannot be set as an N divider.
32	31	0	992	This is the lower limit. 992 or over can consecutively be set as an N divider.
32	31	1	993	
•	•	•	•	
32	4097	15	131119	
•	•	•	•	
32	8191	62	262174	
32	8191	63	262175	


Р	B[12:0]	A[5:0]	N [(P×B) + A]	Remarks
64	62	62	4030	4031 cannot be set as an N divider.
64	63	0	4032	This is the lower limit. 4032 or over can consecutively be set as an N divider.
64	63	1	4033	
•	•	•	•	
64	4096	31	262175	
•	•	•	•	
64	8191	62	524286	
64	8191	63	524287	

P=64 (Dual modulus prescaler 64/65)

ΑΚΜ

2. Charge Pump, Loop Filter

The current setting of charge pump and loop filter can switch with the built-in timer for Fast Lock.

Loop Filter Schematic

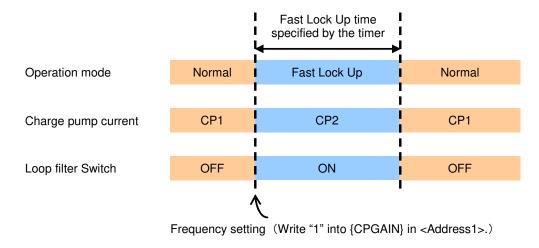
The charge pump current for normal operation (CP1) is determined by the setting in {CP1[2:0]}, which is a 3-bit address of {D[15:13]} in <Address2> and a value of the resistance connected to the [BIAS] pin. The charge pump current for the Fast Lock Up mode operation (CP2) is determined by the setting in {CP2[2:0]}, which is a 3-bit address of D[18:16] in <Address2> and a value of the resistance connected to the [BIAS] pin.

The following formula shows the relationship among the resistance value, the register setting and the electric current value.

charge pump minimum current (lcp_min) [A] =17.46 / Resistance connected to the BIAS pin [Ω] charge pump current (lcp) [A] = lcp_min [A] × ({CP1} or {CP2} setting +1)

The allowed value range for the resistance connected to the [BIAS] pin is from 22 to $33k\Omega$ for both normal and Fast Lock Up mode operations.

AKM


3. Fast Lock Up Mode

Setting {FAST[1:0]} in <Address2> to "11Bin" and {CPGAIN} in <Address1> to "1" enables the Fast Lock Up mode for the AK1548.

The Fast Lock Up mode is enabled only during the time period set by the timer according to the counter value in {TIMER[3:0]} in <Address2>. The charge pump current is set to the value specified by {CP2}. When the specified time period elapses, the Fast Lock Up mode operation is switched to the normal operation, and {CPGAIN} in <Address1> is reset to "0".

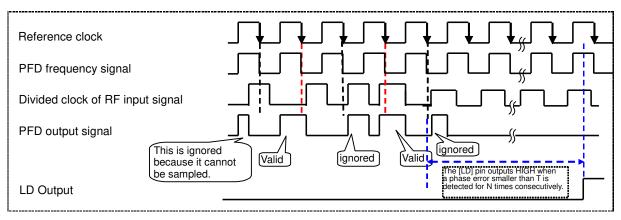
{TIMER[3:0]} in <Address2> is used to set the time period for this mode. The following formula is used to calculate the time period :

Switchover time = 1 /F_{PFD} × Counter Value Counter Value = 3 + (Timer[3:0] setting × 4)

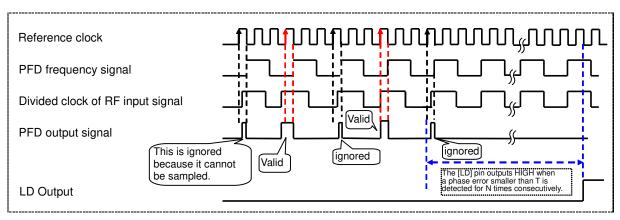
Fast Lock Up Mode Timing Chart

4. Lock Detect

Lock detect output can be selected by {LD[2:0]} in <Address2>. When {LD} is set to "101Bin", the phase detector outputs an unmanipulated phase detection (comparison) result. (This is called "analog lock detect".) When {LD} is set to "001Bin", the lock detect signal is output according to the on-chip logic. (This is called "digital lock detect".)

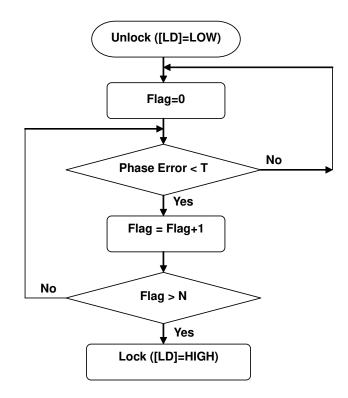

The lock detect can be done as following:

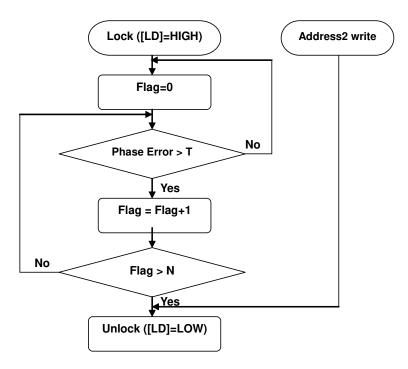
The [LD] pin is in unlocked state (which outputs "LOW") when a frequency setup is made.


In the digital lock detect, the [LD] pin outputs "HIGH" (which means the locked state) when a phase error smaller than a cycle of [REFIN] clock (T) is detected for N times consecutively. When a phase error larger than T is detected for N times consecutively while the [LD] pin outputs "HIGH", then the [LD] pin outputs "LOW" (which means the unlocked state). The counter value N can be set by {LDP} in <Address0>. The N is different between "unlocked to locked" and "locked to unlocked".

{LDP}	unlocked to locked	locked to unlocked						
0	N=15	N=3						
1	N=31	N=7						

The lock detect signal is shown below:


Case of "R = 1"


Case of "R > 1"

Digital Lock Detect Operations

AKM

Lock to Unlock Operation Flow

5. Reference counter

The reference input can be set with a dividing number in the range of 1 to 16383 using {R [13:0]}, which is an 14-bit address of {D[13:0]} in <Address0>. 0 cannot be set as a dividing number.

6. Prescaler

The dual modulus prescaler (P/P+1) and the swallow counter are used to provide a large dividing ratio. The prescaler is set by {PRE[1:0]}, which is a 2-bit latch of {D[21:20]} in <Address2>.

> {PRE[1:0]}="00Bin", P=8, Dual modulus prescaler 8/9 {PRE[1:0]}="01Bin", P=16, Dual modulus prescaler 16/17 {PRE[1:0]}="10Bin", P=32, Dual modulus prescaler 32/33 {PRE[1:0]}="11Bin", P=64, Dual modulus prescaler 64/65

The maximum prescaler output frequency is 300MHz. P should be set as "RF Input Frequency /P ≤ 300MHz".

7. Power-down and Power-save mode

It is possible to operate in the power-down or power-save mode if necessary by using the external control pin.

Power On

Follow the power-up sequence.

Normal Operation

	<addr< th=""><th>ess2></th><th>Function</th></addr<>	ess2>	Function						
[PDN]	{PD2}	{PD1}	Function						
"Low"	, X X		Power Down						
"High"	Х	0	Normal Operation						
"High"		4	VBG & LDO : Power UP						
"High"	0	1	Synthesizer Circuits : Asynchronous Power Down						
"High"	4	1	VBG & LDO : Power UP						
"High"		I	Synthesizer Circuits : Synchronous Power Down						

X : Don't care

9. Register Map

Name	Data	Address			
R Counter		0	0		
N Counter (A and B)	D21 - D0	0	1		
Function	D21 - D0	1	0		
Initialization		1	1		

Name	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Addr ess
R Count	0	0	0	LDP	0	0	Low Noise	0	R [13]	R [12]	R [11]	R [10]	R [9]	R [8]	R [7]	R [6]	R [5]	R [4]	R [3]	R [2]	R [1]	R [0]	0x0
N Count	0	0	CP GAIN	B [12]	B [11]	B [10]	B [9]	B [8]	B [7]	B [6]	B [5]	B [4]	B [3]	B [2]	B [1]	B [0]	A [5]	A [4]	A [3]	A [2]	A [1]	A [0]	0x1
Func.	PRE [1]	PRE [0]	PD2	CP2 [2]	CP2 [1]	CP2 [0]	CP1 [2]	CP1 [1]	CP1 [0]	TIME R [3]	TIME R [2]	TIME R [1]	TIME R [0]	FAST [1]	FAST [0]	CP HiZ	CP POLA	LD [2]	LD [1]	LD [0]	PD1	CNTR RST	0x2
Initial.	PRE [1]	PRE [0]	PD2	CP2 [2]	CP2 [1]	CP2 [0]	CP1 [2]	CP1 [1]	CP1 [0]	TIME R [3]	TIME R [2]	TIME R [1]	TIME R [0]	FAST [1]	FAST [0]	CP HiZ	CP POLA	LD [2]	LD [1]	LD [0]	PD1	CNTR RST	0x3

Notes for writing into registers

After powers on AK1548, the initial register value is not defined. It is required to write the data in all addresses in order to commit it.

[Examples of writing into registers]

(Ex. 1) Power-On

- Bring [PDN] to "0 (Low)"
- Apply VDD
- Program Address0, Address1 and Address2
- Bring [PDN] to "1 (High)"
- Program {PD1} in Address 2 to "0"

(Ex. 2) Changing frequency settings : Initialization

- Program Address3
- Program Address1

(Ex. 3) Changing frequency settings : Counter reset

- Program Address2. As part of this, load "1" to both {PD1} and {CNTR_RST}.
- Program Address1
- Program Address2. As part of this, load "0" to both {PD1} and {CNTR_RST}.

(Ex. 4) Changing frequency settings : PDN pin method

- Bring [PDN] to "0 (Low)"
- Program Address1
- Bring [PDN] to "1 (High)"

10. Function Description - Registers

< Address0 : R Counter >

D[21:19]	D18	D[17:14]	D[13:0]	Address	
0	LDP	0	R[13:0]	00	

D[21:19], D[17:14] : These bits are set to the following for normal operation

D21	D20	D19	D17	D16	D15	D14
0	0	0	0	0	0	0

LDP : Lock Detect Precision

The counter value for digital lock detect can be set.

D18	Function	Remarks					
0	15 times Count	unlocked to locked					
0	3 times Count	locked to unlocked					
4	31 times Count	unlocked to locked					
1	7 times Count	locked to unlocked					

R[13:0] : Reference clock division number

The following settings can be selected for the reference clock division.

The allowed range is 1 (1/1 division) to 16383 (1/16383 division). 0 cannot be set.

The maximum frequency for F_{PFD} is 104MHz.

D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function	Remarks
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1/1 division	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1/2 division	
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1/3 division	
0	0	0	0	0	0	0	0	0	0	0	1	0	0	1/4 division	
	DATA														
1	1	1	1	1	1	1	1	1	1	1	1	0	1	1/16381 division	
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1/16382 division	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1/16383 division	

< Address1 : N Counter >

D[21:20]	D19	D[18:6]	D[5:0]	Address
0	CPGAIN	B[12:0]	A[5:0]	01

D21, D20 : These bits are set to the following for normal operation

D21	D20
0	0

CPGAIN : Sets the charge pump current

When {FAST[1:0]} is NOT "11Bin" :

D19	Function	Remarks
0	CP1 is enabled	
1	CP2 is enabled	

When {FAST[1:0]} is "11Bin" :

D19	Function	Remarks
0	CP1 is enabled	
4	CP2 is enabled, also	
1	Timer is enabled	

B[12:0] : B (Programmable) counter value

D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	Function	Remarks
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Prohibited
0	0	0	0	0	0	0	0	0	0	0	0	1	1 Dec	Prohibited
0	0	0	0	0	0	0	0	0	0	0	1	0	2 Dec	Prohibited
0	0	0	0	0	0	0	0	0	0	0	1	1	3 Dec	
	DATA													
1	1	1	1	1	1	1	1	1	1	1	0	1	8189 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	0	8190 Dec	
1	1	1	1	1	1	1	1	1	1	1	1	1	8191 Dec	

A[5:0] : A (Swallow) counter value

D5	D4	D3	D2	D1	D0	Function	Remarks
0	0	0	0	0	0	0	
0	0	0	0	0	1	1 Dec	
0	0	0	0	1	0	2 Dec	
0	0	0	0	1	1	3 Dec	
		DA	ΤA				
1	1	1	1	0	1	61 Dec	
1	1	1	1	1	0	62 Dec	
1	1	1	1	1	1	63 Dec	

* Requirements for A[5:0] and B[12:0]

The data at A[5:0] and B[12:0] must meet the following requirements:

A[5:0] ≥ 0, B[12:0] ≥ 3, B[12:0] ≥ A[5:0]

See "Frequency Setup" in section "Block Functional Descriptions" for details of the relationship between a frequency division number N and the data at A[5:0] and B[12:0].

< Address2 : Function >

D[21:20]	D19	D[18:16]	D[15:13]	D[12:9]	D[8:7]
PRE[1:0]	PD2	CP2[2:0]	CP1[2:0]	TIMER[3:0]	FAST[1:0]

D6	D5	D[4:2]	D1	D0	Address
CPHIZ	CPPOLA	LD[2:0]	PD1	CNTR_RST	02

PRE[1:0] : Selects a dividing ratio for the prescaler

The prescaler value should be chosen so that the prescaler output frequency is always less than or equal to 300MHz.

D21	D20	Function	Remarks			
0	0	P=8, Dual modulus prescaler 8/9				
0	1	P=16, Dual modulus prescaler 16/17				
1	0	P=32, Dual modulus prescaler 32/33				
1	1	P=64, Dual modulus prescaler 64/65				

PD2, PD1 : Power Down Select

	<address2></address2>		Function
[PDN]	{PD2}	{PD1}	Function
"Low"	Х	Х	Power Down
"High"	Х	0	Normal Operation
"High"	0	4	VBG & LDO : Power UP
підп	"High" 0		Synthesizer Circuits : Asynchronous Power Down
"High"			VBG & LDO : Power UP
"High"		1	Synthesizer Circuits : Synchronous Power Down

X : Don't care (recommended "0")

{PD2}=1 and {PD1}=1 : Synthesizer circuits powers down at the timing when the Phase detector frequency signal reverses.

{PD2}=0 and {PD1}=1 : Synthesizer circuits goes into Power Down during the rise up of LE signal that latches 1 into {PD1}.