imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Up Converter Mixer with AK1575 Fractional-N Frequency Synthesizer and VCO

1. Overview

AK1575 is the up-converter mixer with fractional-N frequency synthesizer and integrated VCO. AK1575 is targeted at the application that requires a high linearity performance in frequency conversion. The mixer block is comprised of the differential input and the differential output. Input frequency range is from 20MHz to 1000MHz and output frequency range is from 690MHz to 4000MHz. The current consumption and the analog performance can be adjusted by a resistance connected to BIAS pin. The power supply voltage of mixer covers 4.75 to 5.25V.

The local signal output frequency range is from 262.5MHz to 4400MHz generated by internal VCO, synthesizer and divider. Not only a local signal is supplied to an internal mixer, but also can be taken to outside. A power supply voltage range of VCO/synthesizer is 2.7V to 3.6V or 4.75V to 5.25V. The CPU interface is 24bit serial data and its voltage is ranging from 2.7V to 5.25V

	2.	Features
General		
	RF output frequency Range	690MHz to 4.0GHz
	IF input frequency Range	20MHz to 1000MHz
	LO frequency Range	262.5MHz to 4.4GHz
	Supply Voltage :	4.75V to 5.25 V (Mixer)
		2.7 to 3.6V / 4.75 to 5.25V (Synthesizer /VCO)
	Current Consumption:	150mA typ.
	Package:	32pin QFN (0.5mm pitch, 5mm \times 5mm \times 0.85mm)
	Operating Temperature :	-40°C ~ 85°C
Synthes	izer/VCO	
	Normalized Phase Noise	-218dBc/Hz
	Phase Noise	-111dBc/Hz @100kHz f _o =2.1GHz
Mixer (f	f _{rf} =2GHz)	
	Conversion Gain	-1.5dB typ.
	Input 3 rd orders intercept point	+24dBm typ.
	Noise Figure	13dB typ.
Applica	tion	
Mi	crowave Radio Link	
Ce	llular BTS / Repeater	

3. Table of Content

Overview	1
Features	1
Table of Content	2
Block Diagram and Function	
Pin function Description and Assignment	4
Absolute Maximum Rating	
Recommended Operating Range	7
Electrical Characteristics	7
Block Functional Descriptions	11
Loop filter /Charge Pump	12
Register Map	13
Lock Detect	22
Frequency Setup	25
Fast Lock mode	26
VCO	27
Power up Sequence	28
Typical Evaluation Board Schematic	29
Interface Circuit	31
Outer Dimensions	33
Marking	34
	Overview Features Table of Content Table of Content Block Diagram and Function Pin function Description and Assignment Absolute Maximum Rating Recommended Operating Range Electrical Characteristics Block Functional Descriptions Loop filter /Charge Pump Register Map Lock Detect Frequency Setup Fast Lock mode VCO Power up Sequence Typical Evaluation Board Schematic Interface Circuit Outer Dimensions

Fig. 1 Block diagram

Block function description

Block	Function
Mixer	Frequency Mixer which converts RF signal to IF signal
N divider	Frequency divider which divides the signal of VCO and pass it to phase frequency detector
$\Delta\Sigma$ Modulator	Control the modulus of N divider and realize fractional dividing
R counter	Frequency divider which divides the signal of reference clock and pass it to phase frequency detector
PFD (Phase Frequency Detector)	Detect a phase difference between the divided VCO signal and comparison frequency, and then drive the charge pump
Charge Pump	Output the electric charge according to the phase difference detected by PFD
VCO	The voltage controlled oscillator divided into three bands

5. Pin function Description and Assignment

1. Pin Functions

No	Name	I/O	Pin function	Power Down	Remarks
1	VREF1	AO	Connecting a capacitor to the ground plane		
2	PVDD	Р	Synthesizer Power Supply		
3	GND	G			
4	MIXBIAS	AI	Connecting a resistor to the ground plane		
5	MIXINN	AI	Mixer Input		
6	MIXINP	AI	Mixer complementary Input		
7	MIXVDD	Р	Mixer Power Supply		
8	LOVDD	Р	Mixer Local Power Supply		
9	MIXOUTP	AO	Mixer Output		Open collector
10	MIXOUTN	AO	Mixer complementary Output		Open collector
11	PDN	DI	Power Control A logic low on this pin powers down the device		Schmidt trigger input
12	LE	DI	Load Enable		Schmidt trigger input
13	CLK	DI	Serial Clock Input		Schmidt trigger input
14	DATA	DI	Serial Data Input		Schmidt trigger input
15	LD	DO	Lock Detect Output	LOW	
16	SVDD	Р	Interface Power Supply		
17	LOP	AIO	Local complementary Input / Output		
18	LON	AIO	Local Input / Output		
19	OAVDD	Р	Local Output Amplifier Power Supply		
20	GND	G			
21	VCNT	AI	Control Input to VCO		
22	VREF2	AO	Connecting a capacitor to the ground plane		
23	GND	G			
24	VCOVDD	Р	VCO Power Supply		
25	CPBIAS	AI	Connecting a resistor to the ground plane		
26	СР	AO	Charge Pump Output	Tri-St ate	
27	GND	G			
28	CPVDD	Р	Charge Pump Power Supply		
29	CPBUFVDD	Р	Charge Pump Pre-Buffer Power Supply		

No	Name	I/O	Pin function	Power Down	Remarks
30	TEST1	DI	Test enable A logic low on this pin test mode the device.		Pull Down Schmidt trigger input
31	TEST2	DI	Test enable A logic low on this pin test mode the device.		Pull Down Schmidt trigger input
32	REFIN	AI	Reference Input		

Note 1) The exposed pad at the center of the backside should be connected to ground.

The following table shows the meaning of abbreviations used in the "I/O" column above.

AI:Analog input pin	AO:Analog output pin	AIO:Analog I/O pin	DI:Digital input pin
DO:Digital output pin	P: Power supply pin	G:Ground pin	

2. Pin Assignments

32pin QFN (0.5mm pitch, 5mm x 5mm)

Fig. 2 Package Pin Layout (Top View)

5

Parameter	Symbol	Min.	Max.	Unit	Remarks
	VDD1	-0.3	5.5	V	Note1, Note2
Supply Voltage	VDD2	-0.3	5.5	V	Note 3
	VDD3	-0.3	5.5	V	Note4
Ground Level	VSS	0	0	V	Note5
Maximum RF Input Level	RFPOW		12	dBm	Note6
Maximum Lo Input Level	LOPOW		12	dBm	Note7
Analog Input Voltage	VAIN	VSS-0.3	VDD3+0.3	V	Note1, Note8
Digital Input Voltage1	VDIN1	VSS-0.3	VDD1+0.3	V	Note1, Note9
Digital Input Voltage 2	VDIN2	VSS-0.3	VDD3+0.3	V	Note1, Note10
Input Current	IIN	-10	10	mA	
Storage Temperature	Tstg	-55	125	°C	

6. Absolute Maximum Rating

Note1 All voltage reference ground Level: 0V

Note2 Applied to the [SVDD] pin

Note3 Applied to the [MIXVDD] and [LOVDD] pins

Note4 Applied to the [CPVDD], [CPBUFVDD], [PVDD], [VCOVDD] and [OAVDD] pins

Note5 Applied to the All [GND] pins

Note6 Applied to the [MIXINP] and [MIXINN] pins

Note7 Applied to the [LOP] and [LON] pins

Note8 Applied to the [VCNT] and [REFIN] pins

Note9 Applied to the [CLK], [DATA], [LE] and [PDN] pins

Note10 Applied to the [TEST1] and [TEST2] pins

Exceeding these maximum ratings may result in damage to the AK1575. Normal operation is not guaranteed at these extremes.

٦

7. Recommended Operating Range										
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks				
Operating Temperature	Та	-40		85	°C					
	VDD1	2.7	3.0	5.25	V					
	VDD2	4.75	5	5.25	V					
Supply Voltage	ge	2.7	3	3.6	V					
	2003	4.75	5	5.25	V					

..... 7 0

Note1 Applied to the [SVDD] pin

Note2 Applied to the [MIXVDD] and [LOVDD] pins

Note3 Applied to the [CPVDD], [CPBUFVDD], [PVDD], [VCOVDD] and [OAVDD] pins

8. **Electrical Characteristics**

1. Digital DC Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Remarks
High level input	Vib					V	Note 1)
voltage	v 111		0.0× V DD1			v	Note 1)
Low level input	V/1					V	Nota 1)
voltage	VII				0.2×vDD1	V	Note 1)
High level input	T:1, 1	V:1 VDD1 5 25V	1		1		Note 1)
current 1	11111	VIII = VDD1 = 3.23V	-1		1	μΑ	Note 1)
High level input	Lih 2	V:h - VDD2-5 25V	27	52	106		Note 2)
current 2	11112	VIII = VDD2=3.23V	21	55	100	μΑ	Note 2)
Low level input	1:1	Vil = 0V,	1		1		Note 1)
current	111	VDD1=5.25V	-1		1	μΑ	Note 1)
High level output	Vah	Jah 500 A				V	Nata 2)
voltage	von	$1011 = -300 \mu A$	VDD1-0.4			V	inole 3)
Low level output	Val	Io1 - 500 A			0.4	V	Note 2)
voltage	VOI	$101 = 300 \mu A$			0.4	v	note 3)

Note1 Applied to the [CLK], [DATA], [LE], and [PDN] pins

Note2 Applied to the [TEST1] and [TEST2] pins

Note3 Applied to the [LD] pin

2. Serial Interface Timing

Fig.3 Serial Interface Timing

			0			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Clock L level hold time	Tcl	25			ns	
Clock H level hold time	Tch	25			ns	
Clock setup time	Tcsu	10			ns	
Data setup time	Tsu	10			ns	
Data hold time	Thd	10			ns	
LE setup time	Tlesu	10			ns	
LE pulse width	Tle	25			ns	

Serial Interface Timing

3. Analog Circuit Characteristics

VDD1=2.7~5.25V, VDD2=4.75~5.25V, VDD3=2.7~3.6V or 4.75~5.25V, -40°C < Ta < 85°C,

CPBIAS=27kohm, MIXBIAS=33kohm, IF input frequency=200MHz, Internal VCO using unless otherwise specified.

Item	Min.	Тур.	Max.	Unit	Remark
RF Frequency Range	690		4000	MHz	
IF Frequency Range	20		1000	MHz	
Internal LO Frequency Range	262.5		4400	MHz	
LO Input Level 1	5	0	.5	dBm	{MODE}=2,differential input
	-3	0	+3		or {MODE}=3
LO Input Level 2	-5		+1	dBm	{MODE}=2, single input
LO Output Level @1GHz		6		dBm	{LOLV}=3
		3		dBm	{LOLV}=2
		0		dBm	{LOLV}=1
		-6		dBm	{LOLV}=0
		Mi	xer		
Mixer Input impedance		50		Ω	with matching circuit
Mixer Output impedance		200		Ω	with matching circuit
Current Adjusting resistance	22	33	56	kΩ	Connect to [MIXBIAS] pin
		RFOUT	T=2GHz		
Conversion Gain	-4.5	-1.5	1.5	dB	
RF P1dB	7	10		dBm	
IIP2		70		dBm	
IIP3	20	24		dBm	guaranteed by design
NF		13	17	dB	guaranteed by design
Local Leakage LO-to-RF		-50		dBm	Use internal VCO
		-50		dBc	Use external Local
Local Leakage LO-to-IF		-80		dBm	Use internal VCO
		-70		dBc	Use external Local
		RFOUT	T=1GHz		
NF		11		dB	
		RFOUT	=4GHz		
NF		16		dB	

lte	em	Min.	Тур.	Max.	Unit	Remark			
		RE	FIN chara	acteristi	ics				
Input Sensitivi	ty	0.4		2	Vpp				
Input Frequence	су	10		300	MHz				
		Phas	e Freque	ncy Det	ector				
PFD frequency	7	1.2		40	MHz				
	Charge Pump								
CP Maximum	current		2400		μΑ				
CP Minimum o	current		300		μΑ				
Icp TRI-STAT	E leak current		1		nA	Ta=25°C			
CP Output Ran	ige	0.5		VDD3	V				
				-0.5					
CP current adju	usting	22	27	33	kO	Connect to [CPBIAS] pin			
resistance		22		55	K22	Connect to [CI DIA5] phi			
Normalized Ph	ase Noise		-218		dBc/Hz				
			VC	0					
Operating Free	luency Range	2100		3000	MHz	VCO1			
		3000		3400	MHz	VCO2			
		3400		4400	MHz	VCO3			
VCO sensitivit	У		fv×0.02		MHz/V	fv: Oscillation Frequency			
Phase Noise	10kHz offset		-85		dBc/Hz				
@2.1GHz	100kHz offset		-111		dBc/Hz				
	1MHz offset		-132		dBc/Hz				
	10MHz offset		-152		dBc/Hz				

Item	Min.	Тур.	Max.	Unit	Remark				
Current Consumption									
IDD1		1	2	mA	[PDN]="L"				
IDD2		140	200	mA	[PDN]="H",{MIXEN}=1, {MODE}=0,{DIV}=0				
IDD3		150	210	mA	[PDN]="H",{MIXEN}=1, {MODE}=0,{DIV}≥2				
IDD4		190	270	mA	[PDN]="H",{MIXEN}=1, {MODE}=1,{DIV}≥2				

9. Block Functional Descriptions

Operation Mode

Function	Pin		Registers		Operating state						
Function	[PDN]	{MIXEN}	MODE[1]	MODE[2]	Mixer	Synthesizer	VCO	Local Out			
StandBy1	"L"	Х	Х	Х	OFF	OFF	OFF	OFF			
Prohibited	"H"	0	0	0	OFF	ON	ON	OFF			
Func1	"H"	0	0	1	OFF	ON	ON	Output			
Func2	"H"	0	1	0	OFF	ON	OFF	Input			
StandBy2	"H"	0	1	1	OFF	OFF	OFF	OFF			
Func3	"H"	1	0	0	ON	ON	ON	OFF			
Func4	"H"	1	0	1	ON	ON	ON	Output			
Func5	"H"	1	1	0	ON	ON	OFF	Input			
Func6	"H"	1	1	1	ON	OFF	OFF	Input			

AK1575 operation is controlled as follows by the [PDN] pin and registers.

StandBy1:Stand-by mode. Current consumption is minimized. It is available to write to the registers.

Func1: VCO and Synthesizer are active and Local signal outputs from [LOP] and [LON] pins.

Func2:Only Synthesizer is active. PLL operation is available with the external VCO.

StandBy2: Stand-by mode. Current consumption is minimized. It is available to write to the registers. Func3: VCO, Synthesizer and Mixer are active.

Func4: VCO, Synthesizer and Mixer are active and Local signal outputs from [LOP] and [LON] pins.

Func5: Synthesizer and Mixer are active. PLL operation is available with the external VCO.

Func6: Only Mixer is active. A local signal needs to be input from [LOP] and [LON] pins.

Fig.4 Loop Filter Schematic

11. Register Map

Name	Data		Add	ress	
Freq1		0	0	0	1
Freq2	D19 - D0	0	0	1	0
Freq3		0	0	1	1
Function		0	1	0	0

Name	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Address
Freq1	0	0	0	VCO [1]	VCO [0]	DIV [1]	DIV [0]	0	INT [11]	INT [10]	INT [9]	INT [8]	INT [7]	INT [6]	INT [5]	INT [4]	INT [3]	INT [2]	INT [1]	INT [0]	0x01
Freq2	0	CP1 [2]	CP1 [1]	CP1 [0]	0	CP2 [2]	CP2 [1]	CP2 [0]	FRAC [11]	FRAC [10]	FRAC [9]	FRAC [8]	FRAC [7]	FRAC [6]	FRAC [5]	FRAC [4]	FRAC [3]	FRAC [2]	FRAC [1]	FRAC [0]	0x02
Freq3	R [7]	R [6]	R [5]	R [4]	R [3]	R [2]	R [1]	R [0]	MOD [11]	MOD [10]	MOD [9]	MOD [8]	MOD [7]	MOD [6]	MOD [5]	MOD [4]	MOD [3]	MOD [2]	MOD [1]	MOD [0]	0x03
Function	CALTM [3]	CALTM [2]	CALTM [1]	CALTM [0]	0	LDCNT SEL	LD	MTLD	FAST EN	FAST [3]	FAST [2]	FAST [1]	FAST [0]	CP HIZ	DSM ON	MIX EN	MODE [1]	MODE [0]	LOLV [1]	LOLV [0]	0x04

Notes for writing into registers

- 1) The setting of <Address 0x02> and <Address 0x03> is reflected to each circuit when writing to <Address 0x01>.
- 2) <Address 0x04> behavior is reflected by itself.

When AK1575 powers on, the initial registers value is not defined. It is required to write the data in all addresses in order to commit it.

D [16:15]

VCO[1:0] : Select VCO

In accordance with the used frequency, select the VCO.

VCO[1:0]	VCO oscillating range
Dec	Frequency
0	2.1GHz~3.0GHz
1	3.0GHz~3.4GHz
2	3.4GHz∼4.4GHZ
3	prohibited

D [14:13]

DIV[1:0] : LoDivider

In accordance with the used frequency, select the division number.

DIV[1:0]	LoDivider
Dec	Divide Number
0	No divide
1	2 divide
2	4 divide
3	8 divide

D [11:0]

INT[11:0] : NDivider

N divider divided number.

The allowed range is 35 to 4091.

< Address0x02:Freq2 >

D [18: 16]

CP1[2:0] : Set the charge pump current for normal status

D [14:12]

CP2[2:0] : Set the charge pump current for fast lock

CP1 is the charge pump current setting of the normal mode.

CP2 is the charge pump current setting of the fast lock mode

Charge pump current is determined by the following formula.

Charge pump current $[A] = \text{Icp}_{min} [A] \times (CP1 \text{ or } CP2 \text{ setting value+1})$

 $Icp_min [A] = 8.1 / R [ohm]$

R: the resistance value which is connected to [CPBIAS] pin

sharge pump current (typ) unit . µr						
CP1[2:0]		R				
CP2[2:0]	33kΩ	$27k\Omega$	$22k\Omega$			
0	245	300	368			
1	491	600	736			
2	736	900	1105			
3	982	1200	1473			
4	1227	1500	1841			
5	1473	1800	2209			
6	1718	2100	2577			
7	1964	2400	2945			

 $Charge \ pump \ current \ (typ) \quad unit: \mu A$

D [11:0]

FRAC[11:0]: Fractional Numerator determination

Set the Numerator of Fractional divider.

The allowed range is from 0 to (MOD[11:0] -1).

< Address0x03:Freq3 >

D[19:12]

R [7:0]: 8bit Reference Counter

Maximum PFD frequency is 40MHz

R[13:0]	Divide Ratio
0	Prohibited
1	1
2	2
3	3
4	4
•	•
•	•
•	•
253	253
254	254
255	255

D [11:0]

MOD[11:0]: Fractional Denominator determination

Set the denominator of Fractional divider.

The allowed range is from 2 to 4095.

< Address0x04: function >

D[19:16]

CALTM [3:0]: Set the calibration precision of VCO

The register {CALTM [3:0]} determines the calibration precision and time for VCO. When {CALTM [3:0]} is larger, the calibration precision increases, but the required time becomes long as trade-off. The value calculated by the following formula is recommended to get enough calibration precision. However, {CALTM [3:0]} should be set between from 1 to 11. 0 and over 11 is prohibited.

 ${CALTM[3:0]} \ge log_2(F_{PFD}/20000)$ F_{PFD} : PFD frequency

The calibration time can be estimated as following calculation;

Calibration time = $1 / F_{PFD} \times \{(6 + 2^{CALTM[3:0]}) \times 8 + 3\}$

D [14]

LDCNTSEL: Lock Detect Precision

Set the counter value for digital lock detect.

LDCNTSEL	Function	
0	15 times Count	unlocked to locked
0	3 times Count	locked to unlocked
1	31 times Count	unlocked to locked
1	7 times Count	locked to unlocked

D [13]

LD: Lock detect function

Set the lock detect function.

0: Digital lock detect

1: Analog lock detect

D [12]

MTLD: Local signal mute

0: Don't mute local signal in unlock state.

1: Mute local signal in unlock state.

 \mathbb{P} Please use {MTLD} =0 at the time of {LD}=1.

Please use {MTLD}=1 at the time of {MODE}=1

D [11]

FASTEN : Fast Lock mode setting

Enable / disable fast lock mode.

0: Disable fast lock mode

1: Enable fast lock mode

Please refer to "14. Fast lock mode" for details.

D[10:7]

FAST [3:0] : Fast lock timer setting

Set the count number of fast lock timer.

Count Number = $511 + FAST[3:0] \times 512$

TIMER[3:0]	Count Number
0	511
1	1023
2	1535
3	2047
4	2559
5	3071
6	3583
7	4095
8	4607
9	5119
10	5631
11	6143
12	6655
13	7167
14	7679
15	8191

D [6]

CPHIZ: Charge Pump TRI-STATE

Set the charge pump output in Tri-State.

0: Normal

1: Tri-State

D [5]

DSMON: $\Delta\Sigma$ -modulator activation

In Integer-N setting, set the $\Delta\Sigma$ -modulator to active.

0: $\Delta\Sigma$ -modulator inactive

1: $\Delta\Sigma$ -modulator active

D [4]

MIXEN: Mixer Enable

0: Stand-by

1: Enable

D [3:2]

MODE [1:0]: Local operation mode

Set the operation of Synthesizer, VCO and LOP/LON pins.

MODE[1:0]	Local Operating MODE
0	Internal Synthesizer and VCO are active.
1	Internal Synthesizer and VCO are active and the local signal
1	outputs from LOP/LON pins.
2	The mode operating external VCO with internal synthesizer.
3	The mode using an external local signal.

D [1:0]

LOLV [1:0]: Local output power

At the state of {MODE [1:0]} =1, set the power of the local signal output from LOP/LON pins.

LOLV[1:0]	LOP, LON output power [dBm]
0	-6
1	0
2	3
3	6

12. Lock Detect

Lock detect output can be selected by {LD} in D [13] of <Address0x04>. When {LD} is set to "1", the [LD] pin outputs a phase comparison result which is from phase detector directly. (This is called "analog lock detect".) When {LD} is set to "0", the output is the lock detect signal according to the on-chip logic. (This is called "digital lock detect".)

The digital lock detect can be done as following:

The [LD] pin is in unlocked state (which outputs "L") when a frequency setup is made.

In the digital lock detect, the [LD] pin outputs "H" (which means the locked state) when a phase error smaller than a cycle of [REFIN] clock (T) is detected for N times consecutively. When a phase error larger than T is detected for N times consecutively while the [LD] pin outputs "H", then the [LD] pin outputs "L" (which means the unlocked state). The counter value N can be set by {LDCNTSEL} in D [14] of <Address0x04>. The N is different between "unlocked to locked" and "locked to unlocked".

{LDCNTSEL}	unlocked to locked	locked to unlocked
0	N=15	N=3
1	N=31	N=7

The lock detect signal is shown below

Reference clock	
Phase Comparison signal	
Divided VCO signal	
Phase detector output signal This is ignored becau cannot be sampled.	use it Valid ignore ignore Valid The [LD] pin outputs HIGH when a
LD output	phase error which is smaller than T/2 is detected for N times consecutively

Case of "R = 1"

Case of "R > 1"

Fig6. .Digital Lock Detect Operations

13. Frequency Setup

The following formula is used to calculate the frequency setting for the AK1575.

Frequency setting = Ref Frequency \times (INT+FRAC/MOD)		
Ref Frequency	:PFD fequency	
INT	: Integer divide Number (Refer to <address 0x01="">: INT[11:0])</address>	
FRAC	:Numenator setting number (Refer to <address 0x02="">:FRAC[11:0])</address>	
MOD	:Denominator setting number (Refer to <address 0x03="">:MOD[11:0])</address>	

Set in the range of 35 to 4091 for INT[11:0].

Set in the range of 0 to (MOD-1) for FRAC[11:0]

Set in the range of 2 to 4095 for MOD[11:0]

 \bigcirc Example

To complete Ref Frequency=19.2MHz, Frequency setting=2460.1MHz, set as follows

INT	=	128
FRAC	=	25
MOD	=	192

Frequency setting = 19.2MHz × (128 + (25 / 192)) = 2460.1MHz

By writing <Address 0x01, 0x02, 0x03>, frequency is set. When <Address 0x01> is written, the setting of <Address 0x03> and <Addresses 0x02> is reflected in the internal circuit. At the time of the writing of <Address 0x01>, it is necessary for a synthesizer block to be powered on. The writing of <Address 0x01> as a trigger, frequency setting and VCO calibration are carried out, and fast lock counter starts operation. To set frequency definitely, <Address 0x01> should be written in the state that {MODE [1:0]} in <Address 0x04> is 0 or 1 or 2 and [PDN] pin is "H".