

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AK2301

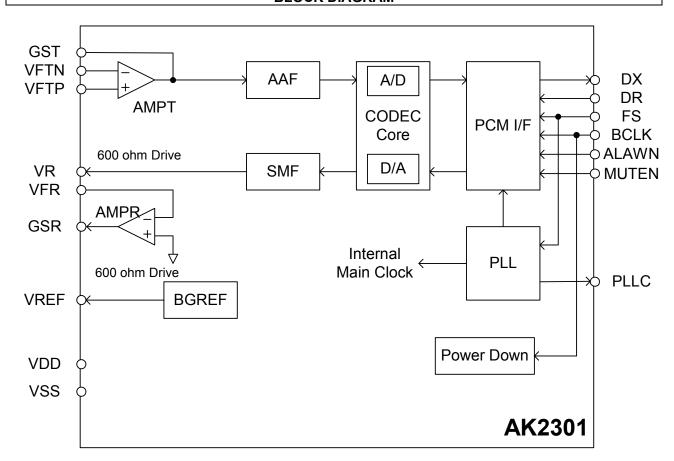
3.3V Single channel PCM CODEC LSI

GENERAL DESCRIPTION

The AK2301 is a single channel PCM CODEC for various applications for example, AFE.

It includes the selectable A/ $\mu\text{-law}$ function, mute and power down. All of these functions are controlled by the pin. Ω Ω

It includes Band limiting filter, A/D and D/A converter, and A-law/ μ -law converter. All functions are provided in small 16pin TSSOP package and it is good for reducing the mounting space.


PACKAGE

♦ 16pin TSSOP Pin to pin 5.0*6.4mm Pin pitch 0.65mm

FEATURE

- ◆ Single PCM CODEC and filtering system
- ♦ Selectable functions
 - Mute
 - A-law / μ-law
- ◆Long Frame / Short Frame are selected automatically
- ◆PCM data rate (64k*N)Hz (N=1~32) (64 ~ 2048kHz)
- \bullet Op-amp for differential 600Ω power drives with external gain adjust
- ♦ Power down function (BCLK="L")
- ◆ Single power supply voltage +3.0~+3.6V
- ♦Low power consumption
 - Power on : 8mA(typ)Power down : 5uA(typ)

BLOCK DIAGRAM

CONTENT

ITEMS	PAGE	
BLOCK DIAGRAM	1	
PIN CONDITION	3	
PIN FUNCTION	4	
ABSOLUTE MAXIMUM RATINGS	5	
RECOMMENDED OPERATING CONDITON	5	
ELECTRICAL CHARACTERESTICS		5
PACKAGE INFORMATION	11	
PIN ASSIGNMENT	12	
MARKINGS	12	
CIRCUIT DESCRIPTIONS	13	
FUNCTIONAL DESCLIPTIONS	14	
PCM CODEC	14	
PCM INTERFACE	15	
LongFrame/ShortFrame	15	
MUTE • POWER DOWN		
POWER UP SEQUENCE		
APPLICATION CIRCUIT EXAMPLE		19

PIN CONDITIONS

Pin#	Name	I/O	Pin type	AC load (MAX.)	DC load (MIN.)	Output status (mute)	Power Down Output Status	Remarks
10	VFTN	I	Analog					
11	VFTP	I	Analog					
9	GST	0	Analog	50pF	AC load(*1) 10kΩ(*2)		Hi-Z	
6	GSR	0	Analog	40pF	AC load 600Ω(*2, *3)		Hi-Z	
7	VFR	- 1	Analog					
8	VR	0	Analog	40pF	AC load 600Ω(*2, *3)	Analog ground	Hi-Z	
5	VDD	-						
13	VSS	-						
4	FS	1	CMOS					Must not be left open
2	BCLK	Ι	CMOS					Must not be left open
1	DX	0	CMOS	50pF		Hi-Z	Hi-Z	
3	DR	I	CMOS					Must not be left open
16	MUTEN	I	CMOS					Must not be left open
15	ALAWN	I	CMOS					Must not be left open
12	VREF	0	Analog				VSS	- External capacitance 1.0uF or more
14	PLLC	0	Analog				VSS	- External capacitance 0.33uF±40% (Includes temperature characteristic)

^{*1)} AC load is a load against AGND.
*2) This value includes a feedback resistance of input/output op-amps.
*3) In differential mode, this is the AC load between GSR and AC.

PIN FUNCTION Pin types DIN: Digital input TOUT: Tri-state output PWR: Power / Ground AIN: AOUT: Analog output Analog input Pin# Name Type **Function** VFTN AIN Negative analog input of transmit OP amp. 10 Differential or single-ended input amplifier is composed with the VFTP pin and an external resistor for gain adjustment. VFTP 11 AIN Positive analog input of the transmit OP amp. Differential or single-ended input amplifier is composed with the VFTN pin and an external resistor for gain adjustment. GST AOUT Output of the transmit OP amp. 9 An inverting amplifier is composed with an external resistor for gain adjustment. 6 **GSR** AOUT Output of the receive OP amp. An inverting amplifier is composed with an external resistor for gain adjustment. Differential output can be composed with the VR output. VFR AIN 7 Negative analog input of the receive OP amp. An inverting amplifier is composed with an external resistor for gain adjustment. However, when the input gain op-amp is used as a differential amp, this inverting amp is used as an analog ground buffer for the differential amp. In this case, output gain adjustment or differential drive circuit composition by this inverting amp is not available. VR 8 AOUT Analog output of the D/A converter Differential output composition is possible with GSR outputs. VDD PWR 5 Positive supply voltage PWR 13 **VSS** Ground (0V) FS DIN Frame sync input It controls In/Output timing of PCM data. FS must be 8kHz clock which synchronized with BCLK and do not stop feeding without power down mode. 2 **BCLK** DIN Bit clock of PCM data interface The frequency of BCLK should be 64kHz × N (N=1~32) and duty should be 40~60%. When this pin taken low, power down the device. DX TOUT 1 Serial output of PCM data A/D converted PCM data is output in synchronization with BCLK. This output remains in high impedance except for the period in which PCM data is transmitted. DR 3 DIN Serial input of PCM data The PCM data is synchronized with BCLK. 16 MUTEN DIN Mute setting pin "L" level forces both A/D and D/A outputs to mute state. 15 ALAWN DIN A/u-law select pin "L"=A-law, "H"= μ -law Please tie to H or L. 12 **VREF AOUT** Analog ground output External capacitance (1.0uF or more) should be connected between this pin and VSS. Please do not connect external load to this pin. PLLC 14 AOUT PLL loop filter output External capacitance (0.33µF±40%: Includes temperature characteristic) should be connected between this pin and VSS.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	min	max	Units
Power supply voltage				
Analog/Digital power supply	VDD	-0.3	4.6	V
Digital input voltage	VTD	-0.3	VDD+0.3	V
Analog input voltage	VTA	-0.3	VDD+0.3	V
Input current (except power supply pins)	lin	-10	10	mA
Storage temperature	Tstg	-55	125	°C

Warning: Exceeding absolute maximum ratings may cause permanent damage.

Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	min	typ	max	Units
Power supply voltage Analog/Digital power supply	VDD	3.0	3.3	3.6	V
Ambient operating temperature	Та	-40		85	°C
Frame sync frequency *)	FS	-1.0%	8	+1.0%	kHz

Note) All voltages with respect to ground: VSS = 0V

ELECTRICAL CHARACTERISTICS

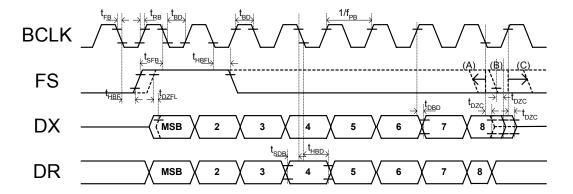
Measurement conditions are: VDD = $\pm 3.3 \text{V} \pm 0.3 \text{V}$, Ta = $\pm 40 \approx 40 \approx 4.0 \approx$

DC Characteristics

DC Characteristics						
Parameter	Symbol	Conditions	min	typ	Max	Unit
Power Consumption	IDD1*1)	*1) BCLK=2.048MHz		8	13	mA
All output unloaded	IDD2	Power down (BCLK= "L")		5	100	uA
Output high voltage	Vон	IOH =-1.6mA	0.8VDD			٧
Output low voltage	Vol	IOL =1.6mA			0.4	٧
Input high voltage	VIH		0.7VDD			V
Input low voltage	VIL				0.3VDD	V
Input leakage current	ILL		-10		+10	uA
Analog ground output	VRG		1.4	1.5	1.6	V
Output leakage current	ILT	Tri-state mode	-10		+10	uA

^{*1)} Measurement conditions: BCLK=2.048MHz, All output pins have no load. VFTP, VFTN (Differential)=1020Hz@0dBm0 input, DR=1020Hz@0dBm0 Code input

^{*)} All characteristics of the CODEC are defined in the condition that FS= 8kHz.


PCM INTERFACE (Long Frame, Short Frame)

Measurement conditions are: Ta=-40 to +85 $^{\circ}$ C, VDD = 3.0~3.6V, VSS = 0V, FS=8kHz, unless otherwise noted. All timing parameters of the output pins are measured at VOH = 0.8VDD and VOL = 0.4V. Input pins are measured at VIH = 0.7VDD and VIL = 0.3VDD.

AC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Ref Fig
FS Frequency	f _{PF}	-1.0%	8	+1.0%	kHz	
BCLK Frequency	f _{PB}	-	f _{PF} ×8N (N=1~32)	-	kHz	
BCLK Duty Cycle	t _{WB}	40		60	%	
Rising/Falling Time: (BCLK,FS, DX,DR)	t _{RB}			40	ns	
Hold Time: BCLK Low to FS High	t _{HBF}	60			ns	Fig1 2
Setup Time: FS High to BCLK Low	t _{SFB}	60			ns	Fig1,2
Setup Time: DR to BCLK Low	t _{SDB}	60			ns	
Hold Time: BCLK Low to DR	t _{HBD}	60			ns	
Delay Time: BCLK High to DX valid Note1)	t _{DBD}	0		60	ns	
Delay Time: (A) BCLK Low to DX High-Z or (B) FS Low to DX High-Z or (C) BCLK High to DX High-Z Note1)	t _{DZC}	0		60	ns	
Long Frame						
Hold Time: 2 nd period of BCLK Low to FS Low	t _{HBFL}	60			ns	
Delay Time: FS or BCLK High, whichever is later, to DX valid Note1)	t _{DZFL}			60	ns	Fig1
FS Pulse Width Low	t _{WFSL}	1			BCLK	
Short Frame						
Hold Time: BCLK Low to FS Low	t _{HBFS}	60			ns	Fig2
Setup Time: FS Low to BCLK Low	t _{SFBS}	60			ns	Fig2

Note1) Measured with 50pF load capacitance and 0.2mA drive.

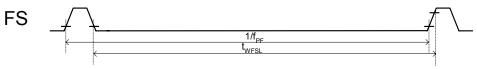
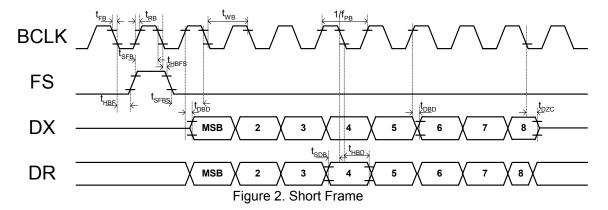



Figure 1. Long Frame

CODEC

* The receive and transmit op-amp's characteristics are measured at the 0dB gain. The frequency specifications when FS deviation from 8kHz are as follows:

 $\frac{UsedFS}{SSSSS}$ × noted frequency specification = Effective frequency specification

Absolute Gain

Parameter		Conditions	min	typ	max	Unit
Analog input level	VFTP,VFTN	0dBm0@1020Hz input		0.531		Vrms
Absolute transmit gain	(Differential)→	odbino@ rozoriz input	-0.6	_	0.6	dB
Maximum overload level	DX (*1)	3.14dBm0		0.762		Vrms
Analog output level	DR	0dBm0@1020Hz input		0.531		Vrms
Absolute receive gain	\rightarrow	odBino@ rozoriz input	-0.6	_	0.6	dB
Maximum overload level	VR	3.14dBm0		0.762		Vrms

^(*1) In differential mode, 0dBm0= 0.531Vrms

Frequency response

Parameter		Conditions		typ	max	Unit
Transmit frequency response	Relative to:	-55dBm0~ -50dBm0	-1.2	_	1.2	
(A →D)	-10dBm0	-50dBm0~ -40dBm0	-0.4	_	0.4	dB
VFTP,VFTN (Differential) →DX	1020Hz Tone	-40dBm0~ 3dBm0	-0.2	_	0.2	
Receive frequency response	Relative to:	-55dBm0~ -50dBm0	-1.2	_	1.2	
$(D \to A)$	-10dBm0	-50dBm0~ -40dBm0	-0.4	_	0.4	dB
DR → VR	1020Hz Tone	-40dBm0~ 3dBm0	-0.2	_	0.2	

Frequency response

i requericy response				_		
Parameter	Co	Conditions		typ	max	Unit
Transmit Frequency response	Relative to:	0.05kHz	_	_	-30	
$(A \rightarrow D)$	0dBm0@1020Hz	0.06kHz	_	_	-26	
		0.2kHz	-1.8	_	0	
VFTP,VFTN (Differential) →DX		0.3~3.0kHz	-0.15	_	0.15	dB
		3.4kHz	-0.8	-	0	
		4.0kHz	_	-	-14	
Receive Frequency response	Relative to:	0~3.0kHz	-0.15	-	0.15	
$(D \rightarrow A)$	0dBm0@1020Hz	3.4kHz	-0.8	-	0	dB
DR → VR		4.0kHz	_	_	-14	

Distortion

Parameter	Conditions		min	typ	max	Unit
Transmit signal to Distortion	1020Hz Tone	-40dBm0 ~ -45dBm0	25	_	_	
$(A \rightarrow D)$		-30dBm0 ~ -40dBm0	30	_	_	dB
VFTP,VFTN (Differential) →DX		0dBm0 ~ -30dBm0	36	_	_	
Receive signal to Distortion	1020Hz Tone	-40dBm0 ~ -45dBm0	25	_	_	
$(D \rightarrow A)$		-30dBm0 ~ -40dBm0	30	_	_	dB
$DR \rightarrow VR$		0dBm0 ~ -30dBm0	36	_	_	

Note) C-message Weighted for μ -Law, Psophometric Weighted for A-Law

Noise

Parameter	Conditions	min	typ	max	Units
Idle channel noise A→D (*1)	u-law, C-message	ı	8	13	dBrnC0
VFTP,VFTN (Differential) →DX	A-law, Psophometric	ı	-85	-80	dBm0p
Idle channel noise D→A(*2)	u-law, C-message	ı	5	10	dBrnC0
$DR \to VR$	A-law, Psophometric	_	-85	-80	dBm0p
PSRR	VDD=3.3V/±66mVop		55		dB
Transmit path	f=0~10kHz		55		
PSRR	VDD=3.3V/±66mVop		55		dB
Receiver path	F=0~10kHz	_	55	_	

^(*1) Analog input is set to the analog ground level (*2) Digital input is set to the +0 CODE

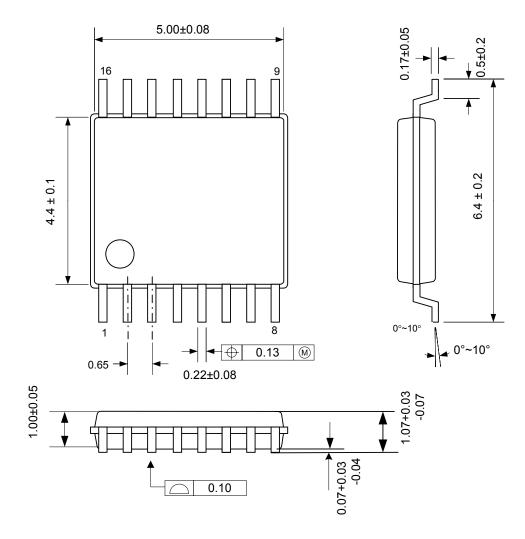
Crosstalk

Parameter	Conditions	min	typ	max	Units
Transmit to receive VFTP → VR,GSR(Differential)	VFTP 0dBm0@1020Hz DR = PCM 0-Code	_	_	-75	dB
	DR=0dBm0@1020Hz code level VFTP,VFTN = 0 Vrms	-	1	-75	dB

Transmit op-amp characteristics : AMPT

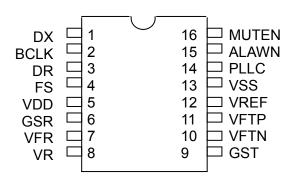
Parameter	Conditions	min	typ	max	Units
Load resistance	AC load, Including feedback resistance	10	_	_	kΩ
Load capacitance		_	_	50	pF
Gain	Inverting amplifiers (Feedback capacitance = 100pF, fc= 80kHz)	-12	_	6	dB

Receive signal output characteristics: VR


Parameter	Conditions	min	typ	max	Units
Output voltage (AGND level)	PCM +0 code input	1	1.5	-	٧
Load resistance	AC load	600	_	_	Ω
Load capacitance		ı	1	40	pF

Receive op-amp characteristics: AMPR

Parameter	Conditions		typ	max	Units
oad resistance AC load, Including feedback resistance		600	_	_	Ω
Load capacitance		-	_	40	pF
SINAD	0dB setting, 1020Hz@0dBm0 input VR,GSR differential output (600Ω load) With C-message		70	-	dB
GIVAD	0dB setting, 1020Hz@0dBm0 input VR,GSR differential output (5kΩ load) With C-message	80			1 UB
Gain	Inverting amplifier (Feedback capacitance = 100pF, fc= 40kHz)	-12	_	6	dB
Output voltage swing	e swing DR = 3.14dBm0 digital code input		2.15	_	Vp-p


PACKAGE INFORMATION

16pin TSSOP

PIN ASSIGNMENT

16pin TSSOP

MARKING

(1) 1pin sign

(2) Date Code: 5digit YWWXX

Y: Date Code (year)
WW: Date Code (week)
XX: Control Code
(3) Marketing Code: AK2301

(4) AKM logo

CIRCUIT DESCRIPTION

BLOCK	CK FUNCTION		
AMPT	Op-amp for input gain adjustment. A differential or single-ended input amplifier is composed with an external resistor. The feedback resistor should be larger than 10kΩ. Each pin definition is shown below. VFTN: Negative op-amp input. VFTP: Positive op-amp input. GST: Op-amp output.		
AMPR	Op-amp for output gain adjustment. This op-amp is used as an inverting amplifier. A differential or single-ended amplifier is composed with an external resistor. Each pin definition is shown below. VFR: Negative op-amp input. GSR: Op-amp output. VR and GSR can be used as the differential output. In this case, more than 600Ω AC load should be composed with external and feedback resistors.		
AAF	Integrated anti-aliasing filter (AAF) It prevents signal noise around the sampling rate from folding back into the voice band. AAF is a 2nd order RC active low-pass filter.		
CODEC A/D	Converts analog signal to 8bit PCM data according to the compounding schemes of ITU recommendation G.711; A-law or u-law. Even bits are inverted in A-Law conversion. The compounding schemes is set by the ALAWN pin as follows: "H": u-Law "L": A-Law		
	The band limiting filter is also integrated.		
CODEC D/A	Expands and playbacks the 8bit PCM data from the DR pin according to the compounding schemes of ITU recommendation G.711; A-law or u-law. Even bits are inverted in A-Law converting. The compounding schemes is set by the ALAWN pin as follows: "H": u-Law "L": A-Law		
SMF	Extracts the inband signal from D/A output. It also corrects the sinx/x effect of the D/A output.		
BGREF	Provide the stable analog ground voltage using an on-chip band-gap reference circuit which is temperature compensated. The output voltage is typ. 1.5V. An external capacitor of 1.0uF or larger should be connected between VREF and VSS to stabilize analog ground (VREF). Please do not connect external load to this pin. Characteristics are not guaranteed when connecting an external load. The output should be buffered if using this voltage externally.		
PCM I/F	PCM data transferring rate is dependent on BCLK. Two kinds of data format (Long Frame/Short Frame) are available. Each data format is automatically detected by the AK2301. PCM data is input to the DR pin and output from the DX pin.		

FUNCTIONAL DESCRIPTIONS

PCM CODEC

- A/D

Analog input signal is converted to 8bit PCM data. The analog signal is fed to the anti-aliasing filter (AAF) before converting to PCM data to prevent signals around the sampling rate from folding back into the voice band. The converted PCM data passes through the band limiting filter which Frequency response is designated in page8, and output from the DX pin in MSB first format. It is synchronized with rising edge of the BCLK. This PCM data is A/u-law and full scale is defined as 3.14dBm0. The analog input of 0.762Vrms is converted to a digital code of 3.14dBm0.

- D/A

Input PCM data from the DR pin is through the digital filter, which Frequency response is designated in page8, and converted to analog signal. This analog signal is removed the high frequency element with SMF (fc=30kHz typ) and output from the VR pin. The input PCM data is A/u-law data and full scale is defined as 3.14dBm0. When the input signal is 3.14dBm0, the level of the analog output signal becomes 0.762Vrms.

PCM Data Interface

The AK2301 supports the following 2 PCM data formats

- Long Frame Sync (LF)
- Short Frame Sync (SF)

PCM data is interfaced through a pin. (DX, DR).

In each case, PCM data is interfaced in MSB first format.

Selection of the interface format

The AK2301 automatically selects the Long Frame/Short frame by means of detecting the length frame signal.

LONG FRAME (LF) / SHORT FRAME (SF)

-Automatic LF/SF detection

The AK2301 monitors the duration of the "H" level of FS and automatically selects LF or SF interface format.

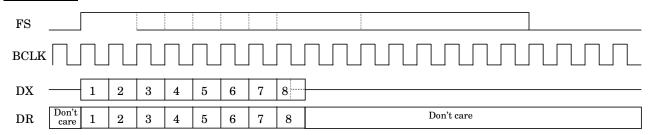
Period of FS="H"	Frame type	
More than 2 BCLK cycles	LF	
1 BCLK cycle	SF	

Timing of the interface

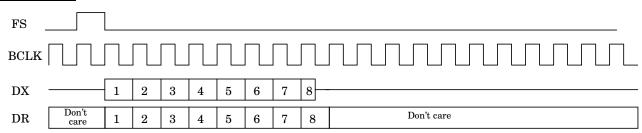
8bit PCM data is accommodated in 1 flame ($125\mu s$) defined by 8kHz frame sync signal. Although there are 32 time-slots at maximum in 8kHz frame (when BCLK = 2.048MHz), PCM data for the AK2301 occupies the first time-slot.

- Frame sync signal (FS)

8kHz reference signal. 8bit PCM data is transferred in every 1 frame (125us). This signal must be synchronized with BCLK.


WARNING!

The AK2301 must be in power down mode by BCLK = "L" when stopping FS.


- BCLK (Bit clock)

BCLK defines the PCM data rate. BCLK rate is $64kHz \times N$ (N=1~32).

LongFrame

ShortFrame

MUTE

The output of the PCM CODEC can be muted by a pin control.

MUTEN pin

MUTEN pin	Operation	DX pin	VR pin
L	Mute	High-Impedance	CODEC analog ground
Н	Normal	PCM data output	CODEC analog output

[DX pin]

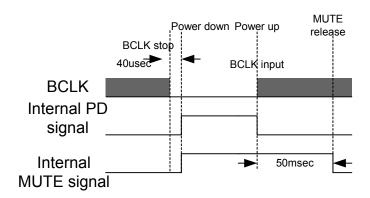
When the MUTEN pin turns to "L" during the data output, the mute function becomes available at the beginning of the next FS after all bits are output.

[VR pin]

When the MUTEN pin turns to "L", 0 code is fed to the D/A converter and VR becomes at analog ground level.

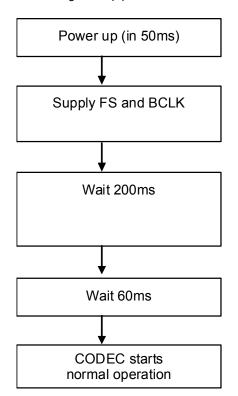
POWER DOWN MODE

To hold the BCLK pin "L", the AK2301 is powered down.


Power up/down sequence

1)Power down

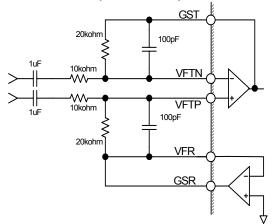
40usec(typ) passed after the BCLK pin hold "L", the internal PDN signal turn to "L" and the AK2301 enters power-down mode. In power-down mode, the GST, DX, GSR and VR pins are Hi-z. The VREF and PLLC pins output VSS.


2)Power up

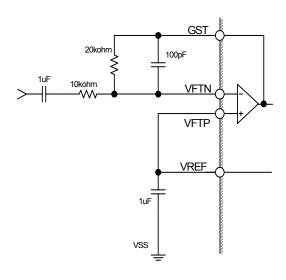
Power-down mode is released when FS and BCLK are input. Outputs are muted (DX=High-Z, VR=AGND) for 50msec (typ) after the power-down is released to avoid noises.

Power Up Sequence

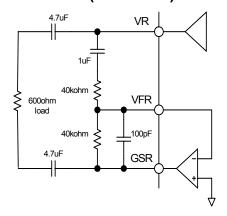
The following start up process is recommended when power up the AK2301.

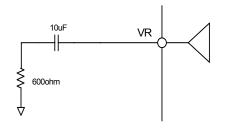

- FS="L"
- BCLK="L"
- MUTEN="L"

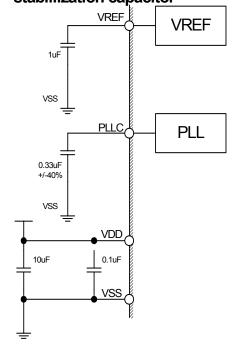
- CODEC Initialization starts.


- CODEC Initialization completes. MUTEN="H"

APPLICATION CIRCUIT EXAMPLES


Analog input circuit (differential)


Analog input circuit (single)


Analog output circuit (differential)

Analog Output Circuit (Single)

Power supply, PLL loop filter capacitor and analog ground stabillization capacitor

- IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

<MS0416-E-02> 18 2013/05