: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Overview

- Operating Supply Voltage
: 2.7 to 5.5 V
- Wide Operating Temperature Range
: -40 to $+85^{\circ} \mathrm{C}$
- Delta-Sigma Fractional-N PLL with a frequency switching function

> : No glitch operation for AFC(Automatic Frequency
> Control) and DFM(Digital Frequency Modulation)

- High linearity RF Mixer(1st) and IF Mixer(2nd)
- IF Local frequency selectable as usage : $28.8 \mathrm{MHz}, 45.9 \mathrm{MHz}, 50.4 \mathrm{MHz}, 57.6 \mathrm{MHz}$
- Frequency tripler generates IF Local signal
- Built-in very narrow programmable bandwidth IF BPF (450 kHz)
- PLL FM detector
- RSSI function
- Noise squelch circuit
- Built-in 12bits 1Msps SAR ADC
- Audio output signal S/N (Wide/Narrow) : 50dB / 46dB (Typ.) *De-emphasis + BPF
- Compact packaging :56pin-QFN ($8 \times 8 \mathrm{~mm}, ~ 0.5 \mathrm{~mm}$ pitch $)$

Applications

- Narrowband high performance professional digital wireless systems
(Channel spacing for $6.25 \mathrm{kHz}, 12.5 \mathrm{kHz}$)
- Public safety and community wireless systems
- Marine / mobile communication systems
- Low power radio systems
- Monitoring and control telemeter systems

Contents

Overview 1
Applications 1
Contents 2
Block Diagram 3
Function 4
Pin assignment 4
Pin/Function 5
Absolute Maximum Ratings 7
Recommended Operating Conditions 7
Digital DC Characteristics 8
Digital AC Timing 9
ADC AC Timing 11
Power-up sequence 12
System Reset 12
Analog Characteristics (PLL SYNTH) 13
Analog Characteristics (1st MIXER) 14
Analog Characteristics (2nd IF) 15
Register Map and Function Description 21
Block Diagram (PLL SYNTH) 30
Lock Detect function (PLL SYNTH) 31
Frequency Setting (PLL SYNTH) 34
Frequency switching adjustment (PLL SYNTH) 35
Charge Pump and Loop Filter (PLL SYNTHE) 36
Fast lock-up mode (PLL SYNTH) 37
Calibration Procedure (Discriminator) 38
Typical Evaluation Board Schematic (PLL SYNTH) 39
Typical Evaluation Board Schematic (1st MIXER) 41
Typical Evaluation Board Schematic (2nd IF) 45
Package 49
Revision History 50

Block Diagram

Function

Block	Description
PLL SYNTH	The Delta-Sigma Fractional-N PLL (Phase Locked Loop) frequency synthesizer by the external VCO and the loop filter.
1stMIX	1st Mixer to convert the RFIN signal down to IF frequency by 1st LO signal.
PGAO+2ndMIX	2nd Mixer to convert the IFIP signal down to 450kHz by 2ndLO signal. AGC+BPFThe circuit composed of AGC and BPF, where the desired signal is amplified and spurious components included in the signal from the 2nd-mixer are eliminated.
IFBUF	The circuit to output filtered signal by AGC+BPF.
Divider	The circuit to divide the signal from LO2NDIN pin.
LIMITER	The circuit to amplify the signal filtered at the AGC+BPF stage and generate rectangular wave.
DISCRI	The demodulator circuit with PLL FM detector, where the audio signal is recovered.
Noise AMP	The amplifiers to compose the Band-pass filter for noise squelch.
Noise Rectifier	The rectification circuit to detect the noise level.
Comparator	The circuit to compare the noise level with reference voltage level.
RSSI	The circuit to indicate the Received Signal Strength Indicator (RSSI) by generating a DC voltage corresponding to the input level from Limiter.
AGND+VIREF	The circuit to generate internal reference voltage.
Control Logic	The control register controls the status of internal condition by serial data that consists of 1 instruction bit, 5 address bits and 18 data bits.
ADC	12bits 1MSPS A/D converter.

Pin assignment

Figure 2 Pin assignment
Note) The exposed pad at the center of the backside should be connected to ground.

Pin/Function

No.	Name	Type	Conditions at power down	Function
1	RFIN	AI	-	RF signal input pin. Connecting a inductor between this pin and ground.
2	AVSS1	PWR	-	Analog VSS power supply pin
3	IFOUTP	AO	-	IF Output Positive .This pin is open drain output. It needs power feeding via an inductor.
4	IFOUTN	AO	-	IF Output Negative .This pin is open drain output. It needs power feeding via an inductor.
5	MIXVDD	PWR	-	Mixer VDD power supply pin
6	IFIP	AI	-	IF signal input pin
7	AVSS2	PWR	-	Analog VSS power supply pin
8	LO2NDIN	AI	-	2nd LO signal input pin
9	TRIOUT	AO	-	Tripler circuit output pin
10	REFIN	AI	-	Reference signal input pin
11	NC	-	Hi-Z	This pin must be left open
12	NC	-	Hi-Z	This pin must be left open
13	NC	-	Hi-Z	This pin must be left open
14	NC	-	Hi-Z	This pin must be left open
15	AVDD	PWR	-	Analog VDD power supply pin
16	VREFA	AO	-	LDO reference pin. Connect the capacitor to stabilize LDO reference voltage
17	AGNDOUT	AO	-	Analog ground output pin. Connect the capacitor to stabilize the analog ground level.
18	AGNDIN	AI	-	Analog ground input pin. Connect the capacitor to stabilize the analog ground level.
19	BIAS4	AO	-	Output pin to connect bias resistor for reference voltage
20	PDOUT	AO	-	Pin1 for Discriminator Low-pass filter
21	DISCOUT	AO	-	Pin2 for Discriminator Low-pass filter
22	AUDIOOUT	AO	-	Demodulated audio signal output pin
23	NAMPI	AI	-	Input pin for noise squelch amplifier
24	NAMPO	AO	-	Output pin for noise squelch amplifier
25	NRECTO	AO	-	Output pin for the rectification circuit
26	RSSIOUT	AO	-	Output pin to connect capacitor for Received Signal Strength Indicator(RSSI)
27	IFOUT	AO	-	Output pin for IFBUF
28	ADIN	AI	-	Input pin for A/D converter
29	PDN	DI	Hi-Z	Power down pin for LDO
30	RSTN	DI	Hi-Z	Hardware reset pin
31	AD_SDO	DO	-	A/D Converter data output pin for serial data
32	AD_SCLK	DI	Hi-Z	A/D Converter clock input pin for serial data
33	AD_CSN	DI	Hi-Z	A/D Converter chip select input pin for serial data
34	CSN	DI	Hi-Z	Chip select input pin for serial data

35	SCLK	DI	Hi-Z	Clock input pin for serial data
36	SDATAIN	DI	Hi-Z	Data input pin for serial data
37	AGC_KEEP	DI	$\mathrm{Hi}-\mathrm{Z}$	Input pin for AGC_KEEP function
38	DETO / SDATAOUT	DO	Hi-Z	Signal detect output pin/ Data output pin for serial data
39	LD	DO	Low	Lock detect output pin for PLL
40	ADVDD	PWR	-	AD VDD power supply pin
41	DVDD	PWR	-	Digital VDD power supply pin
42	CPVDD	PWR	-	Charge pump VDD power supply pin
43	CPVSS	PWR	-	Charge pump VSS power supply pin
44	SWIN	AI	Note1,2	Connect to resistance pin for fast lock up
45	CPZ	AI	Note1,2	Connect to the loop filter capacitor
46	CP	AO	Hi-Z	Charge pump output pin
47	PVDD	PWR	-	PLL VDD power supply pin
48	RFINP	AI	-	Prescaler input positive
49	RFINN	AI	-	Prescaler input negative
50	PVSS	PWR	-	PLL VSS power supply pin
51	VREF1	AO	-	LDO reference pin. Connect the capacitor to stabilize LDO reference voltage
52	BIAS3	AO	-	Resistance pin for setting charge pump output current
53	BIAS2	AIO	-	Resistance pin for current adjustment for 1st Mixer
54	BIAS1	AIO	-	Resistance pin for current adjustment for 1st Mixer
55	LOINP	AI	-	Lo input positive
56	LOINN	AI	-	Lo input negative

Al: Analog input pin AO: Analog output pin
PWR: Power supply pin

DI: Digital input pin

AIO: Analog I/O pin
DO: Digital output pin
Note1) When [PDN]="0", \{PDSYNTH_N\}="0", or [PDN]="1",\{PDSYNTH_N\}="0", the state of the switch of loop filter selection is ON.
Note2) Power down refers to the state where [PDN]="0" after power-on.
[CPZ] pin should be connected to R2 and C2, which are intermediate nodes, even if the Fast Lockup feature is not used. For the output destination from [CPZ] pin, see "Charge Pump and Loop Filter" on page 36.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	VDD1	-0.3	6.5	V	Note 1
	CPVDD	-0.3	6.5	V	
	MIXVDD	-0.3	5.5	V	
	DVDD	-0.3	6.5	V	
Ground level	VSS	0	0	V	
Analog Input Voltage	$\mathrm{V}_{\text {AIN }}$	-0.3	VDD1+0.3 CPVDD +0.3 MIXVDD +0.3	V	Note 1
Digital Input Voltage	$\mathrm{V}_{\text {DIN }}$	-0.3	DVDD+0.3	V	
Input Current (Except power supply pin)	I_{IN}	-10	+10	mA	
RF Input Power	RFPOW		12	dBm	
LO Input Power	LOPOW		12	dBm	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$	

Note 1 VDD1 is applied to PVDD, AVDD, ADVDD pins
Note 2 All voltages are relative to the VSS pin.
Note 3 Exceeding these maximum ratings may result in damage to the AK2400. Normal operation is not guaranteed at these extremes.

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Operating Temperature	Ta		-40		85	${ }^{\circ} \mathrm{C}$
Power Supply voltage	VDD1	PVDD, AVDD, ADVDD	DVDD	3.0	5.5	V
	CPVDD		VDD1	5.0	5.5	V
	MIXVDD		VDD1	5.0	5.5	V
	DVDD		2.7	3.0	5.5	V
	AGND	AGNDOUT		$1 / 2$ VREFA		V

Note) All voltages are relative to the VSS pin.

Digital DC Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
High level input voltage	$\mathrm{V}_{\text {IH }}$	RSTN, SCLK, SDATAIN, CSN, PDN, AD_CSN, AD SCLK,, AGC KEEP	0.8DVDD			V
Low level input voltage	VIL	RSTN, SCLK, SDATAIN, CSN, PDN, AD_CSN AD_SCLK, AGC_KEEP			0.2DVDD	V
High level input current	I_{H}	$\mathrm{V}_{1 \mathrm{H}}=$ DVDD RSTN, SCLK, SDATAIN, CSN, PDN, AD_CSN, AD_SCLK, AGC_KEEP			10	uA
Low level input current	$1 / L$	$\mathrm{V}_{\mathrm{LI}}=0 \mathrm{~V}$ RSTN, SCLK, SDATAIN, CSN, PDN, AD_CSN, AD_SCLK, AGC_KEEP	-10			uA
High level output voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=+0.2 \mathrm{~mA}$ LD, AD_SDO, DETO/SDATAOUT	DVDD-0.4		DVDD	V
Low level output voltage	VoL	$\begin{aligned} & \text { loL=-0.4mA } \\ & \text { LD, AD_SDO, } \\ & \text { DETO/SDATAOUT } \\ & \hline \end{aligned}$	0.0		0.4	V

Digital AC Timing

1) Serial Interface Timing

AK2400 is connected to a CPU by three-wired interface through CSN, SCLK, SDATAIN and SDATAOUT pins, which can make reading and writing data for control registers.
Serial data named SDATAIN is consist of 1 -bit read and write instruction(R/W), 5-bit address (A4 to A0) and 18-bit data(D17 to D0) in one frame.

Write mode

Read mode

Figure 3 Serial Interface Timing
R/W : Instruction bit controls to write data to AK2400 or read back from it. When set to low, AK2400 is in write mode. When set to high, AK2400 is in read mode.

A4 to A0 : Register address to be accessed.
D17 to D0 : Write or read date to be accessed.
$<1>\operatorname{CSN}($ Chip select $)$ is normally selected high for disable.
When CSN is set to low, serial interface becomes active.
<2> In write mode, instruction, address and data input from SDATAIN pin are synchronized and latched with the rising edge of 24 iterations of SCLK clock. Set to low between address A0 and data D17. Input data is fixed synchronized with the rising edge of 24th clock. Note that if CSN become "H" before 24th clock, setting data becomes invalid. During the period when CSN is set to "L", consecutive writing is available.
<3> In read mode, instruction and address are synchronized and latched with the rising edge of 6 iterations of SCLK clock. And the register data are output from SDATAIN pin synchronized with the falling edge of 18 iterations of SCLK clock.
CSN to " H " once reading is completed because consecutive reading is not valid. Also, in read mode DETO/SDATAOUT pin should be set to SDATAOUT by \{SDATAOUT_OE\}="1".

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
CSN setup time	$\mathrm{t}_{\mathrm{CSS}}$		40			ns
SDATAIN setup time	t_{DS}		20			ns
SDATAIN hold time	t_{DH}		20			ns
SCLK high time	$\mathrm{t}_{\text {wH }}$		40			ns
SCLK low time	t_{WL}		40			ns
CSN low hold time			20			ns
CSN high hold time	$\mathrm{t}_{\mathrm{CSHH}}$		40			ns
SCLK to SDATA output delay	t_{DD}	20pF load			40	ns

Note) Digital input and output timing is relative to 0.5 DVDD of rising signal and falling signal.

ADC AC Timing

At first, set $\{$ PDADC_N $\}=" 1$ " to operate the A / D Converter. A/D conversion cycle is started by the falling edge of $A D _C S N$. AD_SDO outputs " 0 " synchronized with the falling edge of AD_CSN. AD_SDO outputs " 0 " until the third falling edge of AD_SCLK. From the fourth falling edge, the results of 12 bits \bar{A} / D conversion are output with MSB first during the 16th edge. A/D conversion cycle is ended on the 16th falling edge, AD_SDO becomes $\mathrm{Hi}-\mathrm{Z}$. After the 16th edge, set AD_CSN ="1". Since A/D converter becomes acquisition phase after the 16 th falling edge of $A D _S C L K, A D _\overline{C S N}$ pin must keep "1" during the end of "tq" time after AD_SDO became $\mathrm{Hi}-\mathrm{Z}$. It is possible to get the available conversion results from the next cycle, since the first A / D conversion result is the dummy cycle (unavailable result).

D11 to D0: A/D converted data

Figure 4 ADC Timing

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
AD_SCLK frequency	fADSCLK				20	MHz
Minimum quiet time required between bus relinquish and start of next conversion	Tq		40			ns
AD_CSN Falling to First SCLK Falling time	tCSS		10			ns
AD_CSN edge to AD_SDO Tri-State Disabled	tDCD				25	ns
AD_SCLK Falling to AD_SDO Output Delay time	tDOD	15pF load			25	ns
AD_SCLK High Pulse Width	tCKH		$0.4 \times \mathrm{tA}$ DSCLK			ns
AD_SCLK Low Pulse Width	tCKL		$0.4 \times$ and DSCLK			ns
16th AD_SCLK Falling to AD_SDO Hi-Z State Delay time	tCCZ				25	ns
Minimum AD_CSN Pulse Width	tCSW		25			ns

Note) Digital input and output timing is relative to 0.5DVDD of rising signal and falling signal.

Figure 5 power-up sequence
Note) Power-up sequence assumes VDD ON.
After PDN is set to "High", registers remain undefined. In order to initialize them, RSTN is set to "High"

System Reset

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	Remarks
Hardware reset signal input width	t RSTN	RSTN pin	1			$\mu \mathrm{~s}$	Note 1)
Software reset		SRST Register					Note 2)

Note1) After power-on, be sure to perform a hardware reset operation (register initialization). The system is reset by a Low input of 1 us (min.) and enters the normal operation state.

Figure 6 System Reset

During the reset operation, SCLK, SDATAIN and CSN pin should be keep to Low or High.
Ex) SCLK:Low, SDATAIN:Low, CSN:High

Note2) When data 0x09:10101010 is written to the SRST[7:0] register, software reset is performed. This setting initializes the registers and the operation mode is set to mode 2 (Standby 2). After software reset is completed, this register comes to " 0 ".

Analog Characteristics (PLL SYNTH)

Unless otherwise noted VDD=2.7 to $5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Parameter	Min	Typ.	Max	Unit	Remarks
RF Characteristics					
Input Sensitivity	-10		5	dBm	
Input Frequency	40		500	MHz	Prescaler 4/5
Input Frequency	40		1000	MHz	Prescaler 8/9,16/17
REFIN Characteristics					
Input Sensitivity	0.4		2	Vpp	
Input Frequency		$\begin{aligned} & 15.3 \\ & 16.8 \\ & 19.2 \end{aligned}$		MHz	Note 1)
Phase Frequency Detector					
Phase Detector Frequency			6.4	MHz	
Charge Pump					
Charge Pump 1 Maximum Value		168.9		$\mu \mathrm{A}$	BIAS3=27k 2 , Note 2)
Charge Pump 1 Minimum Value		21.1		$\mu \mathrm{A}$	BIAS3=27k 2 , Note 2)
Charge Pump 2 Maximum Value		2.32		mA	BIAS3=27k 2 , Note 3)
Charge Pump 2 Minimum Value		0.84		mA	BIAS3=27k 2 , Note 3)
Icp TRI-STATE Leak Current		1		nA	$0.6 \leqq \mathrm{Vcpo} \leqq \mathrm{CPVDD-0.7}$ (Vcpo:CP pin voltage)
Mismatch between Source and Sink Currents Note 4)			10	\%	$\begin{gathered} \mathrm{Vcpo}=\mathrm{CPVDD} / 2 \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \end{gathered}$
Icp vs. Vcpo Note 5)			15	\%	$\begin{gathered} 0.5 \leqq \mathrm{Vcpo} \leqq \mathrm{CPVDD}-0.5 \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \end{gathered}$
Current Consumption					
IDD_SYN1			10	$\mu \mathrm{A}$	PDN=0
IDD_SYN2		2.4	3.6	mA	Note 6)
IDD_SYN3		0.17		mA	Note 7)

Note 1) REFIN pin is input one third of the 2 nd LO input frequency.
Note 2) Charge pump 1 current is determined by the setting in \{CP1[2:0]\} which is described on page 22.
Note 3) Charge pump 2 current is determined by the setting in \{CP2[2:0]\} which is described on page 23.
Note 4) Mismatch between Source and Sink Currents: [(|lsink|-|lsource|)/\{(|lsink|+|lsource|)/2\}] × 100 [\%]
Note 5) Icp vs. Vcpo: [\{1/2×(||1|-|I2|)\}/\{1/2×(||1|+|I2|)\}]×100 [\%]
Note 6) [PDN]="High", \{PDSYNTH_N\}="High" IDD for [PVDD]
Note 7) [PDN]="High", \{PDSYNTH_N\}="High" IDD for [CPVDD]
IDD does not include the operation current in fast lockup mode.
Note) [PDN]="High", \{PDSYNTH_N\}="High", the total current consumption = IDD_SYN2+IDD_SYN3
Note) In the shipment test, the exposed pad on the center of the back of the package is connected to ground.
Note) When 2nd LO input frequency is used 28.8 MHz , set \{PDTRI_N\}=0 and input the 2nd LO signal $(28.8 \mathrm{MHz})$ from LO2NDIN pin. Then REFIN Frequency is set $28.8 \mathrm{MHz} / 3=9.6 \mathrm{MHz}$.

Figure 7 Charge Pump Characteristics - Voltage vs. Current

Analog Characteristics (1st MIXER)

Unless otherwise noted IF output=50MHz, Lo Input Level=-10dBm to $+5 \mathrm{dBm},\{$ FMIX_HV $\}=0$, $\left\{F M I X _I P 3\right\}=0$, Output Load Resistor (RLoad) $=2.2 \mathrm{k} \Omega, \mathrm{VDD}=2.7$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, Test circuit is shown on page 41.

Parameter	Min.	Typ.	Max.	Unit	Remarks
RF Input Frequency	10		2000	MHz	
Lo Input Frequency	10		2000	MHz	
IF output Frequency	20		100	MHz	
Lo Input Power	-10	0	+5	dBm	
Current Adjustment Resistor(BIAS) $\left(\left\{F M I X _H V\right\}=0\right)$	39		100	k Ω	Vdd=2.7 to 5.5V
Current Adjustment Resistor(BIAS) ($\{$ FMIX_HV $\}=1$)	18		39	k Ω	$\mathrm{Vdd}=4.5$ to 5.5 V
IDD (BIAS $=18 \mathrm{k} \Omega$, \{FMIX_HV $=1$)		24		mA	The total current of
IDD(BIAS=47k ${ }^{\text {) }}$		9	13	mA	MIXVDD,IFOUTP,
IDD(\{PDFSTMIX_N ${ }^{\text {a }}$ (0)		1	10	uA	IFOUTN.
RFIN $=600 \mathrm{MHz}$, LOIN $=550 \mathrm{MHz}(0 \mathrm{dBm}$), BIAS $=47 \mathrm{k} \Omega$, Vdd=3V					
Conversion Gain	0.5	3	5	dB	
SSB Noise Figure		8.5	11	dB	Design guarantee value
IP1dB	-3	1		dBm	
IIP3	7	11		dBm	
RFIN $=600 \mathrm{MHz}, \mathrm{LOIN}=550 \mathrm{MHz}(0 \mathrm{dBm}), \mathrm{BIAS}=18 \mathrm{k} \Omega$, $\{$ FMIX_HV $=1, \mathrm{Vdd}=5 \mathrm{~V}$					
Conversion Gain		5		dB	
SSB Noise Figure		8.5		dB	Design guarantee value
IP1dB		0		dBm	
IIP3		16		dBm	Design guarantee value
RFIN $=600 \mathrm{MHz}, \mathrm{LOIN}=550 \mathrm{MHz}(0 \mathrm{dBm}), \mathrm{BIAS}=47 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V},\{$ PMIX_IP3\}=1					
Conversion Gain		3		dB	
SSB Noise Figure		10		dB	Design guarantee value
IP1dB		0		dBm	
IIP3		14		dBm	Design guarantee value
IDD		7		mA	

Analog Characteristics (2nd IF)

Unless otherwise noted VDD $=2.7$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Mode 6, LO2NDIN $=50.4 \mathrm{MHz}, \mathrm{IFIP}=50.85 \mathrm{MHz}, \Delta \mathrm{f}= \pm 1.5 \mathrm{kHz}, \mathrm{fmod}=1 \mathrm{kHz}$, AGC+BPF=F2, \{AGC_OFF\}=0, \{AGC_KEEP_SEL\}=0, \{AGC_KEEP\}=0, PGAO[2:0]=011. \{SDATAOUT_OE\}=0. The exposure back pad of the package is connected to VSS. Test circuit is shown on page 45.

1) 2nd LO input

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	Remarks
Parameter	Fıo	LO2NDIN		$\begin{aligned} & \hline 28.8 \\ & 45.9 \\ & 50.4 \\ & 57.6 \\ & \hline \end{aligned}$		MHz	
Local Frequency	V_{L}	LO2NDIN	0.2		2.0	$\mathrm{V}_{\text {PP }}$	Note

Note) Input from LO2NDIN pin through DC cut
2) PGA0+2nd Mixer

Analog Characteristics (2nd IF) are included the circuit of IFIP input pin.
The input impedance of 2 nd IF_INPUT is 50Ω typ. (See Figure 8 for input matching network)

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
Input Impedance			50		Ω	
Input Frequency			F_{LO}		MHz	
Voltage Gain			± 0.45		MZ	

Figure 8 Test circuit of IFIP Input pin (2nd IF)
3) 2nd IF RX overall characteristics

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
12dB SINAD	Note 1)		-112		dBm	
2nd IF block Total Gain	Mode 5 Maximum gain setting for AGC IFIP to IFOUT \{IFOG[2:0]\}=001		101		dB	
	Mode 5 Minimum gain setting for AGC IFIP to IFOUT \{IFOG[2:0]\}=001		49		dB	
NF	Mode 5, BPF=F3 Maximum gain setting for AGC IFIP to IFOUT $\{\text { IFOG[2:0]\}=001 }$		8		dB	
IIP3	Maximum gain setting for AGC IFIP $=50.8635 \mathrm{MHz} \& 50.876 \mathrm{MHz}$ \{IFOG[2:0]\}=001		-37		dBm	
IP1dB	Minimum gain setting for AGC \{IFOG[2:0]\}=001		-40		dBm	
Demodulation Output Level	$\begin{aligned} & \Delta \mathrm{f}= \pm 3.0 \mathrm{kHz}, \mathrm{fmod}=1 \mathrm{kHz}, \\ & \text { AGC+BPF=F1,\{DISLPF_G[2:0]\}=101 } \end{aligned}$	70	100	130	mVrms	
	$\begin{aligned} & \Delta \mathrm{f}= \pm 1.5 \mathrm{kHz}, \mathrm{fmod}=1 \mathrm{kHz}, \\ & \text { AGC+BPF=F2,\{DISLPF_G[2:0]\}=001 } \end{aligned}$	70	100	130	mVrms	
S/N Ratio	$\begin{aligned} & \Delta \mathrm{f}= \pm 3.0 \mathrm{kHz}, \mathrm{fmod}=1 \mathrm{kHz}, \mathrm{Vin}=-47 \mathrm{dBm} \\ & \text { AGC+BPF=F1, } \\ & \{\text { DISLPF_G[2:0]\}=101 Note 1) } \\ & \hline \end{aligned}$	42	50		dB	
	$\begin{aligned} & \Delta \mathrm{f}= \pm 1.5 \mathrm{kHz}, \mathrm{fmod}=1 \mathrm{kHz}, \mathrm{Vin}=-47 \mathrm{dBm} \\ & \text { AGC+BPF=F2, } \\ & \text { \{DISLPF_G[2:0]\}=001 Note 1) } \end{aligned}$	36	46		dB	
Audio Frequency characteristics	$\Delta \mathrm{f}= \pm 0.5 \mathrm{kHz}, \mathrm{fmod}=3 \mathrm{kHz}, \mathrm{Vin}=-47 \mathrm{dBm}$ AGC+BPF=F3, IFIP to AUDIOOUT \{DISLPF_G[2:0]\}=001 Note 2)	-4.3	-3.5		dB	

Note 1) With De-emphasis $+\mathrm{BPF}(0.3$ to 3 kHz)
Note 2) relative to the output level at $\mathrm{fmod}=1 \mathrm{kHz}$
4) RSSI Characteristics

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
RSSI output voltage	$\begin{array}{l}\text { IFIP } \rightarrow \text { RSSIOUT, } \\ \text { \{AGC_OFF }\}=0\end{array}$					
	IFIP=-115dBm input					

5) Noise Squelch Characteristics

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
Noise Detection Level	NRECTO \rightarrow DETO Detect High		0.5	0.7	V	
	NRECTO \rightarrow DETO Detect Low	0.3	0.4		V	
Noise Detection Characteristics	NAMPI \rightarrow NRECTO Input : 31kHz, 0.1mVrms		0.3		V	
	NAMPI \rightarrow NRECTO Input : 31kHz, 0.25 mVrms		0.65		V	

6) $A G C+B P F$
6.1) FO (E type)

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
Attenuation Characteristics	435 kHz			-50	dB	
	442.5 kHz	-6			dB	
	457.5 kHz	-6			dB	
	465 kHz			-50	dB	
Gain ripple	Within $450 \pm 5 \mathrm{kHz}$			3	dB	

6.2) F1 (F type)

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
Attenuation Characteristics (relative to the gain at 450 kHz)	437.5 kHz			-50	dB	
	444 kHz	-6			dB	
	456 kHz	-6			dB	
Gain ripple	462.5 kHz			-50	dB	

6.3) F2 (G type)

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
Attenuation Characteristics (relative to the gain at 450 kHz)	439 kHz			-50	dB	
	445.5 kHz	-6			dB	
	454.5 kHz	-6			dB	
	461 kHz			-50	dB	
Gain ripple	Within $450 \pm 3 \mathrm{kHz}$			3	dB	

6.4) F3 (H type)

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
(rtenuation Characteristics 	441 kHz			-50	dB	
	447 kHz	-6			dB	
	453 kHz	-6			dB	
Gain ripple	459 kHz			-50	dB	

6.5) F4 (J type)

Parameter	Conditions	Min.	Typ.	Max.	Unit	Remarks
Attenuation Characteristics (relative to the gain at 450 kHz)	443 kHz			-50	dB	
	448 kHz	-8			dB	
	452 kHz	-8			dB	
	457 kHz			-50	dB	

Filter Characteristics

7) IFBUF Characteristics

Parameter	Conditions	Min.	Typ.	Max.	Unit	Rema rks
Settling time	IFBUF to IFOUT, IFBUF=0.32Vpp/step $\mathrm{C}_{\mathrm{L} 2}=21 \mathrm{pF},\{$ IFOG[2:0]\}=001		100		ns	

Note) Convergence time within 1% when 0.32 Vpp step signal input to IFBUF pin
8) Current Consumption

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Current Consumption	IDD0	Mode0 Power down	IDD3			0.01
	IDD1	Mode1 (Prohibited)	mA			
	IDD2	Mode2 Standby(Initial value)	Mode4, Digital Mode 1 with no signal input		-	mA
	IDD5	Mode5 Digital Modo 2 with no signal input. Note 2)		7.5	12	mA
	IDD6	Mode6 Analog Mode with no signal input Note 2)		7.5	12	mA
	IDD7	Mode7 Full Power On with no signal nput Note 2)		8.5	13	mA

Note 1) Current Consumption is AVDD pin.
Note 2) Tripler circuit : ON
Note 3) Do not use Mode1.

Analog Characteristics (ADC)
Unless otherwise noted VDD $=2.7$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
$f s=1 \mathrm{MHz}$, ADVDD $=3.0 \mathrm{~V}$, AD_SCLK $=20 \mathrm{MHz}$

Parameter	Min.	Typ.	Max.	Unit
Resolution		12		Bits
No Missing Codes Note 2)	11			Bits
Integral Nonlinearity (INL) Error		± 2		LSB
Differential Nonlinearity (DNL) Error		± 1		LSB
Input Voltage Range	0		ADVDD	V
ADVDD Power Current		2	3.8	mA

Note 1) The above is the characteristics of only A/D converter block.
Note 2) Design guarantee value

Register Map and Function Description

Name	Address	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
NUM	0×01	$\begin{gathered} \hline \text { NUM } \\ {[17]} \end{gathered}$	$\begin{gathered} \hline \text { NUM } \\ {[16]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NUM } \\ \text { [15] } \\ \hline \end{gathered}$	NUM [14]	$\begin{aligned} & \hline \text { NUM } \\ & \text { [13] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NUM } \\ & {[12]} \\ & \hline \end{aligned}$	NUM [11]	$\begin{aligned} & \hline \text { NUM } \\ & \text { [10] } \\ & \hline \end{aligned}$	NUM [9]	NUM [8]	NUM [7]	$\overline{\text { NUM }}$ [6]	NUM [5]	NUM [4]	NUM [3]	NUM [2]	NUM [1]	$\overline{\text { NUM }}$ $[0]$
	Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INT	0x02	$\begin{gathered} \hline \text { CP1 } \\ {[2]} \end{gathered}$	$\begin{gathered} \hline \text { CP1 } \\ {[1]} \end{gathered}$	$\begin{gathered} \hline \text { CP1 } \\ {[0]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { INT } \\ & \text { [14] } \end{aligned}$	$\begin{aligned} & \text { INT } \\ & \text { [13] } \end{aligned}$	$\begin{aligned} & \text { INT } \\ & {[12]} \end{aligned}$	$\begin{aligned} & \text { INT } \\ & {[11]} \end{aligned}$	$\begin{aligned} & \text { INT } \\ & \text { [10] } \end{aligned}$	$\begin{gathered} \hline \text { INT } \\ {[9]} \end{gathered}$	$\begin{gathered} \hline \text { INT } \\ {[8]} \end{gathered}$	$\begin{aligned} & \mathrm{INT} \\ & {[7]} \end{aligned}$	$\begin{gathered} \hline \text { INT } \\ {[6]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { INT } \\ & {[5]} \end{aligned}$	$\begin{gathered} \hline \text { INT } \\ {[4]} \end{gathered}$	$\begin{gathered} \text { INT } \\ {[3]} \end{gathered}$	INT [2]	INT [1]	$\begin{aligned} & \mathrm{INT} \\ & {[0]} \end{aligned}$
	Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DIV	0x03	0	INTE	$\begin{gathered} \hline \mathrm{CP} \\ \mathrm{HiZ} \end{gathered}$	DITH	$\begin{gathered} \text { LDCKSEL[} \\ 1] \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LDCKSEL[} \\ 01 \end{array}$	LD	$\begin{gathered} \text { CP } \\ \text { POLA } \end{gathered}$	$\begin{gathered} \hline \text { PRE } \\ {[1]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PRE } \\ 101 \end{gathered}$	$\begin{aligned} & \mathrm{R} 1 \\ & {[7]} \end{aligned}$	$\begin{aligned} & \text { R1 } \\ & {[6]} \end{aligned}$	$\begin{aligned} & \mathrm{R} 1 \\ & {[5]} \end{aligned}$	$\begin{aligned} & \mathrm{R} 1 \\ & {[4]} \end{aligned}$	$\begin{aligned} & \hline \text { R1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R} 1 \\ & {[2]} \end{aligned}$	$\begin{aligned} & \hline \text { R1 } \\ & {[1]} \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} 1 \\ & \mathrm{r} 01 \end{aligned}$
	Initial value	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
CP_FAST	0x04	0	$\begin{gathered} \text { FAST } \\ \text { EN } \end{gathered}$	CP2 [2]	$\begin{gathered} \hline \text { CP2 } \\ {[1]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP2 } \\ {[0]} \\ \hline \end{gathered}$	FAST [12]	$\begin{gathered} \text { FAST } \\ {[11]} \end{gathered}$	$\begin{aligned} & \text { FAST } \\ & {[10]} \end{aligned}$	FAST [9]	FAST [8]	$\begin{gathered} \text { FAST } \\ {[7]} \end{gathered}$	FAST [6]	FAST [5]	FAST [4]	FAST [3]	FAST [2]	FAST [1]	FAST [0]
	Initial value	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
NSQ	0x05	$\begin{gathered} \text { VTSEL } \\ {[1]} \\ \hline \end{gathered}$	$\begin{gathered} \text { VTSEL } \\ {[0]} \\ \hline \end{gathered}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OFFSET	0x06	$\begin{gathered} \text { OFST } \\ {[17]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[16]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[15]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[14]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { OFST } \\ & {[13]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { OFST } \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { OFST } \\ {[11]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { OFST } \\ & {[10]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { OFST } \\ {[9]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ \text { [8] } \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[7]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[6]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[3]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[1]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OFST } \\ {[0]} \\ \hline \end{gathered}$
	Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IFBPF	0x07	$\begin{array}{\|c\|} \hline \text { AGC_KEE } \\ \hline \end{array}$	$\begin{gathered} \mathrm{AGCLVL}_{-} \\ \mathrm{H}[2] \\ \hline \end{gathered}$	$\begin{gathered} \text { AGCLVL_ } \\ \mathrm{H}[1] \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AGCLVL_ } \\ H[0] \\ \hline \end{array}$	$\begin{gathered} \mathrm{AGCLVL}_{-} \\ \mathrm{L}[2] \end{gathered}$	$\begin{gathered} \text { AGCLVL } \\ \mathrm{L}[1] \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { AGCLVL_} \\ \mathrm{L}[0] \end{array}$	CAL	$\begin{array}{\|c\|} \hline \text { AGC_FAS } \\ \hline \mathrm{T} \\ \hline \end{array}$	$\begin{aligned} & \text { AGC } \\ & \text { TIME[1] } \\ & \hline \end{aligned}$	$\begin{gathered} \text { AGC } \\ \text { TIME }[0] \end{gathered}$	$\begin{aligned} & \text { AGC1 } \\ & \text { STEP } \end{aligned}$	$\begin{aligned} & \text { AGC } \\ & \text { OFF } \end{aligned}$	$\begin{gathered} \hline \text { BPF_BW } \\ {[2]} \end{gathered}$	$\begin{gathered} \mathrm{BPF}_{[1]} \mathrm{BW} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { BPF_BW } \\ {[0]} \\ \hline \end{array}$	$\begin{gathered} \text { LOFREQ } \\ \text { [1] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { LOFREQ } \\ {[0]} \end{array} \\ \hline \end{gathered}$
	Initial value	0	1	0	1	1	0	0	0	1	0	0	1	0	0	0	0	0	1
PGA	0x08	$\begin{gathered} \text { PGAO_L } \\ G \end{gathered}$	PGA2_G [4]	$\begin{gathered} \text { PGA2_G } \\ {[3]} \end{gathered}$	$\underset{[2]}{\text { PGA2_G }}$	$\underset{[1]}{P \text { PGA2_G }}$	$\begin{gathered} \text { PGA2_G } \\ {[0]} \end{gathered}$	$\begin{gathered} \text { PGA1_G } \\ {[5]} \end{gathered}$	$\underset{[4]}{\mathrm{PGA1} \mathrm{G}}$	$\begin{gathered} \text { PGA1_G } \\ {[3]} \end{gathered}$	$\underset{[2]}{\text { PGA1_G }}$	$\underset{[1]}{P \text { PGA1_G }}$	$\begin{gathered} \text { PGA1_G } \\ {[0]} \end{gathered}$	$\begin{gathered} \text { PGAO_ } \\ {[2]} \end{gathered}$	$\begin{gathered} \text { PGAO } \\ \text { [1] } \end{gathered}$	$\begin{aligned} & \text { PGAO } \\ & {[0]} \end{aligned}$	$\begin{gathered} \hline \text { IFOG } \\ \text { [2] } \end{gathered}$	$\begin{gathered} \text { IFOG } \\ \text { [1] } \end{gathered}$	$\begin{aligned} & \text { IFOG } \\ & \text { [0] } \end{aligned}$
	Initial value	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	1
SRST	0x09	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SRST } \\ {[7]} \end{gathered}$	$\begin{gathered} \text { SRST } \\ {[6]} \end{gathered}$	$\begin{gathered} \text { SRST } \\ {[5]} \end{gathered}$	$\begin{gathered} \text { SRST } \\ {[4]} \end{gathered}$	$\begin{aligned} & \text { SRST } \\ & {[3]} \end{aligned}$	$\begin{aligned} & \text { SRST } \\ & \text { [2] } \end{aligned}$	$\begin{gathered} \text { SRST } \\ {[1]} \end{gathered}$	$\begin{aligned} & \text { SRST } \\ & {[0]} \end{aligned}$
	Initial value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PD	$0 \times 0 \mathrm{~A}$	0	RSSIMD	0	$\begin{array}{\|c\|} \hline \text { AGC_KEE } \\ \text { P_SEL } \\ \hline \end{array}$	$\begin{gathered} \text { SDATAOU } \\ \text { T_OE } \\ \hline \end{gathered}$	FMIX_IP3	DISLPF_G $[2]$	$\begin{array}{\|c} \hline \text { DISLPF_G } \\ {[1]} \end{array}$	DISLPF_G $[0]$	FMIX_HV	PDTRI_N	BS[2]	BS[1]	BS[0]	$\begin{gathered} \text { PDSYNTH } \\ \mathrm{N} \end{gathered}$	PDADC_N	$\begin{array}{\|c\|} \hline \text { PDFSTMI } \\ \text { X_N } \\ \hline \end{array}$	$\begin{gathered} \text { BSSEL_F } \\ \text { MIX } \end{gathered}$
	Initial value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
PD_AGCG	0x0B								$\underset{\mathrm{S}_{\mathrm{G}[5]}}{\mathrm{R}_{2} \mathrm{AGC1}}$	$\begin{gathered} \mathrm{R}_{-} \mathrm{AGC1} 1 \\ \mathrm{G}[4] \end{gathered}$	$\begin{gathered} \hline \mathrm{R} _\mathrm{AGC1} \\ \mathrm{G}[3] \end{gathered}$	$\begin{array}{\|c\|} \hline \text { R_AGC1_ } \\ \hline \end{array}$	$\mathrm{R}_{-\mathrm{AGC1}}^{\mathrm{G}[1]}$	$\begin{gathered} \mathrm{R} _\mathrm{AGC1} \\ \mathrm{G}[0] \end{gathered}$	$\begin{array}{\|c\|} \hline \text { R_AGC2_ } \\ \hline \text { G[4] } \end{array}$	$\begin{gathered} \hline \text { R_AGC2_ } \\ \text { G[3] } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { R_AGC2_ } \\ \text { G[2] } \\ \hline \end{array}$	$\begin{gathered} \mathrm{R}_{-} \mathrm{AGC2} \mathbf{B}^{2}[1] \end{gathered}$	$\begin{gathered} \mathrm{R}_{-} \mathrm{AGC2} \mathbf{B}^{2}[0] \\ \hline \end{gathered}$
	Initial value								-	-	-	-	-	-	-	-	-	-	-

Note1) Writing into address 0×01 is enabled when writing into address 0×02 is performed. Be sure to write into address 0×01 first and then address 0×02.
Note2) The initial register values are not defined. Therefore, even after [PDN] is set to "High", each bit initial value remains undefined. In order to set all
register values, it is required to write the data in all addresses of the register.
Note3) Do not access the data except specified address $0 \times 0 \mathrm{c}$ to $0 \times 1 \mathrm{~F}$.

Address 0x01

Note) Writing into address 0×01 is enabled when writing into address 0×02 is performed.

NUM[17:0] : Set the numerator in 2's complementary representation.

Address 0x02

CP1[2:0]: Sets the current value for the charge pump in normal operation (Charge Pump 1).
Charge Pump 1 current is determined by the following formula:
CP1_min $=0.57 /$ Resistance connected to the [BIAS] pin
Charge Pump 1 current $=$ CP1_min $\times($ CP1 setting +1$)$

	Charge Pump 1 current [uA]		
CP1[2:0]	$22 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega$	$33 \mathrm{k} \Omega$
000	25.9	21.1	17.3
001	51.8	42.2	34.5
010	77.7	63.3	51.8
011	103.6	84.4	69.1
100	129.5	100.6	86.4
101	155.5	126.7	103.6
110	181.4	147.8	120.9
111	207.3	168.9	138.2

INT[14:0] : Sets the integer.
When $\{\operatorname{PRE}[1: 0]\}=" 00 ", \mathrm{P}=4$ is selected and then an integer from 48 to 8191 can be set.
When $\{\operatorname{PRE}[1: 0]\}=" 01^{",} \mathrm{P}=8$ is selected and then an integer from 116 to 16383 can be set.
When $\{\operatorname{PRE}[1: 0]\}=" 10$ " or " 11 ", $\mathrm{P}=16$ is selected and then an integer from 348 to 32767 can be set.

Address 0x03

INTE : INTEGER mode
0 : Disable
1 : Enable (The delta-sigma circuit is integer mode operation.
Don't use DFM operation.)
CPHIZ : Selects normal or TRI-STATE for the CP1/CP2 output.
0 : Charge pumps are activated. (Use this setting for normal operation.)
1 : TRI-STATE (The charge pump output is put in the high-impedance (Hi-Z) state.)
DITH : Selects dithering ON or OFF for a delta-sigma circuit.
0 : DITH OFF (Low Noise mode)
1 : DITH ON (Low Spurious mode)
When OFFSET register is used, set DITH=0(OFF).

LDCKSEL[1:0] : Sets phase error values for lock detect.

When DITH="1":
VCO frequency $>$ [REFIN] pin input frequency / [LDCKSEL[1:0] setting +1$] \times 7$
When DITH="0":
VCO frequency $>$ [REFIN] pin input frequency / [LDCKSEL[1:0] setting +1$] \times 4$
"00" : 1 cycle of the REFIN clock (This cannot be used for the reference dividing ratio ≤ 3.)
" 01 " : 2 cycle of the REFIN clock (This cannot be used for the reference dividing ratio ≤ 5.)
" 10 " : 3 cycle of the REFIN clock (This cannot be used for the reference dividing ratio ≤ 6.)
" 11 " : 1 cycle of the REFIN clock (This must be used for the reference dividing ratio = 3)
$L D$: Selects analog or digital for the lock detect.
0 : Digital Lock Detect
1 : Analog Lock Detect
CPPOLA : Selects positive or negative output polarity for Charge Pump1 and Charge Pump2.
0 : Positive
1 : Negative
PRE[1:0] : Selects a dividing ratio for the prescaler.
"00": P=4
"01": P=8
"10" : P=16
"11": P=16
R1[7:0] : Sets a dividing ratio for the reference clock.
This can be set in the range from 3 (3 divisions) to 255 (255 divisions). 0 to 2 cannot be set.

Address 0x04

FASTEN : Enables or disables the Fast Lockup mode. FAST
0 : The switchover settings specified in CP2[2:0] and FAST[12:0] are disabled.
1 : The switchover settings specified in CP2[2:0] and FAST[12:0] are enabled.
CP2[2:0] : Sets the current value for the charge pump for the Fast Lockup mode
(Charge Pump 2).
Charge Pump 2 current is determined by the following formula:
CP2_min $=0.57 /$ Resistance connected to the [BIAS] pin
Charge Pump 2 current $=$ CP2_min $\times(\mathrm{CP} 2$ setting +4$)[\mathrm{mA}]$

	Charge Pump 2 current [mA]		
CP2[2:0]	$33 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
000	0.69	0.84	1.04
001	0.86	1.06	1.30
010	1.04	1.27	1.55
011	1.21	1.48	1.81
100	1.38	1.69	2.07
101	1.55	1.90	2.33
110	1.73	2.11	2.59
111	1.90	2.32	2.85

FAST[12:0] : Sets the FAST counter value.
A decimal number from 1 to 8191 can be set. This counter value is used to set the time period during which the charge pump for the Fast Lockup mode is ON.
The charge pump for the Fast Lockup mode is turned OFF after the time period calculated by [this count value x phase detector frequency cycle]. 0 cannot be set.

Address 0×05

VTSEL[1:0] :Sets the noise detection level of noise squelch circuit.
$00: 0.4 \mathrm{~V} / 0.5 \mathrm{~V}$ (default) $01: 0.8 \mathrm{~V} / 0.9 \mathrm{~V}$
$10: 1.1 \mathrm{~V} / 1.2 \mathrm{~V} \quad 11: 1.4 \mathrm{~V} / 1.5 \mathrm{~V}$

Address 0x06

OFST[17:0] : Set the adjustable frequency offset in 2's complementary representation.
OFFSET register must be written at the speed calculated by " $1 / 3.5^{*}$ RF Frequency/(INT+7)". If the writing speed is faster than this, the setting isn't valid.
This register is offset from carrier frequency.
After this register is accessed, NUM[17:0] and INT[14:0] are recalculated and their recalculated data are used in delta-sigma and N -divider. When this register is not used, this register must be written 00000 (hexadecimal).
When OFFSET register is used, set DITH=0(OFF).

Address 0×07

AGC_KEEP : The function of AGC1/2 gain keeping
When the AGC function is active, the gain setting of AGC $1 / 2$ is kept during $\left\{A G C _K E E P\right\}=1$. On the other hand, the gain setting of AGC1/2 is changed by IFIP signal during \{AGC_KEEP\}=0.

0 : the gain setting of AGC $1 / 2$ is changed by IFIP signal. (default)
1 : the gain setting of AGC1/2 is kept.
AGCLVL_H[2:0]: Setting the upper limit of AGC threshold level.

AGCLVL_H $[2]$	AGCLVL_H $[1]$	AGCLVL_H $[0]$	upper limit
0	0	0	-5 dB
0	0	1	-4 dB
0	1	0	-3 dB
0	1	1	-2 dB
1	0	0	-1 dB
1	0	1	0 dB (default)
1	1	0	1 dB
1	1	1	2 dB

AGCLVL_L[2:0]: Setting the lower limit of AGC threshold level.

AGCLVL_L	AGCLVL_L	AGCLVL_L	lower limit
$[2]$	$[1]$	$[0]$	-8 dB
0	0	0	-6 dB
0	0	1	-4 dB
0	1	0	-2 dB
0	1	1	$0 \mathrm{~dB}($ default $)$
1	0	0	1 dB
1	0	1	2 dB
1	1	0	3 dB
1	1	1	

Note 1) When the AGC1/2 output level is bigger than the upper limit value, AGC1/2 gain is decreased. When the AGC1/2 output level is smaller than the lower limit value, AGC1/2 gain is increased. The upper/lower limit level is tunable based on default setting limit value.
Note 2) When AGC function is active (\{AGC_OFF\}=0), AGC1/2 works as Note1..

CAL : Discriminator circuit calibration start trigger Discriminator
0 : Invalid
1 : Start
Note) : Calibration is performed synchronized with the rising edge of \{CAL\}.
After calibration completed, this register is set to " 0 " automatically. It takes 1.3 ms before calibration is completed. Refer to "calibration procedure" for further information.

AGC_FAST: AGC control switching

0 : AGC control is operated with AGC response time described in AGC_TIME[1:0].
1 : The time constant of response time is changed by conditions that AGC1/AGC2 output level converges between the upper limit and lower limit(convergence) or not(attack/release). attack/release : AGC response time is the same as AGC_TIME="00". convergence : AGC response time is set with ACG_TIME [1:0].
This setting provides the fast response time that can be followed the burst signal. (default)
AGC_TIME[1:0] : AGC response time setting
This register set response time for AGC1 gain and AGC2 gain to change by 1step.

$*$ AGC_TIME [1]	AGC_TIME [0]	AGC response time [ms]					
		AGC1_STEP=0 setting		AGC1_STEP=1 setting			
		State A	State B	State C	State A	State B	State C
0		(0.6)	(8.5)	(8.5)	(0.4)	(4.4)	(4.4)
0		(67)	(95)	(95)	(34)	(58)	(58)
1		(134)	(182)	(182)	(67)	(111)	(111)
1	1	(267)	(355)	(355)	(134)	(218)	(218)

Note) : Values above indicate response time during AGC gain changes from maximum to minimum or from minimum to maximum.

State A: AGC1 output level is beyond the upper limit.
State B: AGC1 output level is within the upper limit and AGC2 output level is beyond the upper limit.
State C: AGC2 output level is under the lower limit.

AGC1_STEP : AGC1 gain switching range setting

```
0: \pm1dB
1: }\pm2\textrm{dB}\mathrm{ (default)
```

AGC_OFF: AGC ON/OFF setting
0 : ON (default)
1 : Off
BPF_BW[2:0] : BPF band width setting

BPF_BW $[2]$	BPF_BW $[1]$	BPF_BW $[0]$	Name	6 dB attenuation	Attenuation band width	Remarks
1	$0 / 1$	$0 / 1$	F0	$\pm 7.5 \mathrm{kHz}$	$\pm 15 \mathrm{kHz}$ (within 50 dB$)$	
0	0	0	F1	$\pm 6 \mathrm{kHz}$	$\pm 12.5 \mathrm{kHz}$ $($ within 50 dB$)$	
0	0	1	F2	$\pm 4.5 \mathrm{kHz}$	$\pm 11 \mathrm{kHz}$ $($ within 50 dB$)$	
0	1	0	F3	$\pm 3 \mathrm{kHz}$	$\pm 9 \mathrm{kHz}$ $($ within 50 dB$)$	
0	1	1	F4	$\pm 2 \mathrm{kHz}$	$\pm 7 \mathrm{kHz}$ (within 50 dB$)$	8dB attenuation at F4 $: \pm 2 \mathrm{kHz}$

