: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Feature

AK2910 is the single channel CMOS operational amplifires which is available to output with very low input offset voltage $(\pm 1.0 \mu \mathrm{~V})$ and near zero input offset dirft.
It's operated with very small current consumptions, $800 \mu \mathrm{~A}$ typ. (VDD:5.0V), which is available to operate full swing signals in output.
AK2910 is appropriated to Sensor Pre Amp. applications.
\square Low Voltage, Single Supply Operation : 2.7V ~ 5.5 VVery Low Input Offset Voltage $: \pm 1.0 \mu \mathrm{~V}$ typ.Near Zero Dirft over time and temperature $: \pm 2.0 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ typ.Full Swing Outputs to $10 \mathrm{k} \Omega$ LoadPower Supply Current : $800 \mu \mathrm{~A}$ typ. (VDD: 5.0 V , No Load)Gain Bandwidth : 2 MHz typ.Package : TMSOP8

Part Name	Channel Number	Package
AK2910T	1	TMSOP8

Pin Location

Pin number	Name	I/O note)	Function
1	N.C.	N.C.	No Internal Connection (Open or VSS connection)
2	NIN	AI	Amplifier Inverted Input
3	PIN	AI	Amplifier No Inverted Input
4	VSS	PWR	Power Supply Ground
5	N.C.	N.C.	No Internal Connection (Open or VSS connection)
6	OUT	AO	Amplifier Output
7	VDD	PWR	Positive Power Supply
8	N.C.	N.C.	No Internal Connection (Open or VSS connection)

Note)
PWR : Power Supply
AI : Analog Input
AO : Analog Output
N.C. : No Internal Connection

Absolute Maximum Ratings

Symbol			Min	Max
Parameter	VDD	-0.3	6.5	Units
Supply Voltage	V_{TD}	-0.3	$\mathrm{VDD}+0.3$	V
Input Voltage	I_{IN}	-10	+10	mA
Input Current	$\mathrm{T}_{\mathrm{stg}}$	-55	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range				

Note : All voltage with respect to ground
WARNING :
Operational at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Operationg Temperature Range	T_{a}	-40		85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VDD	2.7		5.5	V	
Power Supply Current	Idd		0.8	1.5	mA	$\mathrm{VDD}=5.0 \mathrm{~V}$, No Load

*We asuumes no responsibility for the usage beyond the conditions in this datasheet.

Electrical Characteristics

\square DC Characteristics

VDD:5V, Ta: -40 to $85^{\circ} \mathrm{C}$, unless otherwise noted

\left.| Parameter | Min. | | Typ. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |$\right)$.AC Characteristics

VDD:5V, Ta: -40 to $85^{\circ} \mathrm{C}$, unless otherwise noted

Parameter		Min.	Typ.	Max.	Units	Conditions
Gain Bandwidth			2		MHz	Av:1V/V
Slew Rate			1		V/us	Av:1V/V
Input Voltage Noise			25		$\begin{gathered} \mathrm{nVrms} \\ / \sqrt{ } \mathrm{Hz} \end{gathered}$	f:1kHz
	$0.1-10 \mathrm{~Hz}$		0.2		$\mu \mathrm{Vpp}$	
	$0.1-1 \mathrm{~Hz}$		0.1		$\mu \mathrm{Vpp}$	
Overload Recovery Time			0.02		msec	Av:1V/V
Input Capacitance	Differential		1.5		pF	
	Common Mode		12		PF	
Maximum Capacitance Loads				150	pF	

Typical Operating Characteristics

Supply Current vs. Temperature(Vin:1/2VDD)
Supply Current vs. Supply Voltage
(Vin:1/2VDD)

\square Output voltage vs. Load current
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

\square Output voltage vs. Load current
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

\square Closed loop gain vs. Frequency
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
\square Open loop gain and Phase vs. Frequency
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
Open loop gain and Phase vs. Frequency

Open loop gain and Phase vs. Frequency
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Open loop gain and Phase vs. Frequency
Output impedance vs. Frequency
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Output impedance vs. Frequency
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

\square Large signal transient response (VDD/VSS $=+1.35 \mathrm{~V} /-1.35 \mathrm{~V}$, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CL}=150 \mathrm{pF}$)
\square Large signal transient response
$(\mathrm{VDD} / \mathrm{VSS}=+2.5 \mathrm{~V} /-2.5 \mathrm{~V}$
$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CL}=150 \mathrm{pF}$)
Large signal transient response

Large signal tansient respons

\square Small signal transient response $(\mathrm{VDD} / \mathrm{VSS}=+1.35 \mathrm{~V} /-1.35 \mathrm{~V}$, $\left.\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CL}=150 \mathrm{pF}\right)$
\square Small signal transient response
$(\mathrm{VDD} / \mathrm{VSS}=+2.5 \mathrm{~V} /-2.5 \mathrm{~V}$
$\left.\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CL}=150 \mathrm{pF}\right)$

\square Small signal overshoot vs. Load Capacitance
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Small signal overshoot vs. Load Capacitance $\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
Negative overvoltage recovery
$\left(\mathrm{VDD} / \mathrm{VSS}=+2.5 \mathrm{~V} /-2.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Negative overvoltage recovery

\square Common Mode Rejection Ratio vs. Frequency

\square Power Supply Rejection Ratio vs. Frequency
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
\square Power Supply Rejection Ratio vs. Frequency $\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

\square Power Supply Rejection Ratio vs. Temperature $(\mathrm{VDD}=5 \mathrm{~V})$

 Maximum output swing vs. Frequency}
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Av}=1, \mathrm{RL}=10 \mathrm{k} \Omega\right)$Maximum output swing vs. Frequency
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Av}=1, \mathrm{RL}=10 \mathrm{k} \Omega\right)$

\square Voltage noise density
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=0 \sim 2.5 \mathrm{kHz}\right)$

\square Voltage noise density
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=0 \sim 2.5 \mathrm{kHz}\right)$

\square Voltage noise density
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=0 \sim 20 \mathrm{kHz}\right)$

\square Voltage noise density
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=0 \sim 20 \mathrm{kHz}\right)$

\square Voltage noise density $\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \sim 10 \mathrm{kHz}\right)$

\square Voltage noise
$\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=0.1 \sim 10 \mathrm{~Hz}\right)$
0.1 Hz to 10 Hz Noise

Time ($1 \mathrm{sec} / \mathrm{DIV}$)
\square Voltage noise
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=0.1 \sim 10 \mathrm{~Hz}\right)$
0.1 Hz to 10 Hz Noise

\square Output short-circuit current vs. Temperature $\left(\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

\square Maximum output swing vs. Frequency $\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

\square Input offset voltage $\operatorname{drift}\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Package

1. Marking
1.1 TMSOP8

(1) Pin Number 1 indication mark
(2) Part Number
(3) Date Code (Year)
(4) Date Code (Month)
(5) Lot Number
2. Outline Dimensions
2.1 TMSOP8 Package Outline
(UNIT:mm)

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.

When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.

- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components ${ }_{N o t e 1)}$ in any safety, life support, or other hazard related device or system ${ }_{\text {Note2) }}$, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

