

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# **AK4113**

# 192kHz 24bit DIR with 6:1 Selector

#### **GENERAL DESCRIPTION**

The AK4113 is a 24-bit stereo digital audio receiver that supports sampling rates up to 216kHz. The channel status bits decoder supports both consumer and professional modes. The AK4113 automatically detects non-PCM bit streams such as Dolby Digital, MPEG etc. When combined with the multi channel codec (AK4626 or AK4628), the two chips provide a system solution for Dolby Digital applications. Control of AK4113 is achieved though a  $\mu P$  or pin strapping (parallel mode). It is packaged in a space-saving 30-pin VSOP.

\* Dolby Digital is a trademark of Dolby Laboratories.

| FEATURES                                                              |
|-----------------------------------------------------------------------|
| ☐ AES/EBU, IEC60958, S/PDIF, EIAJ CP1201 Compatible                   |
| □ Low Jitter Analog PLL                                               |
| □ PLL Lock Range: 8k ~ 216kHz                                         |
| ☐ Clock source: PLL or X'tal                                          |
| ☐ 6-channel Receiver Input and 1-channel Transmission Output (Through |
| output)                                                               |
| ☐ Auxiliary Digital Input                                             |
| ☐ De-emphasis for 32kHz, 44.1kHz and 48kHz                            |
| □ Detection Functions                                                 |
| - Non-PCM Bit Stream Detection                                        |
| - DTS-CD Bit Stream Detection                                         |
| - Sampling Frequency Detection                                        |
| (8kHz, 11.025kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz,      |
| 64kHz, 88.2kHz, 96kHz, 176.4kHz and 192kHz)                           |
| - Unlock & Parity Error Detection                                     |
| - Validity Detection                                                  |
| - DAT Start ID Detection                                              |
| ☐ Up to 24bit Audio Data Format                                       |
| ☐ Audio Interface: Master or Slave Mode                               |
| ☐ 40-bit Channel Status Buffer                                        |
| ☐ Burst Preamble bit Pc and Pd Buffer for Non-PCM bit stream          |
| ☐ Q-subcode Buffer for CD bit stream                                  |
| □ Serial μP Interface: I <sup>2</sup> C (max. 400kHz) or 4-wire       |
| ☐ Two Master Clock Outputs: 64fs/128fs/256fs/512fs                    |
| ☐ Operating Voltage: 2.7 to 3.6V with 5V Logic Tolerance              |
| ☐ Small Package: 30pin VSOP                                           |
| □ Ta· - 40 ~ 85°C                                                     |

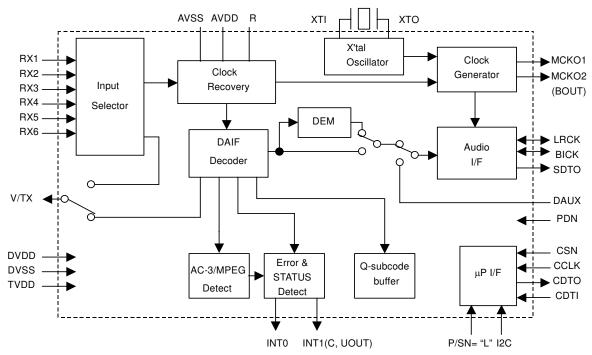



Figure 1. Serial control mode

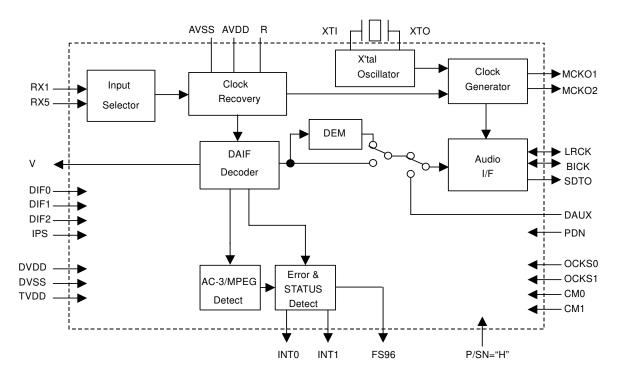
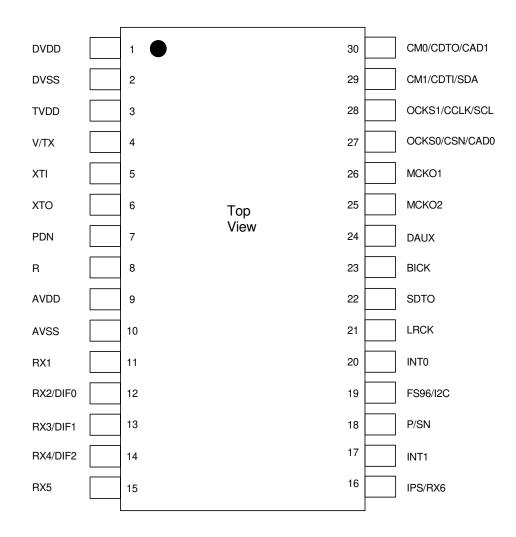




Figure 2. Parallel control mode

# **■** Ordering Guide

AK4113VF -40 ~ +85 °C 30pin VSOP (0.65mm pitch) AKD4113 Evaluation board for AK4113

# **■ PIN Layout**



# PIN/FUNCTION

| No. | Pin Name | I/O | Function                                                               |
|-----|----------|-----|------------------------------------------------------------------------|
| 1   | DVDD     | -   | Digital Power Supply Pin, 3.3V                                         |
| 2   | DVSS     | -   | Digital Ground Pin                                                     |
| 3   | TVDD     | -   | Input Buffer Power Supply Pin, 3.3V or 5V                              |
| 4   | V        | 0   | Validity Flag Output Pin in Parallel control mode                      |
| 4   | TX       | О   | Transmit channel (Through data) Output Pin in serial control mode      |
| 5   | XTI      | I   | X'tal Input Pin                                                        |
| 6   | XTO      | 0   | X'tal Output Pin                                                       |
| 7   | DDM      | Ţ   | Power-Down Mode Pin                                                    |
| /   | PDN      | I   | When "L", the AK4113 is powered-down and reset.                        |
| 8   | R        |     | External Resistor Pin                                                  |
| 0   | K        | -   | This pin must be connected to AVSS via $15k\Omega \pm 5\%$ resistor.   |
| 9   | AVDD     | -   | Analog Power Supply Pin                                                |
| 10  | AVSS     | -   | Analog Ground Pin                                                      |
| 11  | RX1      | I   | Receiver Channel #1 Pin (Internal Biased Pin)                          |
| 12  | DIF0     | I   | Audio Data Interface Format #0 Pin in parallel control mode            |
| 12  | RX2      | I   | Receiver Channel #2 Pin in serial control mode (Internal Biased Pin)   |
| 12  | DIF1     | I   | Audio Data Interface Format #1 Pin in parallel control mode            |
| 13  | RX3      | I   | Receiver Channel #3 Pin in serial control mode (Internal Biased Pin)   |
| 4.4 | DIF2     | I   | Audio Data Interface Format #2 Pin in parallel control mode            |
| 14  | RX4      | I   | Receiver Channel #4 Pin in serial control mode (Internal Biased Pin)   |
| 15  | RX5      | I   | Receiver Channel #5 Pin (Internal Biased Pin)                          |
|     | IPS      | I   | Input Channel Select Pin in parallel control mode                      |
| 16  | RX6      | Ι   | Receiver Channel #6 Pin (Internal Biased Pin)                          |
|     |          |     | Interrupt #1 Pin (when BCU bit = "0")                                  |
| 17  | INT1     | 0   | U-bit Output Pin (when BCU bit = "1", UCE bit = "0")                   |
|     |          |     | C-bit Output Pin (when BCU bit = "1", UCE bit = "1")                   |
|     |          |     | Parallel/Serial Select Pin                                             |
| 18  | P/SN     | I   | "L": Serial control mode, "H": Parallel control mode                   |
|     |          |     | 96kHz Sampling Detect Pin in parallel control mode                     |
|     | FS96     | 0   | This function is enabled when the input frequency of XTI is 24.576MHz. |
| 19  | 1570     |     | "L": fs=54kHz or less, "H": fs=64kHz or more                           |
|     |          |     | I <sup>2</sup> C Select Pin in Serial control mode.                    |
|     | I2C      | I   | "L": 4-wire Serial, "H": 1 <sup>2</sup> C                              |
| 20  | INT0     | 0   | Interrupt #0 Pin                                                       |
| 21  | LRCK     | I/O | Output Channel Clock Pin                                               |
| 22  | SDTO     | 0   | Audio Serial Data Output Pin                                           |
| 23  | BICK     | I/O | Audio Serial Data Clock Pin                                            |
| 24  | DAUX     | I   | Auxiliary Audio Data Input Pin                                         |
| 25  | MCKO2    | 0   | Master Clock #2 Output Pin (when BCU bit = "0")                        |
| 25  | MCKO2    | О   | Block Start Signal Output Pin (when BCU bit = "1")                     |
| 26  | MCKO1    | 0   | Master Clock #1 Output Pin                                             |
|     | OCKS0    | I   | Output Clock Select #0 Pin in parallel control mode                    |
| 27  | CSN      | I   | Chip Select Pin in serial control mode, I2C pin = "L"                  |
|     | CAD0     | I   | Chip Address #0 Pin in serial control mode, I2C pin = "H"              |

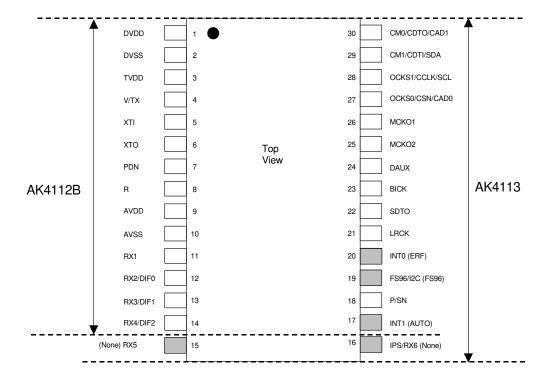
Note 1. Do not allow digital input pins expect internal biased pins (RX1-6 pins) to float.

| No. | Pin Name | I/O | Function                                                     |  |  |
|-----|----------|-----|--------------------------------------------------------------|--|--|
|     | OCKS1    | I   | Output Clock Select #1 Pin in parallel control mode          |  |  |
| 28  | CCLK     | I   | Control Data Clock Pin in serial control mode, I2C pin = "L" |  |  |
|     | SCL      | I   | Control Data Clock Pin in serial control mode, I2C pin = "H" |  |  |
|     | CM1      | I   | Master Clock Operation Mode #1 Pin in parallel control mode  |  |  |
| 29  | CDTI     | I   | Control Data Input Pin in serial control mode, I2C pin = "L" |  |  |
|     | SDA      | I/O | Control Data Pin in serial control mode, I2C pin = "H"       |  |  |
|     | CM0      | I   | Master Clock Operation Mode #0 Pin in parallel control mode  |  |  |
| 30  | CDTO     | 0   | Control Data Output Pin in serial control mode               |  |  |
|     | CAD1     | I   | Chip Address #1 Pin in serial control mode, I2C pin = "H"    |  |  |

Note 1. Do not allow digital input pins expect internal biased pins (RX1-6 pins) to float.

# ■ Handling of Unused Pin

The unused I/O pin should be processed appropriately as below.


| Classification | Pin Name                                        | Setting                                                                         |
|----------------|-------------------------------------------------|---------------------------------------------------------------------------------|
| Analog Input   | RX1, RX2/DIF0, RX3/DIF1, RX4/DIF2, RX5, RX6/IPS | These pins should be open in serial control mode.                               |
| Analog Input   | RX1, RX5                                        | These pins should be open in parallel control mode.                             |
| Digital Input  | DAUX, XTI                                       | These pins should be connected to DVSS.                                         |
|                | V/TX, XTO, INT0, INT1, MCKO1, MCKO2             | These pins should be open.                                                      |
| Digital Output | I2C/FS96                                        | This pin should be open in parallel control mode.                               |
| Digital Output | CAD1/CDTO/CM0                                   | This pin should be open in serial control mode and 4-wire mode (I2C pin = "L"). |

# ■ Compare AK4112B with AK4113

# 1. Function

|                       |                           | AKAHAOD              | AVALLO                               |
|-----------------------|---------------------------|----------------------|--------------------------------------|
| Function              | •                         | AK4112B              | AK4113                               |
| RX Input Channel      | Serial control mode       | 4ch                  | 6ch                                  |
| TIX Input Onamici     | Parallel control mode     | 1ch                  | 2ch                                  |
| PLL Lock Range        |                           | 22kHz to 108kHz      | 8kHz to 216kHz                       |
| Resistor value for R  | pin                       | 18k ± 1%             | 15k ± 5%                             |
| PLL Lock Time         |                           | ≤ 20ms               | FAST bit ="0": ≤ (15ms+384/fs)       |
| FLL LOCK TIME         |                           | ≥ 20IIIS             | FAST bit ="1": ≤ (15ms+1/fs)         |
| DTS-CD Bit Stream     | Detection                 | Not available        | Available                            |
| DAT Start ID Detect   | tion                      | Not available        | Available                            |
| Q-subcode Buffer for  | or CD bit Stream          | Not available        | Available                            |
|                       |                           |                      | 8k / 11.025k / 16k / 22.05k / 24k/   |
| fs Detection in seria | l control mode            | ≥or                  | 32k / 44.1k / 48k / 64k / 88.2k /    |
|                       |                           | ≥88.2kHz             | 96k / 176.4k / 192kHz                |
| Serial µP Interface   |                           | 4-wire               | 4-wire/I <sup>2</sup> C (max.400kHz) |
| Error Handling Pins   |                           | AUTO, ERF, FS96      | INTO, INT1                           |
| Master Clock Outpu    | it Frequency              | 128fs/256fs/512fs    | 64fs/128fs/256fs/512fs               |
| Channel Status Bit    |                           | 32bit                | 40bit                                |
| MCKO2 Clock Cour      | on in parial control made | Depend on CM1 0 hits | Depend on CM1-0, XMCK and            |
| IVIUNUZ CIOCK Sour    | ce in serial control mode | Depend on CM1-0 bits | BCU bits                             |
| Audio I/F at Reset in | n serial control mode     | Master Mode          | Slave Mode                           |
| Package               |                           | 28pin VSOP           | 30pin VSOP                           |

# 2. Pin Layout



#### Note:

- 1) Light gray highlights indicate the difference between AK4112B and AK4113.
- 2) The inside of "()" indicates the pin name of AK4112B.

# 3. Control register

Control registers of between AK4112B and AK4113 are not compatible.

# **ABSOLUTE MAXIMUM RATING**

(AVSS, DVSS=0V; Note 2)

| Parameter                                |                     | Symbol       | min  | max      | Units |
|------------------------------------------|---------------------|--------------|------|----------|-------|
| Power Supplies:                          | Analog              | AVDD         | -0.3 | 4.6      | V     |
|                                          | Digital             | DVDD         | -0.3 | 4.6      | V     |
|                                          | Input Buffer        | TVDD         | -0.3 | 6.0      | V     |
|                                          | AVSS-DVSS  (Note 3) | $\Delta GND$ |      | 0.3      | V     |
| Input Current (Any pins except supplies) |                     | IIN          | -    | ±10      | mA    |
| Input Voltage                            |                     | VIN          | -0.3 | TVDD+0.3 | V     |
| Ambient Temperature (Power applied)      |                     | Ta           | -40  | 85       | °C    |
| Storage Temperature                      | ;                   | Tstg         | -65  | 150      | °C    |

Note 2. All voltage with respect to ground.

Note 3. AVSS and DVSS must be connected to the same ground.

WARING: Operation at or beyond these limits may result in permanent damage to the device Normal operation is not guaranteed at these extremes.

| RECOMMEND OPERATIONG CONDITIONS |                         |             |      |     |     |       |  |
|---------------------------------|-------------------------|-------------|------|-----|-----|-------|--|
| (AVSS, DVSS=0V;                 | (AVSS, DVSS=0V; Note 2) |             |      |     |     |       |  |
| Parameter                       |                         | Symbol      | min  | typ | max | Units |  |
| Power Supplies:                 | Analog                  | AVDD        | 2.7  | 3.3 | 3.6 | V     |  |
|                                 | Digital                 | DVDD        | 2.7  | 3.3 | 3.6 | V     |  |
|                                 | Input Buffer            | TVDD        | DVDD | 3.3 | 5.5 | V     |  |
|                                 | Difference              | AVDD - DVDD | -0.3 | 0   | 0.3 | V     |  |

Note 2. All voltage with respect to ground

# S/PDIF RECEIVER CHARACTERISTICS

(Ta=25°C; AVDD, DVDD=2.7~3.6V;TVDD=2.7~5.5V)

| Parameter              | Symbol | min | typ | max | Units |
|------------------------|--------|-----|-----|-----|-------|
| Input Resistance       | Zin    |     | 10  |     | kΩ    |
| Input Voltage          | VTH    | 350 |     |     | mVpp  |
| Input Hysteresis       | VHY    | -   | 185 |     | mV    |
| Input Sample Frequency | fs     | 8   | ī   | 216 | kHz   |

# **DC CHARACTERISTICS**

(Ta=25°C; AVDD, DVDD=2.7~3.6V;TVDD=2.7~5.5V; unless otherwise specified)

| Parameter                                      | Symbol | min        | typ | max     | Units |
|------------------------------------------------|--------|------------|-----|---------|-------|
| Power Supply Current                           |        |            |     |         |       |
| Normal operation: PDN pin = "H" (Note 4)       |        |            | 26  | 42      | mA    |
| Power down: $PDN pin = "L" (Note 5)$           |        |            | 10  | 100     | μΑ    |
| High-Level Input Voltage                       | VIH    | 70%DVDD    | -   | TVDD    | V     |
| Low-Level Input Voltage                        | VIL    | DVSS - 0.3 | -   | 30%DVDD | V     |
| High-Level Output Voltage                      |        |            |     |         |       |
| (Except TX pin: Iout=-400μA)                   | VOH    | DVDD-0.4   | -   | -       | V     |
| Low-Level Output Voltage                       |        |            |     |         |       |
| (Except TX and SDA pins: Iout=400μA)           | VOL    | -          | -   | 0.4     | V     |
| (SDA pin: Iout= 3mA)                           | VOL    | -          | -   | 0.4     | V     |
| TX Output Level (Note 6)                       | VTXO   | 0.4        | 0.5 | 0.6     | V     |
| Input Leakage Current (Except RX1-6, XTI pins) | Iin    | -          | -   | ± 10    | μΑ    |

Note 4. AVDD, DVDD=3.3V, TVDD=5.0V, C<sub>L</sub>=20pF, fs=216kHz, X'tal=24.576MHz, Clock Operation Mode 2, OCKS1 bit = "1", OCKS0 bit = "1". TX circuit = Figure 19, Master Mode; AVDD=5mA (typ), DVDD=21mA (typ), TVDD=0.1μA (typ).

Note 5. RX inputs are open and all digital input pins are held DVDD or DVSS.

Note 6. By using Figure 19

# **SWITCHING CHARACTERISTICS**

(Ta=25°C; AVDD, DVDD=2.7~3.6V, TVDD=2.7~5.5V; C<sub>L</sub>=20pF)

| Parameter              |                  | Symbol | min     | typ  | max    | Units |
|------------------------|------------------|--------|---------|------|--------|-------|
| Master Clock Timing    |                  |        |         |      |        |       |
| Crystal Resonator      | Frequency        | fXTAL  | 11.2896 |      | 24.576 | MHz   |
| External Clock         | Frequency        | fECLK  | 11.2896 |      | 24.576 | MHz   |
|                        | Duty             | dECLK  | 40      | 50   | 60     | %     |
| MCKO1 Output           | Frequency        | fMCK1  | 1.024   |      | 27.648 | MHz   |
|                        | Duty             | dMCK1  | 40      | 50   | 60     | %     |
| MCKO2 Output           | Frequency        | fMCK2  | 0.512   |      | 27.648 | MHz   |
|                        | Duty             | dMCK2  | 40      | 50   | 60     | %     |
| PLL Clock Recover Free | uency (RX1-6)    | fpll   | 8       | -    | 216    | kHz   |
| LRCK Frequency         |                  | fs     | 8       |      | 216    | kHz   |
| Duty Cycle             |                  | dLCK   | 45      |      | 55     | %     |
| Audio Interface Timing | 5                |        |         |      |        |       |
| Slave Mode             |                  |        |         |      |        |       |
| BICK Period            |                  | tBCK   | 72      |      |        | ns    |
| BICK Pulse Width L     |                  | tBCKL  | 27      |      |        | ns    |
| Pulse Width H          |                  | tBCKH  | 27      |      |        | ns    |
| LRCK Edge to BICE      |                  | tLRB   | 15      |      |        | ns    |
| BICK "↑" to LRCK       | Edge (Note 7)    | tBLR   | 15      |      |        | ns    |
| LRCK to SDTO (MS       | SB)              | tLRM   |         |      | 20     | ns    |
| BICK "↓" to SDTO       |                  | tBSD   |         |      | 20     | ns    |
| DAUX Hold Time         |                  | tDXH   | 15      |      |        | ns    |
| DAUX Setup Time        |                  | tDXS   | 15      |      |        | ns    |
| Master Mode            |                  |        |         |      |        |       |
| BICK Frequency         | BICK Frequency   |        |         | 64fs |        | Hz    |
| BICK Duty              | BICK Duty        |        |         | 50   |        | %     |
| BICK "↓" to LRCK       | BICK "↓" to LRCK |        | -15     |      | 15     | ns    |
| BICK "↓" to SDTO       | BICK "↓" to SDTO |        |         |      | 15     | ns    |
| DAUX Hold Time         |                  | tDXH   | 15      |      |        | ns    |
| DAUX Setup Time        |                  | tDXS   | 15      |      |        | ns    |

Note 7. BICK rising edge must not occur at the same time as LRCK edge.

# **SWITCHING CHARACTERISTICS (Continued)**

(Ta=25°C; AVDD, DVDD=2.7~3.6V, TVDD=2.7~5.5V; C<sub>L</sub>=20pF)

| Parameter                                              | Symbol  | min | typ | max | Units |
|--------------------------------------------------------|---------|-----|-----|-----|-------|
| Control Interface Timing (4-wire serial mode)          |         |     |     |     |       |
| CCLK Period                                            | tCCK    | 200 |     |     | ns    |
| CCLK Pulse Width Low                                   | tCCKL   | 80  |     |     | ns    |
| Pulse Width High                                       | tCCKH   | 80  |     |     | ns    |
| CDTI Setup Time                                        | tCDS    | 50  |     |     | ns    |
| CDTI Hold Time                                         | tCDH    | 50  |     |     | ns    |
| CSN "H" Time                                           | tCSW    | 150 |     |     | ns    |
| CSN "↓" to CCLK "↑"                                    | tCSS    | 50  |     |     | ns    |
| CCLK "↑" to CSN "↑"                                    | tCSH    | 50  |     |     | ns    |
| CDTO Delay                                             | tDCD    |     |     | 45  | ns    |
| CSN "↑" to CDTO Hi-Z                                   | tCCZ    |     |     | 70  | ns    |
| Control Interface Timing (I <sup>2</sup> C Bus mode):  |         |     |     |     |       |
| SCL Clock Frequency                                    | fSCL    | -   |     | 400 | kHz   |
| Bus Free Time Between Transmissions                    | tBUF    | 1.3 |     | -   | μs    |
| Start Condition Hold Time (prior to first clock pulse) | tHD:STA | 0.6 |     | -   | μs    |
| Clock Low Time                                         | tLOW    | 1.3 |     | -   | μs    |
| Clock High Time                                        | tHIGH   | 0.6 |     | -   | μs    |
| Setup Time for Repeated Start Condition                | tSU:STA | 0.6 |     | -   | μs    |
| SDA Hold Time from SCL Falling (Note 8)                | tHD:DAT | 0   |     | -   | μs    |
| SDA Setup Time from SCL Rising                         | tSU:DAT | 0.1 |     | -   | μs    |
| Rise Time of Both SDA and SCL Lines                    | tR      | -   |     | 0.3 | μs    |
| Fall Time of Both SDA and SCL Lines                    | tF      | -   |     | 0.3 | μs    |
| Setup Time for Stop Condition                          | tSU:STO | 0.6 |     | -   | μs    |
| Capacitive load on bus                                 | Cb      | -   |     | 400 | pF    |
| Pulse Width of Spike Noise Suppressed by Input Filter  | tSP     | 0   |     | 50  | ns    |
| Reset Timing                                           |         |     |     |     |       |
| PDN Pulse Width                                        | tPW     | 150 |     |     | ns    |

Note 8. Data must be held for sufficient time to bridge the 300ns transition time of SCL.

Note 9. I<sup>2</sup>C is a registered tradmark of Philips Semiconductors.

# **■** Timing Diagram

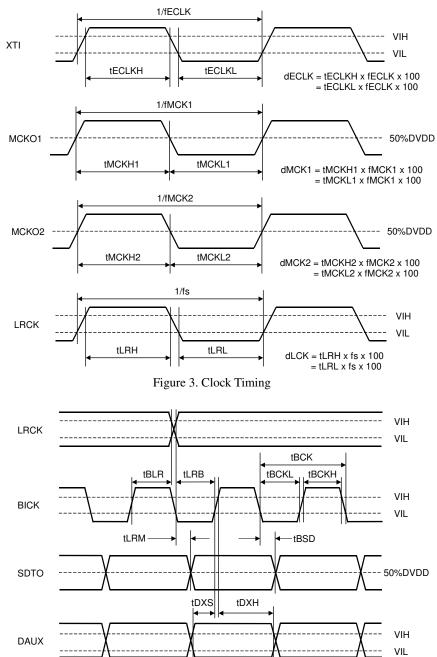



Figure 4. Serial Interface Timing (Slave Mode)

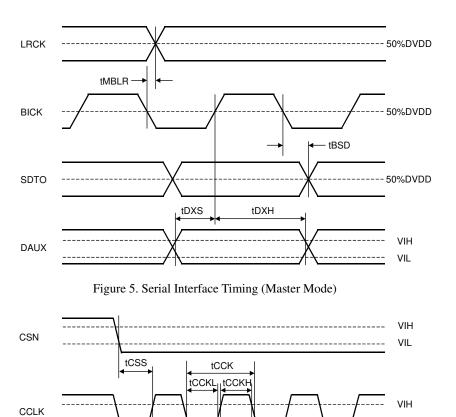



Figure 6. WRITE/READ Command Input Timing (4-wire serial mode)

Hi-Z

tCDS

C1

CDTI

CDTO

tCDH

VIH

A4

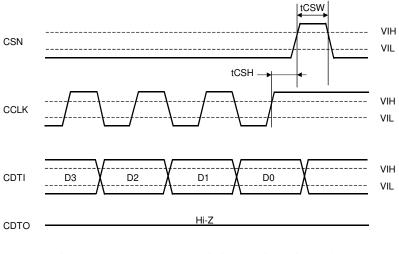



Figure 7. WRITE Data Input Timing (4-wire serial mode)

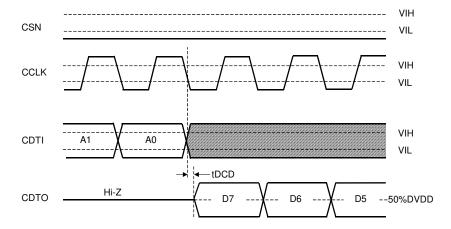
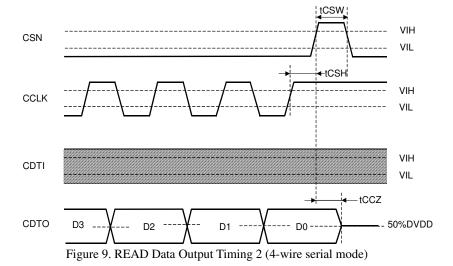
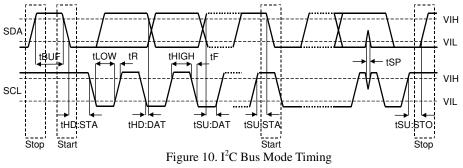





Figure 8. READ Data Output Timing 1 (4-wire serial mode)





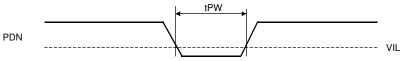



Figure 11. Power-down & Reset Timing

#### **OPERATION OVERVIEW**

#### ■ Non-PCM (Dolby Digital, MPEG, etc) and DTS-CD Bitstream Detection

The AK4113 has a non-PCM bit stream auto-detection function, When the 32bit mode non-PCM preamble based on Dolby "Dolby Digital Data Stream in IEC 60958 Interface" is detected, the NPCM bit sets to "1". The 96-bit sync code consists of 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xF872 and 0x4E1F. Detection of this pattern will set the NPCM bit to "1". Once the NPCM bit is set to "1", it will remain "1" until 4096 frames pass through the chip without an additional sync pattern being detected. When those preambles are detected, the burst preambles Pc (burst information: Table 17) and Pd (length code: Table 18) that follow those sync codes are stored to registers. The AK4113 has also a DTS-CD bitstream auto-detection function. When the AK4113 detects DTS-CD bitstream, the DTSCD bit sets to "1". If the next sync code does not occur within 4096frames, the DTSCD bit sets to "0" until a non-PCM bitstream is detected again. The ORed value of NPCM and DTSCD bits are output to AUTO bit. The AK4113 detects the 14-bit sync word and the 16-bit sync word of a DTS-CD bitstream, the detection function can be set ON/OFF by DTS14 and DTS16 bits in serial control mode.

In parallel control mode, logical OR value of the AUTO and AUDION bits are outputted to the INTI pin. The DTS-CD detects both the 14-bit sync word and the 16-bit sync word.

#### ■ 216kHz Clock Recovery

The integrated low jitter PLL has a wide lock range from 8kHz to 216kHz. The lock time depends on sampling frequency (fs) and FAST bit. (See Figure 12) FAST bit is useful at lower sampling frequency and is fixed to "0" in parallel control mode. In serial control mode, the AK4113 has a sampling frequency detection function (8kHz, 11.025kHz, 16kHz 22.05kHz, 32kHz, 44.1kHz, 48kHz, 64kHz, 88.2kHz, 96kHz, 176.4kHz and 192kHz) that uses either a clock comparison against the X'tal oscillator or the channel status information from the setting of XTL1-0 bits. In parallel control mode, the sampling frequency is detected by using the reference frequency, 24.576MHz. When the sampling frequency is more than 64kHz, FS96 pin goes to "H". When the sampling frequency is less than 54kHz, FS96 pin goes to "L". The PLL loses lock when the received sync interval is incorrect.

| FAST bit | PLL Lock Time           |         |
|----------|-------------------------|---------|
| 0        | $\leq$ (15 ms + 384/fs) | Default |
| 1        | $\leq$ (15 ms + 1/fs)   |         |

Figure 12. PLL Lock Time (fs: Sampling Frequency)

#### **■ Clock Operation Mode**

The CM0 and CM1 pins (or bits) select the clock source and the data source of SDTO. In Mode 2, the clock source is switched from PLL to X'tal when PLL goes unlock state. In Mode3, the clock source is fixed to X'tal, but PLL is also operating and the recovered data such as C bits can be monitored. For Mode2 and 3, it is recommended that the frequency of X'tal is different from the recovered frequency from PLL.

|      |     |     |        |     |           |              |      | -       |
|------|-----|-----|--------|-----|-----------|--------------|------|---------|
| Mode | CM1 | CM0 | UNLOCK | PLL | X'tal     | Clock source | SDTO |         |
| 0    | 0   | 0   | -      | ON  | ON (Note) | PLL          | RX   | Default |
| 1    | 0   | 1   | -      | OFF | ON        | X'tal        | DAUX |         |
| c    | 1   | 0   | 0      | ON  | ON        | PLL          | RX   |         |
| 2    | 1   | U   | 1      | ON  | ON        | X'tal        | DAUX |         |
| 3    | 1   | 1   | -      | ON  | ON        | X'tal        | DAUX | ĺ       |

ON: Oscillation (Power-up), OFF: STOP (Power-Down)

Note: When the X'tal is not used as clock comparison for fs detection (i.e. XTL1-0 bit = "11"), the X'tal is OFF.

Table 1. Clock Operation Mode Select

#### **■** Master Clock

The AK4113 has two clock outputs, MCKO1 and MCKO2. MCKO2 has two modes. These modes can be selected by the XMCK bit.

1) When XMCK bit = "0" and BCU bit = "0"

This mode is compatibile AK4112B and AK4114. These clocks are derived from either the recovered clock or the X'tal oscillator. The frequencies of the master clock outputs (MCKO1 and MCKO2) are set by OCKSO and OCKS1 as shown in Table 2. The 512fs clock will not operate when the sampling frequency is 96kHz or 192kHz. The 256fs clock will not operate when the sampling frequency is 192kHz.

| No. | OCKS1 | OCKS0 | MCKO1 pin | MCKO2 pin | X'tal | fs (max) |         |
|-----|-------|-------|-----------|-----------|-------|----------|---------|
| 0   | 0     | 0     | 256fs     | 256fs     | 256fs | 108 kHz  | Default |
| 1   | 0     | 1     | 256fs     | 128fs     | 256fs | 108 kHz  |         |
| 2   | 1     | 0     | 512fs     | 256fs     | 512fs | 54 kHz   |         |
| 3   | 1     | 1     | 128fs     | 64fs      | 128fs | 216 kHz  |         |

Table 2. Master Clock Output Frequency

#### 2) When XMCK bit "1" and BCU bit = "0"

MCKO2 outputs the input clock of the XTI pin when BCU bit = "0" and XMCK bit = "1". The settings of CM1-0 and OCKS1-0 bits are ignored. The output frequency can be set by the DIV bit. MCKO1 outputs a clock that is selected by the CM1-0 bits and OCKS1-0 bits.

| XMCK bit | DIV bit | MCKO2 Clock Source | MCKO2 Frequency |
|----------|---------|--------------------|-----------------|
| 1        | 0       | X'tal              | x 1             |
| 1        | 1       | X'tal              | x 1/2           |

Table 3. Select output frequency of MCKO2

# **■ Clock Source**

The following circuits are available to feed the clock to the XTI pin of the AK4113.

#### 1) X'tal

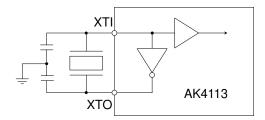



Figure 13. X'tal mode

Note: External capacitance depends upon the crystal oscillator (typ.10-40pF)

#### 2) External clock

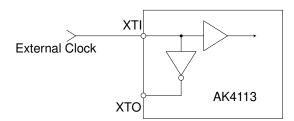



Figure 14. External clock mode

# 3) Fixed to the Clock Operation Mode 0

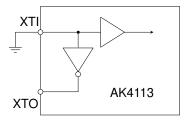



Figure 15. OFF Mode

#### ■ Sampling Frequency and Pre-emphasis Detection

The AK4113 has two methods for detecting the sampling frequency.

- 1. Clock comparison between the recovered clock and X'tal oscillator
- 2. Sampling frequency information on channel status

The method is selected by the XTL1-0 bits. The detected frequency is available on the FS3-0 bits.

When XTL1-0 bits = "11", the sampling frequency is detected by the channel status sampling frequency information. The detected frequency is available on the FS3-0 bits. In parallel control mode, XTL1-0 bits are fixed to "10".

| XTL1 bit | XTL0 bit | X'tal Frequency      |         |
|----------|----------|----------------------|---------|
| 0        | 0        | 11.2896MHz           | Default |
| 0        | 1        | 12.288MHz            |         |
| 1        | 0        | 24.576MHz            |         |
| 1        | 1        | (Use channel status) |         |

Table 4. Reference X'tal frequency

|     |         |          |     |           | Except XTL1-0 bit = "11"      | X                             | XTL1-0 bit = "11"                |                     |  |
|-----|---------|----------|-----|-----------|-------------------------------|-------------------------------|----------------------------------|---------------------|--|
|     | Registe | r output |     | fs        | Clock comparison<br>(Note 10) | Consumer<br>mode<br>(Note 11) | mode Professional mode (Note 12) |                     |  |
| FS3 | FS2     | FS1      | FS0 |           | (1000 10)                     | Byte3<br>Bit3,2,1,0           | Byte0<br>Bit7,6                  | Byte4<br>Bit6,5,4,3 |  |
| 0   | 0       | 0        | 0   | 44.1kHz   | $44.1 \text{kHz} \pm 3\%$     | 0000                          | 0 1                              | 0000                |  |
| 0   | 0       | 0        | 1   | Reserved  | 1                             | 0001                          | (Otl                             | ners)               |  |
| 0   | 0       | 1        | 0   | 48kHz     | $48$ kHz $\pm 3\%$            | 0010                          | 10                               | 0000                |  |
| 0   | 0       | 1        | 1   | 32kHz     | $32$ kHz $\pm 3\%$            | 0011                          | 1 1                              | 0000                |  |
| 0   | 1       | 0        | 0   | 22.05kHz  | $22.05$ kHz $\pm 3\%$         | 0100                          | 0 0                              | 1001                |  |
| 0   | 1       | 0        | 1   | 11.025kHz | $11.025$ kHz $\pm 3\%$        |                               |                                  |                     |  |
| 0   | 1       | 1        | 0   | 24kHz     | $24$ kHz $\pm 3\%$            | 0110                          | 0 0                              | 0001                |  |
| 0   | 1       | 1        | 1   | 16kHz     | $16$ kHz $\pm 3\%$            |                               |                                  |                     |  |
| 1   | 0       | 0        | 0   | 88.2kHz   | $88.2 \text{kHz} \pm 3\%$     | 1000                          | 0 0                              | 1010                |  |
| 1   | 0       | 0        | 1   | 8kHz      | $8kHz \pm 3\%$                |                               |                                  |                     |  |
| 1   | 0       | 1        | 0   | 96kHz     | 96kHz ± 3%                    | 1010                          | 0 0                              | 0010                |  |
| 1   | 0       | 1        | 1   | 64kHz     | 64kHz ± 3%                    |                               |                                  |                     |  |
| 1   | 1       | 0        | 0   | 176.4kHz  | 176.4kHz ± 3%                 | 1100                          | 0 0                              | 1011                |  |
| 1   | 1       | 1        | 0   | 192kHz    | 192kHz ± 3%                   | 1110                          | 0 0                              | 0 0 1 1             |  |

Note 10. At least  $\pm 3\%$  range is identified as the value in the. Table 5. In case of intermediate frequency of those two, FS3-0 bits indicate no value. When the frequency is much bigger than 192kHz or much smaller than 8kHz, FS3-0 bits may indicate "0001" or "1101".

Note 11. In consumer mode, Byte3 Bit3-0 are copied to FS3-0 bits.

Note 12. In professional mode, FS3-0 bit indicates "0001" except for frequency shown by Table 5.

Table 5. fs Information

The pre-emphasis information is detected and reported on PEM bit. This information is extracted from channel 1 by default. It can be switched to channel 2 by the CS12 bit in control register.

| PEM bit | Pre-emphasis | Byte 0<br>Bits 3-5 |
|---------|--------------|--------------------|
| 0       | OFF          | ≠ 0X100            |
| 1       | ON           | 0X100              |

Table 6. PEM in Consumer Mode

| PEM bit | Pre-emphasis | Byte 0<br>Bits 2-4 |
|---------|--------------|--------------------|
| 0       | OFF          | ≠110               |
| 1       | ON           | 110                |

Table 7. PEM in Consumer Mode

#### **■** De-emphasis Filter Control

The AK4113 includes a digital de-emphasis filter (tc=50/15µs). This is an IIR filter that corresponds to four sampling frequencies (32kHz, 44.1kHz and 48kHz). When DEAU bit="1", the de-emphasis filter is enabled automatically by the sampling frequency and pre-emphasis information in the channel status. The AK4113 is in this mode by default. In parallel control mode, the AK4113 is always placed in this mode and the status bits in channel 1 control the de-emphasis filter. In serial control mode, DEM1-0 bits control the de-emphasis filter when the DEAU is "0". The internal de-emphasis filter is bypassed and the recovered data is available without any change if the de-emphasis mode is OFF. When the PEM bit is "0", the internal de-emphasis filter is always bypassed.

| PEM bit | FS3 bit | FS2 bit | FS1 bit | FS0 bit | Mode    |
|---------|---------|---------|---------|---------|---------|
| 1       | 0       | 0       | 0       | 0       | 44.1kHz |
| 1       | 0       | 0       | 1       | 0       | 48kHz   |
| 1       | 0       | 0       | 1       | 1       | 32kHz   |
| 1       |         | (Oth    | OFF     |         |         |
| 0       | X       | X       | X       | X       | OFF     |

Table 8. De-emphasis Auto Control at DEAU bit = "1" (Default)

Default

| PEM bit | DEM1 bit | DEM0 bit | Mode    |
|---------|----------|----------|---------|
| 1       | 0        | 0        | 44.1kHz |
| 1       | 0        | 1        | OFF     |
| 1       | 1        | 0        | 48kHz   |
| 1       | 1        | 1        | 32kHz   |
| 0       | X        | X        | OFF     |

Table 9. De-emphasis Manual Control at DEAU bit = "0"

#### ■ System Reset and Power-Down

The AK4113 has a power-down mode for all circuits using the PDN pin or it can be partially powerd-down with the PWN bit. The RSTN bit initializes the register and resets the internal timing. In parallel control mode, only control by the PDN pin is enabled. The AK4113 should be reset once by bringing PDN pin = "L" upon power-up.

#### PDN Pin:

All analog and digital circuits are placed in power-down and reset mode by bringing PDN pin = "L". All the registers are initialized, and clocks are stopped. Reading/Witting to the registers are disabled.

#### RSTN Bit (Address 00H; D0):

All the registers except PWN and RSTN bits are initialized by bringing RSTN bit = "0". The internal timings is also initialized. Writing to registers is not available except the PWN and RSTN bits. Reading from the registers is disabled.

#### PWN Bit (Address 00H; D1):

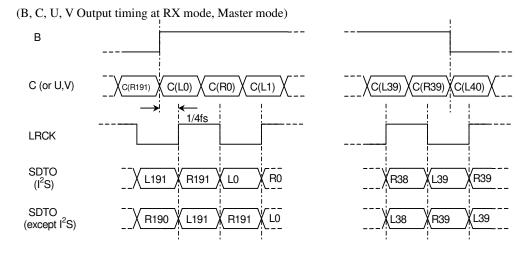
The clock recovery is initialized by bringing PWN bit = "0". In this case, the clocks are stopped. The registers are not initialized and the mode settings are maintained. Writing and reading to the registers are enabled.

#### ■ Bi-phase Input

Six receiver inputs (RX1-6) are available in serial control mode. IPS2-0 bits select the receiver channel. In parallel control mode, two receiver inputs (RX1 or RX5) are available. The receiver channel is selected by IPS pin. Each input includes an amplifier for unbalanced mode that can accept a signal of 350mV or more. When BCU and UCE bits are changed, the Block start signal, C bit and U bit can output from each pins. (See Table 12 and Figure 16)

| IPS2 bit | IPS1 bit | IPS0 bit | INPUT Data |
|----------|----------|----------|------------|
| 0        | 0        | 0        | RX1        |
| 0        | 0        | 1        | RX2        |
| 0        | 1        | 0        | RX3        |
| 0        | 1        | 1        | RX4        |
| 1        | 0        | 0        | RX5        |
| 1        | 0        | 1        | RX6        |
| 1        | 1        | 0        | No use     |
| 1        | 1        | 1        | No use     |

Default


Table 10. Recovery Data Select at serial control mode

| IPS pin | INPUT Data |  |
|---------|------------|--|
| L       | RX1        |  |
| Н       | RX5        |  |

Table 11. Recovery Data Select at parallel control mode

| BCU bit UCE bit |                | MCKO2 pin                 | INT1 pin     |
|-----------------|----------------|---------------------------|--------------|
| 0               | x (Don't care) | MCKO2 clock output        | INT1 output  |
| 1 0             |                | Block start signal output | U-bit output |
| 1               | 1              | Block start signal output | C-bit output |

Table 12. B, C, U output pins select



<sup>\*</sup> The block signal goes high at the start of frame 0 and remains high until the end of frame 39.

Figure 16. B, C, U, V Output Timing

# **■** Bi-phase Output

In serial control mode, the source of the loop-through output from TX is selected from RX1-6. The bi-phase loop-through output is selected by OPS2-0 bits. The bi-phase loop-through output from TX can be stopped by XTE bit. In parallel control mode, the bi-phase loop-through output can not be outputted.

Default

| OPS2 bit | OPS1 bit | OPS0 bit | INPUT Data |
|----------|----------|----------|------------|
| 0        | 0        | 0        | RX1        |
| 0        | 0        | 1        | RX2        |
| 0        | 1        | 0        | RX3        |
| 0        | 1        | 1        | RX4        |
| 1        | 0        | 0        | RX5        |
| 1        | 0        | 1        | RX6        |
| 1        | 1        | 0        | No use     |
| 1        | 1        | 1        | No use     |

Table 13. Output Data Select

### ■ Bi-phase signal input/output circuit

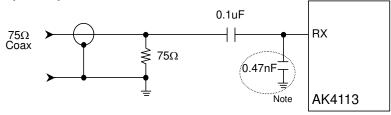



Figure 17. Consumer Input Circuit (Coaxial Input)

Note: For coaxial input, if a coupling level to this input from the next RX input line pattern exceeds 50mV, there may be an incorrect operation. In this case, it is possible to lower the coupling level by adding this decoupling capacitor.

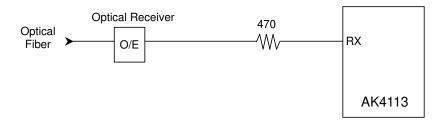



Figure 18. Consumer Input Circuit (Optical Input)

For coaxial input in serial mode, the input level of RX line is small, so care must be taken to avoid crosstalk among the RX input lines. In this case, a shield is recommended between the input lines. In parallel control mode, two channel inputs (RX1 and RX5) are available, RX2, RX3, RX4 and RX6 change to other pins for mode settings. Those pins must be fixed to "H" or "L" because they are not normal logic input.

The AK4113 includes the TX output buffer. The output level meets combination  $0.5V\pm20\%$  using the external resistor network. The T1 in Figure 19 is a transformer of 1:1.

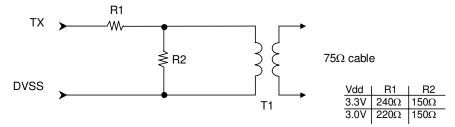



Figure 19. TX External Resistor Network

#### ■ U-bit buffers

The AK4113 has a Q-subcode buffer for CD application. The AK4113 takes the Q-subcode into registers by the following method.

- 1. The sync word (S0,S1) is constructed of at least 16 "0"s.
- 2. The start bit is "1".
- 3. Those 7bits Q-W follows to the start bit.
- 4. The distance between two start bits are 8-16 bits.

The QINT bit in the control register goes to "1" when the new Q-subcode differs from old one, and goes to "0" when the QINT bit is read.

|     | 1 | 2   | 3     | 4         | 5        | 6      | 7   | 8   | * |
|-----|---|-----|-------|-----------|----------|--------|-----|-----|---|
| S0  | 0 | 0   | 0     | 0         | 0        | 0      | 0   | 0   | 0 |
| S1  | 0 | 0   | 0     | 0         | 0        | 0      | 0   | 0   | 0 |
| S2  | 1 | Q2  | R2    | S2        | T2       | U2     | V2  | W2  | 0 |
| S3  | 1 | Q3  | R3    | S3        | T3       | U3     | V3  | W3  | 0 |
| :   |   | :   | • •   | • •       | • •      | • •    | • • | :   | : |
| S97 | 1 | Q97 | R97   | S97       | T97      | U97    | V97 | W97 | 0 |
| S0  | 0 | 0   | 0     | 0         | 0        | 0      | 0   | 0   | 0 |
| S1  | 0 | 0   | 0     | 0         | 0        | 0      | 0   | 0   | 0 |
| S2  | 1 | Q2  | R2    | S2        | T2       | U2     | V2  | W2  | 0 |
| S3  | 1 | Q3  | R3    | S3        | T3       | U3     | V3  | W3  | 0 |
| :   | : | :   | :     | :         | :        | :      | :   | :   | : |
| '   |   | (*) | numbe | er of "0' | ' : min= | 0; max | =8. |     | • |

Figure 20. Configuration of U-bit (CD)

| Q2                         | Q3     | Q4  | Q5  | Q6  | Q7  | Q8  | Q9           | Q10             | Q11 | Q12 | Q13 | Q14 | Q15   | Q16             | Q17 | Q18 | Q19 | Q20 | Q21 | Q22 | Q23 | Q24 | Q25 |
|----------------------------|--------|-----|-----|-----|-----|-----|--------------|-----------------|-----|-----|-----|-----|-------|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CTRL ADRS                  |        |     |     |     |     |     | TRACK NUMBER |                 |     |     |     |     | INDEX |                 |     |     |     |     |     |     |     |     |     |
|                            |        |     |     |     |     |     |              |                 |     |     |     |     |       |                 |     |     |     |     |     |     |     |     |     |
| Q26                        | Q27    | Q28 | Q29 | Q30 | Q31 | Q32 | Q33          | Q34             | Q35 | Q36 | Q37 | Q38 | Q39   | Q40             | Q41 | Q42 | Q43 | Q44 | Q45 | Q46 | Q47 | Q48 | Q49 |
|                            | MINUTE |     |     |     |     |     |              | SECOND          |     |     |     |     |       | FRAME           |     |     |     |     |     |     |     |     |     |
|                            |        |     |     |     |     |     |              |                 |     |     |     |     |       |                 |     |     |     |     |     |     |     |     |     |
| Q50                        | Q51    | Q52 | Q53 | Q54 | Q55 | Q56 | Q57          | Q58             | Q59 | Q60 | Q61 | Q62 | Q63   | Q64             | Q65 | Q66 | Q67 | Q68 | Q69 | Q70 | Q71 | Q72 | Q73 |
|                            |        |     | ZE  | RO  |     |     |              | ABSOLUTE MINUTE |     |     |     |     |       | ABSOLUTE SECOND |     |     |     |     |     |     |     |     |     |
|                            |        |     |     |     |     |     |              |                 |     |     |     |     |       |                 |     |     |     |     |     |     |     |     |     |
| Q74                        | Q75    | Q76 | Q77 | Q78 | Q79 | Q80 | Q81          | Q82             | Q83 | Q84 | Q85 | Q86 | Q87   | Q88             | Q89 | Q90 | Q91 | Q92 | Q93 | Q94 | Q95 | Q96 | Q97 |
| ABSOLUTE FRAME             |        |     |     |     |     |     |              |                 | CF  |     | _   |     |       |                 |     |     |     |     |     |     |     |     |     |
| $G(x)=x^{16}+x^{12}+x^5+1$ |        |     |     |     |     |     |              |                 |     |     |     |     |       |                 |     |     |     |     |     |     |     |     |     |

Figure 21. Q-subcode

| Addr | Register Name               | D7  | D6  | D5 | D4 | D3 | D2 | D1  | D0  |
|------|-----------------------------|-----|-----|----|----|----|----|-----|-----|
| 13H  | Q-subcode Address / Control | Q9  | Q8  |    |    |    |    | Q3  | Q2  |
| 14H  | Q-subcode Track             | Q17 | Q16 |    |    |    |    | Q11 | Q10 |
| 15H  | Q-subcode Index             |     |     |    |    |    |    |     |     |
| 16H  | Q-subcode Minute            |     |     |    |    |    |    |     |     |
| 17H  | Q-subcode Second            |     |     |    |    |    |    |     |     |
| 18H  | Q-subcode Frame             |     |     |    |    |    |    |     |     |
| 19H  | Q-subcode Zero              |     |     |    |    |    |    |     |     |
| 1AH  | Q-subcode ABS Minute        |     |     |    |    |    |    |     |     |
| 1BH  | Q-subcode ABS Second        |     |     |    |    |    |    |     |     |
| 1CH  | Q-subcode ABS Frame         | Q81 | Q80 |    |    |    |    | Q75 | Q74 |

Figure 22. Q-subcode register

# **■** Error Handing

The following nine events cause the INT0 and INT1 pins to show the status of the interrupt condition. When the PLL is OFF (Clock Operation Mode 1), INT0 and INT1 pins go to "L".

1. UNLCK : PLL unlock state detect

"1" when the PLL loses lock. The AK4113 loses lock when the distance between two preamble is not correct or when those preambles are not correct.

2. PAR : Parity error or bi-phase coding error detection

"1" when parity error or bi-phase coding error is detected, updated every sub-frame cycle.

3. AUTO : Non-Linear PCM or DTS-CD Bit Stream detection

The OR function of NPCM and DTSCD bits is available at the AUTO bit.

4. V : Validity flag detection

"1" when validity flag is detected. Updated every sub-frame cycle.

5. AUDION : Non-audio detection

"1" when the "AUDION" bit in recovered channel status indicates "1". Updated every block cycle.

6. STC : Sampling frequency or pre-emphasis information change detection

When either FS3-0 bit or PEM bit is changed, it maintains "1" during 1 sub-frame.

7. QINT : U-bit Sync flag

"1" when the Q-subcode differs from the old one. Updated every sync code cycle for Q-subcode.

8. CINT : Channel status sync flag

"1" when received C bit differs from the old one. Updated every block cycle.

9. DAT : DAT Start ID detect

"1" when the category code indicates "DAT" and "DAT Start ID" is detected. When DCNT bit is "1", it does not indicate "1" even if "DAT Start ID" is detected again within "3841 x LRCK". When "DAT Start ID" is detected again after "3840 x LRCK" passed, it indicates "1". When DCNT bit is "0", it indicates "1" every "DAT Start ID" detection.