imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

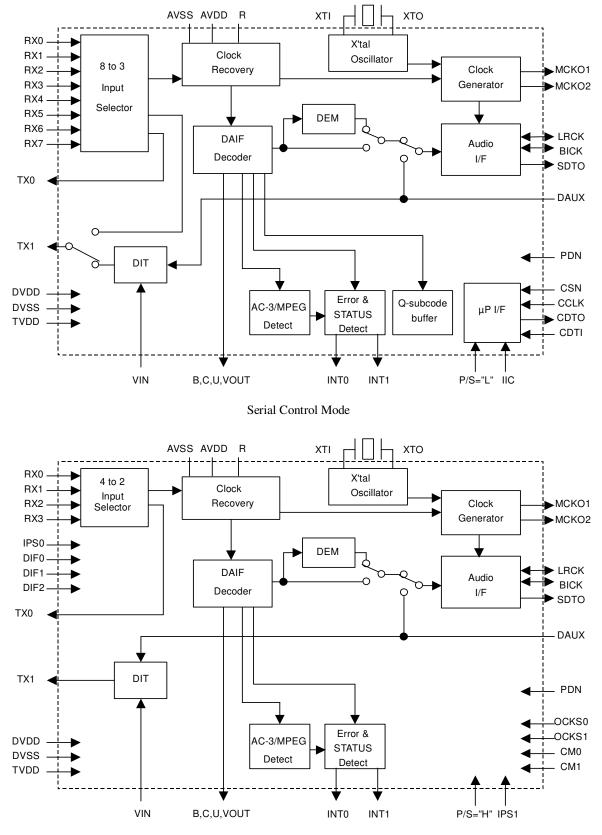
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AKM

AK4114

High Feature 192kHz 24bit Digital Audio Interface Transceiver


GENERAL DESCRIPTION

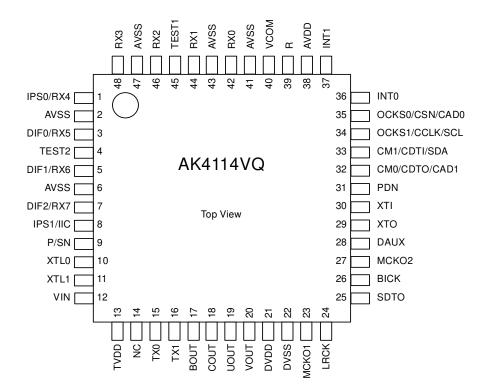
The AK4114 is a digital audio transceiver supporting 192kHz, 24bits. The channel status decoder supports both consumer and professional modes. The AK4114 can automatically detect a Non-PCM bit stream. When combined with the multi channel codec (AK4527B or AK4529), the two chips provide a system solution for AC-3 applications. The dedicated pins or a serial μ P I/F can control the mode setting. The small package, 48pin LQFP saves the system space.

*AC-3 is a trademark of Dolby Laboratories.

FEATURES AES3, IEC60958, S/PDIF, EIAJ CP1201 Compatible □ Low jitter Analog PLL □ PLL Lock Range : 32kHz to 192kHz □ Clock Source: PLL or X'tal □ 8-channel Receiver input □ 2-channel Transmission output (Through output or DIT) □ Auxiliary digital input De-emphasis for 32kHz, 44.1kHz, 48kHz and 96kHz □ Detection Functions Non-PCM Bit Stream Detection DTS-CD Bit Stream Detection Sampling Frequency Detection (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz) Unlock & Parity Error Detection Validity Flag Detection □ Up to 24bit Audio Data Format □ Audio I/F: Master or Slave Mode □ 40-bit Channel Status Buffer

- □ Burst Preamble bit Pc and Pd Buffer for Non-PCM bit stream
- □ Q-subcode Buffer for CD bit stream
- □ Serial µP I/F
- □ Two Master Clock Outputs: 64fs/128fs/256fs/512fs
- □ Operating Voltage: 2.7 to 3.6V with 5V tolerance
- Small Package: 48pin LQFP
- □ Ta: -10 to 70°C

Parallel Control Mode


Ordering Guide

```
AK4114VQ
```

-10 ~ +70 °C

48pin LQFP (0.5mm pitch)

■ Pin Layout

PIN/FUNCTION

No.	Pin Name	I/O	Function
1	IPS0	Ι	Input Channel Select 0 Pin in Parallel Mode
1	RX4	Ι	Receiver Channel 4 Pin in Serial Mode (Internal biased pin)
2	NC(AVSS)	Ι	No Connect
Ζ	INC(AVSS)	1	No internal bonding. This pin should be connected to AVSS.
3	DIF0	Ι	Audio Data Interface Format 0 Pin in Parallel Mode
5	RX5	Ι	Receiver Channel 5 Pin in Serial Mode (Internal biased pin)
4	TEST2	Ι	TEST 2 pin
4		1	This pin should be connect to AVSS.
5	DIF1	Ι	Audio Data Interface Format 1 Pin in Parallel Mode
5	RX6	Ι	Receiver Channel 6 Pin in Serial Mode (Internal biased pin)
6	NC(AVSS)	Ι	No Connect
0	NC(AVSS)	1	No internal bonding. This pin should be connected to AVSS.
7	DIF2	Ι	Audio Data Interface Format 2 Pin in Parallel Mode
/	RX7	Ι	Receiver Channel 7 Pin in Serial Mode (Internal biased pin)
	IPS1	Ι	Input Channel Select 1 Pin in Parallel Mode
8	IIC	Ι	IIC Select Pin in Serial Mode.
	lic	1	"L": 4-wire Serial, "H": IIC
9	P/SN	Ι	Parallel/Serial Select Pin
-			"L": Serial Mode, "H": Parallel Mode
10	XTL0	Ι	X'tal Frequency Select 0 Pin
11	XTL1	Ι	X'tal Frequency Select 1 Pin
12	VIN	Ι	V-bit Input Pin for Transmitter Output
13	TVDD	Ι	Input Buffer Power Supply Pin, 3.3V or 5V
14	NC	Ι	No Connect
••		-	No internal bonding. This pin should be open or connected to DVSS.
15	TX0	0	Transmit Channel (Through Data) Output 0 Pin
16	TX1	0	When TX bit = "0", Transmit Channel (Through Data) Output 1 Pin.
10	1111	Ŭ	When TX bit = "1", Transmit Channel (DAUX Data) Output Pin (Default).
17	BOUT	0	Block-Start Output Pin for Receiver Input
			"H" during first 40 flames.
18	COUT	0	C-bit Output Pin for Receiver Input
19	UOUT	0	U-bit Output Pin for Receiver Input
20	VOUT	0	V-bit Output Pin for Receiver Input
21	DVDD	Ι	Digital Power Supply Pin, 3.3V
22	DVSS	I	Digital Ground Pin
23	MCK01	0	Master Clock Output 1 Pin
24	LRCK	I/O	Channel Clock Pin
25	SDTO	0	Audio Serial Data Output Pin
26	BICK	I/O	Audio Serial Data Clock Pin
27	MCKO2	0	Master Clock Output 2 Pin
28	DAUX	Ι	Auxiliary Audio Data Input Pin
29	XTO	0	X'tal Output Pin
30	XTI	Ι	X'tal Input Pin

PIN/FUNCTION (Continued)

No.	Pin Name	I/O	Function
31	PDN	Ι	Power-Down Mode Pin When "L", the AK4114 is powered-down and reset.
	CM0	Ι	Master Clock Operation Mode 0 Pin in Parallel Mode
32	CDTO	0	Control Data Output Pin in Serial Mode, IIC= "L".
	CAD1	Ι	Chip Address 1 Pin in Serial Mode, IIC= "H".
	CM1	Ι	Master Clock Operation Mode 1 Pin in Parallel Mode
33	CDTI	Ι	Control Data Input Pin in Serial Mode, IIC= "L".
	SDA	I/O	Control Data Pin in Serial Mode, IIC= "H".
	OCKS1	Ι	Output Clock Select 1 Pin in Parallel Mode
34	CCLK	Ι	Control Data Clock Pin in Serial Mode, IIC="L"
	SCL	Ι	Control Data Clock Pin in Serial Mode, IIC= "H"
	OCKS0	Ι	Output Clock Select 0 Pin in Parallel Mode
35	CSN	Ι	Chip Select Pin in Serial Mode, IIC="L".
	CAD0	Ι	Chip Address 0 Pin in Serial Mode, IIC= "H".
36	INT0	0	Interrupt 0 Pin
37	INT1	0	Interrupt 1 Pin
38	AVDD	Ι	Analog Power Supply Pin, 3.3V
39	R		External Resistor Pin
39	K	-	$18k\Omega + 1\%$ resistor should be connected to AVSS externally.
40	VCOM		Common Voltage Output Pin
		-	0.47µF capacitor should be connected to AVSS externally.
41	AVSS	I	Analog Ground Pin
42	RX0	I	Receiver Channel 0 Pin (Internal biased pin)
72	KA0	1	This channel is default in serial mode.
43	NC(AVSS)	I	No Connect
			No internal bonding. This pin should be connected to AVSS.
44	RX1	Ι	Receiver Channel 1 Pin (Internal biased pin)
45	TEST1	I	TEST 1 pin.
-			This pin should be connected to AVSS.
46	RX2	I	Receiver Channel 2 Pin (Internal biased pin)
47	NC(AVSS)	Ι	No Connect
			No internal bonding. This pin should be connected to AVSS.
48	RX3	Ι	Receiver Channel 3 Pin (Internal biased pin)

Note 1. All input pins except internal biased pins should not be left floating.

ABSOLUTE MAXIMUM RATINGS									
(AVSS, DVSS=0V	; Note 2)								
	Parameter	Symbol	min	max	Units				
Power Supplies:	Analog	AVDD	-0.3	4.6	V				
	Digital	DVDD	-0.3	4.6	V				
	Input Buffer	TVDD	-0.3	6.0	V				
	AVSS-DVSS (Note 3)	ΔGND		0.3	V				
Input Current (Any	pins except supplies)	IIN	-	±10	mA				
Input Voltage (Exc	ept XTI pin)	VIN	-0.3	TVDD+0.3	V				
Input Voltage (XTI	ut Voltage (XTI pin)		-0.3	DVDD+0.3	V				
Ambient Temperat	ure (Power applied)	Та	-10	70	°C				
Storage Temperatu	re	Tstg	-65	150	°C				

Note 2. All voltages with respect to ground.

Note 3. AVSS and DVSS must be connected to the same ground.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS								
(AVSS, DVSS=0V; Note 2)								
Pa	Symbol	min	typ	max	Units			
Power Supplies:	Analog	AVDD	2.7	3.3	3.6	V		
	Digital	DVDD	2.7	3.3	AVDD	V		
	Input Buffer	TVDD	DVDD	3.3	5.5	V		

Note 2. All voltages with respect to ground.

S/PDIF RECEIVER CHARACTERISTICS

(Ta=25°C; AVDD, DVDD=2.7~3.6V;TVDD=2.7~5.5V)							
Parameter	Symbol	min	typ	max	Units		
Input Resistance	Zin		10		kΩ		
Input Voltage	VTH	200			mVpp		
Input Hysteresis	VHY		50		mV		
Input Sample Frequency	fs	32	-	192	kHz		

DC CHARACTERISTICS									
(Ta=25°C; AVDD, DVDD=2.7~3.6V;TVDD=2.7~5.5V; unless otherwise specified)									
Parameter	Symbol	min	typ	max	Units				
Power Supply Current Normal operation: PDN = "H" (Note 4) Power down: PDN = "L" (Note 5)			28 10	56 100	mA μA				
High-Level Input Voltage Low-Level Input Voltage	VIH VIL	70%DVDD DVSS-0.3	-	TVDD 30%DVDD	V V				
High-Level Output Voltage (Iout=-400µA) Low-Level Output Voltage	VOH	DVDD-0.4	-	-	V				
(Except SDA pin: Iout=400µA) (SDA pin: Iout= 3mA)	VOL VOL	-	-	0.4 0.4	V V				
Input Leakage Current	lin	-	-	± 10	μΑ				

Note 4. AVDD, DVDD=3.3V, TVDD=5.0V, C_L=20pF, fs=192kHz, X'tal=24.576MHz, Clock Operation Mode 2, OCKS1=1, OCKS0=1. AVDD=11mA (typ), DVDD=17mA (typ), TVDD=10μA (typ).

DVDD=28mA (typ) when the circuit of Figure 22 is attached to both TX0 and TX1 pins.

Note 5. RX inputs are open and all digital input pins are held DVDD or DVSS.

	SWITCHING	CHARACT	ERISTICS			
(Ta=25°C; DVDD, AVD	D2.7~3.6V, TVDD=2.7~5.5V	$V; C_L = 20 pF)$				
Par	ameter	Symbol	min	typ	max	Units
Master Clock Timing						
Crystal Resonator	Frequency	fXTAL	11.2896		24.576	MHz
External Clock	Frequency	fECLK	11.2896		24.576	MHz
	Duty	dECLK	40	50	60	%
MCKO1 Output	Frequency	fMCK1	4.096		24.576	MHz
	Duty	dMCK1	40	50	60	%
MCKO2 Output	Frequency	fMCK2	2.048		24.576	MHz
	Duty	dMCK2	40	50	60	%
PLL Clock Recover Free	uency (RX0-7)	fpll	32	-	192	kHz
LRCK Frequency		fs	32		192	kHz
Duty Cycle		dLCK	45		55	%
Audio Interface Timing	5					
Slave Mode						
BICK Period		tBCK	80			ns
BICK Pulse Width L	WQ	tBCKL	30			ns
Pulse Width H	ligh	tBCKH	30			ns
LRCK Edge to BICH		tLRB	20			ns
BICK " [↑] " to LRCK	Edge (Note 6)	tBLR	20			ns
LRCK to SDTO (MS		tLRM			30	ns
BICK "↓" to SDTO		tBSD			30	ns
DAUX Hold Time		tDXH	20			ns
DAUX Setup Time		tDXS	20			ns
Master Mode						
BICK Frequency		fBCK		64fs		Hz
BICK Duty		dBCK		50		%
BICK "↓" to LRCK		tMBLR	-20	20	20	ns
BICK \checkmark to EKCK BICK \checkmark to SDTO		tBSD	20		10	ns
DAUX Hold Time		tDXH	20		10	ns
DAUX Setup Time		tDXS	20			ns
Control Interface Timi	ng (4-wire serial mode)					
CCLK Period	ing (+ white serial mode)	tCCK	200			ns
CCLK Pulse Width	l ow	tCCKL	80			ns
Pulse Width I		tCCKH	80			ns
CDTI Setup Time		tCDS	50			ns
CDTI Hold Time		tCDH	50			ns
CSN "H" Time		tCSW	150			ns
CSN "↓" to CCLK "	, ,,,	tCSS	50			ns
CCLK "↑" to CCLK		tCSH	50			ns
CDTO Delay	1	tDCD	50		45	ns
	57	tCCZ			70	ns
CSN "↑" to CDTO I	1I-Z	iCCL			70	115

Note 6. BICK rising edge must not occur at the same time as LRCK edge.

SWITCHING CHAR	ACTERISTI	CS (Conti	nued)						
(Ta=25°C; DVDD, AVDD2.7~3.6V, TVDD=2.7~5.5V; C _L =20pF)									
Parameter	Symbol	min	typ	max	Units				
Control Interface Timing (I ² C Bus mode):									
SCL Clock Frequency	fSCL	-		100	kHz				
Bus Free Time Between Transmissions	tBUF	4.7		-	μs				
Start Condition Hold Time	tHD:STA	4.0		-	μs				
(prior to first clock pulse)									
Clock Low Time	tLOW	4.7		-	μs				
Clock High Time	tHIGH	4.0		-	μs				
Setup Time for Repeated Start Condition	tSU:STA	4.7		-	μs				
SDA Hold Time from SCL Falling (Note 7)	tHD:DAT	0		-	μs				
SDA Setup Time from SCL Rising	tSU:DAT	250		-	ns				
Rise Time of Both SDA and SCL Lines	tR	-		1000	ns				
Fall Time of Both SDA and SCL Lines	tF	-		300	ns				
Setup Time for Stop Condition	tSU:STO	4.0		-	μs				
Capacitive load on bus	Cb	-		400	pF				
Reset Timing									
PDN Pulse Width	tPW	150			ns				

Note 7. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.

Note 8. I²C is a registered trademark of Philips Semiconductors.

Purchase of Asahi Kasei Microsystems Co., Ltd I^2C components conveys a license under the Philips I^2C patent to use the components in the I^2C system, provided the system conform to the I^2C specifications defined by Philips.

Timing Diagram

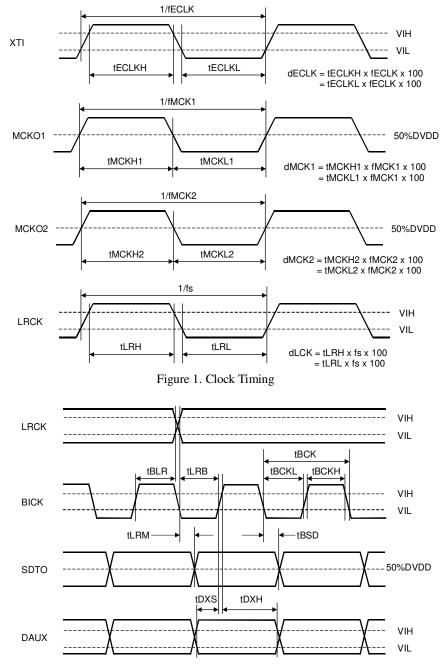


Figure 2. Serial Interface Timing (Slave Mode)

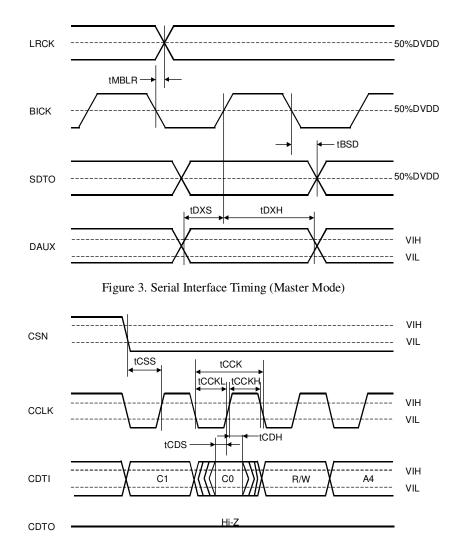
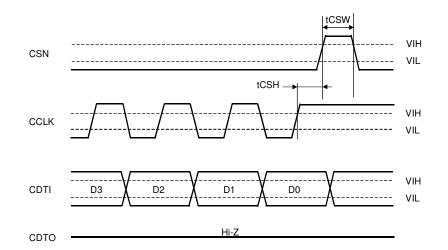
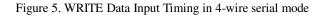




Figure 4. WRITE/READ Command Input Timing in 4-wire serial mode

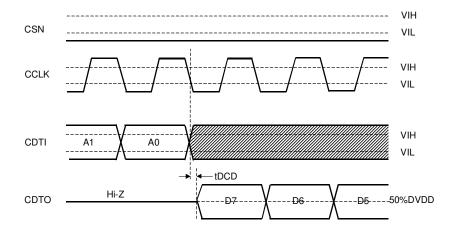
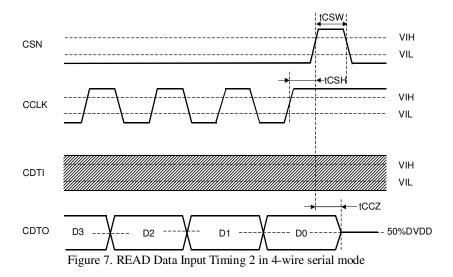



Figure 6. READ Data Output Timing 1 in 4-wire serial mode

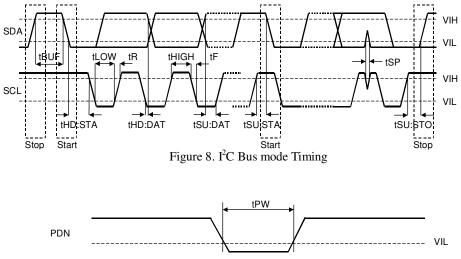


Figure 9. Power Down & Reset Timing

OPERATION OVERVIEW

■ Non-PCM (AC-3, MPEG, etc.) and DTS-CD Bitstream Detection

The AK4114 has a Non-PCM steam auto-detection function. When the 32bit mode Non-PCM preamble based on Dolby "AC-3 Data Stream in IEC60958 Interface" is detected, the AUTO bit goes "1". The 96bit sync code consists of 0x0000, 0x0000, 0x0000, 0x0000, 0x4E1F. Detection of this pattern will set the AUTO "1". Once the AUTO is set "1", it will remain "1" until 4096 frames pass through the chip without additional sync pattern being detected. When those preambles are detected, the burst preambles Pc and Pd that follow those sync codes are stored to registers. The AK4114 also has the DTS-CD bitstream auto-detection function. When AK4114 detects DTS-CD bitstreams, DTSCD bit goes to "1". When the next sync code does not come within 4096 flames, DTSCD bit goes to "0" until when AK4114 detects the stream again.

■ 192kHz Clock Recovery

On chip low jitter PLL has a wide lock range with 32kHz to 192kHz and the lock time is less than 20ms. The AK4114 has the sampling frequency detect function. By either the clock comparison against X'tal oscillator or using the channel status, AK4114 detects the sampling frequency (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz and 192kHz). The PLL loses lock when the received sync interval is incorrect.

Master Clock

The AK4114 has two clock outputs, MCKO1 and MCKO2. These clocks are derived from either the recovered clock or from the X'tal oscillator. The frequencies of the master clock outputs (MCKO1 and MCKO2) are set by OCKS0 and OCKS1 as shown in Table 1. The 512fs clock will not output when 96kHz and 192kHz. The 256fs clock will not output when 192kHz.

No.	OCKS1	OCKS0	MCKO1	MCKO2	X'tal	fs (max)	
0	0	0	256fs	256fs	256fs	96 kHz	Default
1	0	1	256fs	128fs	256fs	96 kHz	
2	1	0	512fs	256fs	512fs	48 kHz	
3	1	1	128fs	64fs	128fs	192 kHz	

 Table 1. Master Clock Frequency Select (Stereo mode)

■ Clock Operation Mode

The CM0/CM1 pins (or bits) select the clock source and the data source of SDTO. In Mode 2, the clock source is switched from PLL to X'tal when PLL goes unlock state. In Mode3, the clock source is fixed to X'tal, but PLL is also operating and the recovered data such as C bits can be monitored. For Mode2 and 3, it is recommended that the frequency of X'tal is different from the recovered frequency from PLL.

Mode	CM1	CM0	UNLOCK	PLL	X'tal	Clock source	SDTO	
0	0	0	-	ON	ON(Note)	PLL	RX	Default
1	0	1	-	OFF	ON	X'tal	DAUX	
2	1	0	0	ON	ON	PLL	RX	
2	1	0	1	ON	ON	X'tal	DAUX	
3	1	1	-	ON	ON	X'tal	DAUX	

ON: Oscillation (Power-up), OFF: STOP (Power-down)

Note : When the X'tal is not used as clock comparison for fs detection (i.e. XTL1,0= "1,1"), the X'tal is off.

Table 2. Clock Operation Mode select

Clock Source

The following circuits are available to feed the clock to XTI pin of AK4114.

1) X'tal

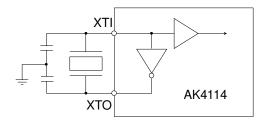


Figure 10. X'tal mode Note: External capacitance depends on the crystal oscillator (Typ. 10-40pF)

2) External clock

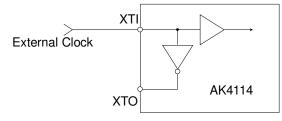


Figure 11. External clock mode Note: Input clock must not exceed DVDD.

3) Fixed to the Clock Operation Mode 0

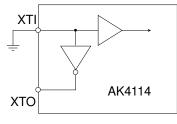


Figure 12. off mode

Sampling Frequency and Pre-emphasis Detection

The AK4114 has two methods for detecting the sampling frequency as follows.

1. Clock comparison between recovered clock and X'tal oscillator

2. Sampling frequency information on channel status

Those could be selected by XTL1, 0 bits. And the detected frequency is reported on FS3-0 bits.

XTL1	XTL0	X'tal Frequency	
0	0	11.2896MHz	Default
0	1	12.288MHz	
1	0	24.576MHz	
1	1	(Use channel status)	

					Except XTL1,0= "1,1"		XTL1,0="1,1	"		
	Register	r output		fs	Clock comparison (Note 1)	Consumer mode (Note 2)	Professional mode			
FS3	FS2	FS1	FS0		(11010-17)	Byte3 Bit3,2,1,0	Byte0 Bit7,6	Byte4 Bit6,5,4,3		
0	0	0	0	44.1kHz	44.1kHz	0000	0 1	0000		
0	0	0	1	Reserved Reserved 0 0 0 1 (Other				ners)		
0	0	1	0	48kHz	48kHz	0010	10	0000		
0	0	1	1	32kHz	32kHz	0011	11	0000		
1	0	0	0	88.2kHz	88.2kHz	(1000)	0 0	1010		
1	0	1	0	96kHz	96kHz	(1010)	0 0	0010		
1	1	0	0	176.4kHz	176.4kHz	(1100)	00 1011			
1	1	1	0	192kHz	192kHz	(1110)	0 0	0011		

Note1: At least ±3% range is identified as the value in the Table 4. In case of intermediate frequency of those two, FS3-0 bits indicate nearer value. When the frequency is much bigger than 192kHz or much smaller than 32kHz, FS3-0 bits may indicate "0001".

Note2: When consumer mode, Byte3 Bit3-0 are copied to FS3-0.

Table 4. fs Information

The pre-emphasis information is detected and reported on PEM bit. These information are extracted from channel 1 at default. It can be switched to channel 2 by CS12 bit in control register.

PEM	Pre-emphasis	Byte 0 Bits 3-5
0	OFF	≠ 0X100
1	ON	0X100

Table 5. PEM in Consumer Mode

PEM	Pre-emphasis	Byte 0 Bits 2-4
0	OFF	≠110
1	ON	110

Table 6. PEM in Professional Mode

De-emphasis Filter Control

The AK4114 includes the digital de-emphasis filter (tc=50/15µs) by IIR filter corresponding to four sampling frequencies (32kHz, 44.1kHz, 48kHz and 96kHz). When DEAU bit="1", the de-emphasis filter is enabled automatically by sampling frequency and pre-emphasis information in the channel status. The AK4114 goes this mode at default. Therefore, in Parallel Mode, the AK4114 is always placed in this mode and the status bits in channel 1 control the de-emphasis filter. In Serial Mode, DEM0/1 and DFS bits can control the de-emphasis filter when DEAU is "0". The internal de-emphasis filter is bypassed and the recovered data is output without any change if either pre-emphasis or de-emphasis Mode is OFF.

PEM	FS3	FS2	FS1	FS0	Mode
1	0	0	0	0	44.1kHz
1	0	0	1	0	48kHz
1	0	0	1	1	32kHz
1	1	0	1	0	96kHz
1		(Oth	ners)		OFF
0	Х	Х	Х	Х	OFF

PEM	DFS	DEM1	DEM0	Mode
1	0	0	0	44.1kHz
1	0	0	1	OFF
1	0	1	0	48kHz
1	0	1	1	32kHz

0

1

0

1

х

Table 7. De-emphasis Auto Control at DEAU = "1" (Default)

Default

OFF

OFF

96kHz

OFF

OFF

Table 8. De-emphasis Manual Control at DEAU = "0"

0

0

1

1

х

System Reset and Power-Down

1

1

1

1

0

1

1

1

1

х

The AK4114 has a power-down mode for all circuits by PDN pin can be partially powerd-down by PWN bit. The RSTN bit initializes the register and resets the internal timing. In Parallel Mode, only the control by PDN pin is enabled. The AK4114 should be reset once by bringing PDN pin = "L" upon power-up.

PDN Pin:

All analog and digital circuit are placed in the power-down and reset mode by bringing PDN= "L". All the registers are initialized, and clocks are stopped. Reading/Witting to the register are disabled.

RSTN Bit (Address 00H; D0):

All the registers except PWN and RSTN are initialized by bringing RSTN bit = "0". The internal timings are also initialized. Witting to the register is not available except PWN and RSTN. Reading to the register is disabled.

PWN Bit (Address 00H; D1):

The clock recovery part is initialized by bringing PWN bit = "0". In this case, clocks are stopped. The registers are not initialized and the mode settings are kept. Writing and Reading to the registers are enabled.

■ Biphase Input and Through Output

Eight receiver inputs (RX0-7) are available in Serial Control Mode. Each input includes amplifier corresponding to unbalance mode and can accept the signal of 200mV or more. IPS2-0 selects the receiver channel. When BCU bit = "1", the Block start signal, C bit and U bit can output from each pins.

IPS2	IPS1	IPS0	INPUT Data	Ι
0	0	0	RX0	Default
0	0	1	RX1	
0	1	0	RX2	
0	1	1	RX3	
1	0	0	RX4	
1	0	1	RX5	
1	1	0	RX6	
1	1	1	RX7	

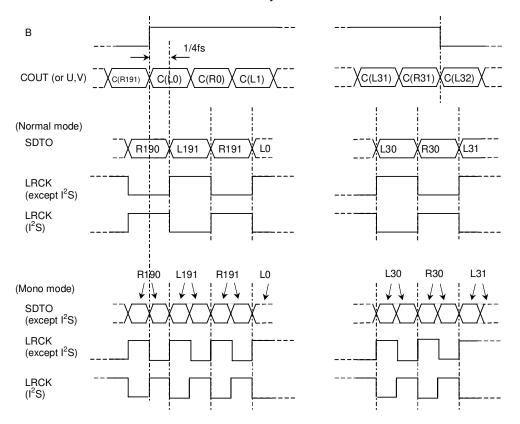


Table 9. Recovery Data Select

Figure 13. B, C, U, V output/input timings

Biphase Output

The AK4114 can output either the through output(from DIR) or transmitter output(DIT; the data from DAUX is transformed to IEC60958 format.) from TX1/0 pins. Those could be selected by DIT bit. The source of the through output from TX0 could be selected among RX0-8 by OPS00,01 and 02 bits, for TX1, by OPS10,11 and 12 bits respectively. When output DAUX data, V bit could be controlled by VIN pin and first 5 bytes of C bit could be controlled by CT39-CT0 bits in control registers. When bit0= "0"(consumer mode), bit20-23(Audio channel) could not be controlled directly but be controlled by CT20 bit. When the CT20 bit is "1", AK4114 outputs "1000" as C20-23 for left channel and output "0100" at C20-23 for right channel automatically. When CT20 bit is "0", AK4114 outputs "0000" set as "1000" for sub frame 1, and "0100" for sub frame 2. U bits are fixed to "0".as C20-23 for both channel. U bit could be controlled by UDIT bit as follows; When UDIT bit is "0", U bit is always "L". When UDIT bit is "1", the recovered U bits are used for DIT(DIR-DIT loop mode of U bit). This mode is only available when PLL is locked and the master mode.

OPS02	OPS01	OPS00	Output Data	Ι
0	0	0	RX0	Default
0	0	1	RX1	Ι
0	1	0	RX2	I
0	1	1	RX3	I
1	0	0	RX4	I
1	0	1	RX5	I
1	1	0	RX6	l
1	1	1	RX7	

Table 10. Output Data Select for TX0

DIT	OPS12	OPS11	OPS10	Output Data	
0	0	0	0	RX0	
0	0	0	1	RX1	
0	0	1	0	RX2	
0	0	1	1	RX3	
0	1	0	0	RX4	
0	1	0	1	RX5	
0	1	1	0	RX6	
0	1	1	1	RX7	
1	Х	х	Х	DAUX	Default

Table 11. Output Data Select for TX1

(Mono mode)

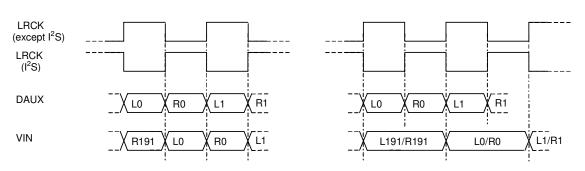


Figure 14. DAUX and VIN input timings

(Normal mode)

■ Double sampling frequency mode

When MONO bit = "1", the AK4114 outputs data with double speed according to "Single channel double sampling frequency mode" of AES3. For example, when 192kHz mono data is transmitted or received, L/R channels of 96kHz biphase data are used. In this case, 1 frame is 96kHz and LRCK frequency is 192kHz.

1) RX

When MONO bit = "1", AK4114 outputs mono data from SDTO as follows.

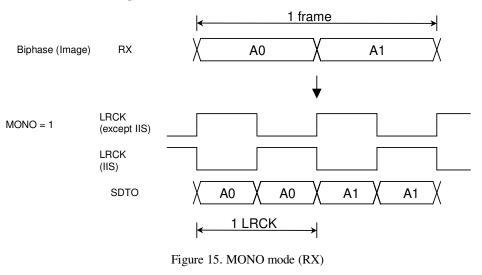


Figure 16. MONO mode Connection Example (RX)

2) TX

When MONO bit = "1" and TLR bit = "0", the AK4114 outputs Lch data through TX1 as biphase signal. When MONO bit = "1" and TLR bit = "1", then Rch data.

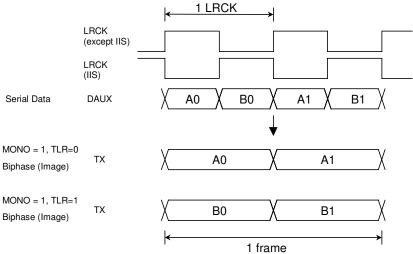


Figure 17. MONO mode (TX)

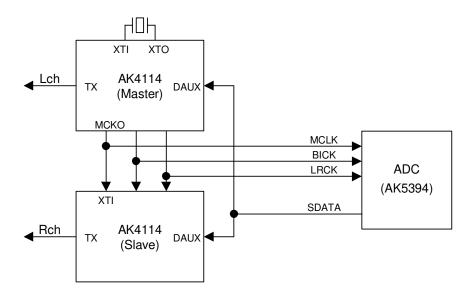
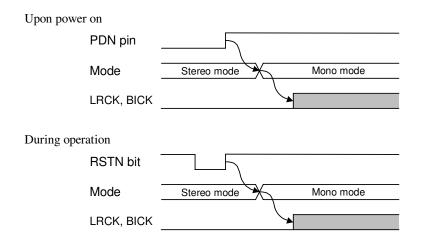



Figure 18. MONO mode Connection Example (TX)

Note: When the connection example (Figure 18) or multiple AK4114s are used, LRCK and BICK should be input after reset so that the phase of TX outputs is aligned. The AK4114s should be set by following sequence (Figure 19).

(1) Reset all the AK4114s by PDN pin = "L" \rightarrow "H" or RSTN bit = "0" \rightarrow "1". (2) Set all the AK4114s to MONO mode while they are still in slave mode.

(3) Set one of the AK4114s to master mode so that LRCK is input to all other AK4114s at the same time, or LRCK should be input to all the AK4114s at the same time.

Figure 19. MONO mode setup sequence (TX)

■ Biphase signal input/output circuit

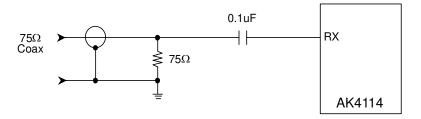


Figure 20. Consumer Input Circuit (Coaxial Input)

Note: In case of coaxial input, if a coupling level to this input from the next RX input line pattern exceeds 50mV, there is a possibility to occur an incorrect operation. In this case, it is possible to lower the coupling level by adding this decoupling capacitor.

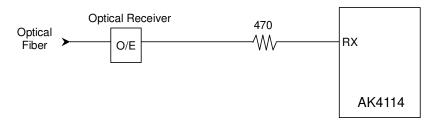


Figure 21. Consumer Input Circuit (Optical Input)

In case of coaxial input, as the input level of RX line is small, in Serial Mode, be careful not to crosstalk among RX input lines. For example, by inserting the shield pattern among them. In Parallel Mode, four channel inputs (RX0,1,2,3) are available and RX4-7 change to other pins for audio format control. Those pins must be fixed to "H" or "L".

The AK4114 includes the TX output buffer. The output level meets combination 0.5V+/-20% using the external resistor network. The T1 in Figure 22 is a transformer of 1:1.

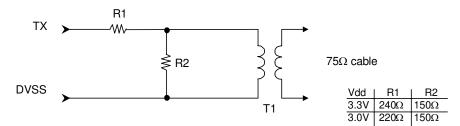
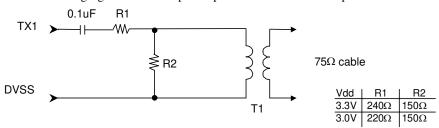



Figure 22. TX External Resistor Network

Note: When the AK4114 is in the power-down mode (PDN= "L"), power supply current can be suppressed by using AC couple capacitor as following figure since TX1 pin output becomes uncertain at power-down mode.

Q-subcode buffers

The AK4114 has Q-subcode buffer for CD application. The AK4114 takes Q-subcode into registers by following conditions.

- 1. The sync word (S0,S1) is constructed at least 16 "0"s.
- 2. The start bit is "1".
- 3. Those 7bits Q-W follows to the start bit.

4. The distance between two start bits are 8-16 bits.

The QINT bit in the control register goes "1" when the new Q-subcode differs from old one, and goes "0" when QINT bit is read.

	1	2	3	4	5	6	7	8	*
S0	0	0	0	0	0	0	0	0	0
S1	0	0	0	0	0	0	0	0	0
S2	1	Q2	R2	S2	T2	U2	V2	W2	0
S3	1	Q3	R3	S3	T3	U3	V3	W3	0
:	:	:	:	:	:	:	:	:	:
S97	1	Q97	R97	S97	T97	U97	V97	W97	0
S0	0	0	0	0	0	0	0	0	0
S1	0	0	0	0	0	0	0	0	0
S2	1	Q2	R2	S2	T2	U2	V2	W2	0
S3	1	Q3	R3	S3	T3	U3	V3	W3	0
:	:	:	:	:	:	:	:	:	:
		\uparrow		(*) nu	mber o	of "O" : r	min=0;	max=8	
		Q		Figure	23. Con	figurati	on of U	-bit(CD)

Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24 (Q25
	CTRL ADRS								TR	ACK N	NUME	BER						INE	DEX				
0.00	0.07	000	000	000	001	000	000	004	005	0.00	007	000	000	0.40	0.41	0.40	0.40	044	0.45	0.40	0.47	0 40 1	240
Q20	Q27	Q20	Q29	Q30	Q31	Q32	Q33	Q34	Q35	Q30	Q37	Q30	Q39	Q40	Q41	Q42	Q43	Q44	Q45	Q40	Q47	Q48 (249
			MIN	UTE							SEC	OND							FRA	٩ΜΕ			
Q50	Q51	Q52	Q53	Q54	Q55	Q56	Q57	Q58	Q59	Q60	Q61	Q62	Q63	Q64	Q65	Q66	Q67	Q68	Q69	Q70	Q71	Q72 (Q73
			ZE	RO						ABSC	OLUT	E MIN	JUTE					ABSC	DLUTE	E SEC	CONE)	
															-								
Q74	Q75	Q76	Q77	Q78	Q79	Q80	Q81	Q82	Q83	Q84	Q85	Q86	Q87	Q88	Q89	Q90	Q91	Q92	Q93	Q94	Q95	Q96	Q97
		ABS	OLUI	E FR	AME										CF	RC							_

 $G(x)=x^{16}+x^{12}+x^{5}+1$

Figure 24. Q-subcode

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
	Q-subcode Address / Control	Q9	Q8					Q3	Q2
	Q-subcode Track	Q17	Q16					Q11	Q10
	Q-subcode Index			• • •					
	Q-subcode Minute								
	Q-subcode Second								
	Q-subcode Frame								
	Q-subcode Zero								
	Q-subcode ABS Minute								
	Q-subcode ABS Second								
	Q-subcode ABS Frame	Q81	Q80					Q75	Q74

Figure 25. Q-subcode register

Error Handling

There are the following eight events who make INT0/1 pin "H". INT0/1 pin shows the status of following conditions. 1. UNLOCK : "1" when the PLL loses lock. AK4114 loses lock when the distance between two preambles is not correct or when those preambles are not correct. : "1" when parity error or biphase coding error is detected, and keeps "1" until this register is read. 2. PAR Updated every sub-frame cycle. Reading this register resets itself. 3. AUTO : "1" when Non-PCM bitstream is detected. Updated every 4096 frames cycle. : "1" when DTS-CD bitstream is detected. 4. DTSCD Updated every DTS-CD sync cycle. : "1" when the "AUDIO" bit in recovered channel status indicates "1". 5. AUDION Updated every block cycle. 6. PEM : "1" when "PEM" in recovered channel status indicates "1". Updated every block cycle. 7. QINT : "1" when Q-subcode differ from old one, and keeps "1" until this register is read. Updated every sync code cycle for Q-subcode. Reading this register resets itself. : "1" when received C bits differ from old one, and keeps "1" until this register is read. 8. CINT Updated every block cycle. Reading this register resets itself.

Both INTO/1 are fixed to "L" when the PLL is off (CM1,0= "01"). Once the INTO pin goes to "H", this pin holds "H" for 1024/fs cycles(this value can be changed by EFH0/1 bits) after those events are removed. INT1 goes to "L" at the same time when those events are removed. Each INT0/1 pins can mask those eight events individually. Once PAR, QINT and CINT bit goes to "1", those registers are held to "1" until those registers are read. While the AK4114 loses lock, registers regarding C-bit or U-bits are not initialized and keep previous value.

1. Parallel mode

In Parallel Mode, INT0 pin outputs the ORed signal between UNLOCK and PAR, INT1 pin outputs the ORed signal among AUTO, DTSCD and AUDION. Once INT0 pin goes "H", it maintains "H" for 1024/fs cycles after the all error events are removed. Table 12 shows the state of each output pins when the INT0/1 pin is "H".

	Event (St	tate of Inte	rnal Register)	Pin					
UNLOCK	PAR	AUTO	DTSCD	AUDION	INT0	INT1	SDTO	V	TX	
1	Х	Х	х	Х	"H"		"L"	"L"		
0	1	Х	х	Х	11	-	Previous Data	Output		
0	0	Х	х	х	"L"		Output	Output		
х	Х	1	х	х					Output	
Х	Х	Х	1	х	_	"H"	_	_		
Х	Х	Х	х	1	-		_	-		
Х	Х	0	0	0		"L"				

Table 12. Error Handling (Parallel Mode)x: Don't care

2. Serial mode

In Serial Mode, INT0/1 pin output the ORed signal among those eight events. However, each events can be masked by each mask bits. When each bit masks those events, the event does not affect INT0/1 pin operation (those mask do not affect those resisters (UNLOCK, PAR, etc.) themselves. Once INT0 pin goes "H", it maintains "H" for 1024/fs cycles (this value can be changed by EFH0-1 bits) after the all events are removed. Once those PAR, QINT or CINT bit goes "1", it holds "1" until reading those registers. While the AK4114 loses lock, the channel status an Q-subcode bits are not updated and holds the previous data. At initial state, INT0 outputs the ORed signal between UNLOCK and PAR, INT1 outputs the ORed signal among AUTO, DTSCD and AUDION.

Register								Pin		
UNLOCK	PAR	AUTO	DTSCD	AUDION	PEM	QINT	CINT	SDTO	V	TX
1	Х	Х	Х	Х	Х	Х	Х	"Ľ"	"L"	Output
0	1	Х	х	х	Х	Х	Х	Previous Data	Output	Output
0	0	1	Х	х	Х	Х	Х	Output	Output	Output
0	0	Х	1	х	Х	Х	Х	Output	Output	Output
0	0	Х	Х	1	Х	Х	Х	Output	Output	Output
0	0	Х	Х	х	1	Х	Х	Output	Output	Output
0	0	Х	Х	х	х	1	Х	Output	Output	Output
0	0	Х	Х	х	Х	Х	1	Output	Output	Output

Table 13. Error Handling (Serial Mode)