: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

五
AK4393

Advanced Multi-Bit 96kHz 24-Bit '6 DAC

GENERAL DESCRIPTION

The AK4393 is a high performance stereo DAC for the 96 kHz sampling mode of DAT, DVD including a 24bit digital filter. The AK4393 introduces the advanced multi-bit system for ' 6 modulator. This new architecture achieves the wider dynamic range, while keeping much the same superior distortion characteristics as conventional Single-Bit way. In the AK4393, the analog outputs are filtered in the analog domain by switched-capacitor filter (SCF) with high tolerance to clock jitter. The analog outputs are full differential output, so the device is suitable for hi-end applications. The operating voltages support analog 5 V and digital 3.3 V , so it is easy to I / F with 3.3 V logic IC.

FEATURES

x 128x Oversampling
x Sampling Rate up to 108 kHz
x 24Bit 8x Digital Filter
Ripple: r0.005dB, Attenuation: 75dB
x High Tolerance to Clock Jitter
x Low Distortion Differential Output
x Digital de-emphasis for 32, 44.1, 48 \& 96kHz sampling
x Soft Mute
x THD+N: -100dB
x DR, S/N: 120dB
x I/F format: \quad MSB justified, 16/20/24bit LSB justified, ${ }^{2}$ ²
x Master Clock: Normal Speed: 256fs, 384fs, 512fs or 768fs
Double Speed: 128fs, 192fs, 256fs or 384fs
x Power Supply: 4.75 to 5.25 V (Analog), 3 to 5.25 V (Digital)
x Small Package: 28pin SSOP

„ Ordering Guide
AK4393VM $\quad-40 \sim+85 q C \quad$ 28pin SSOP (0.65 mm pitch)
„ Pin Layout

PIN/FUNCTION

No.	Pin Name	I/O	Function
1	DVSS	-	Digital Ground Pin
2	DVDD	-	Digital Power Supply Pin, 3.3V or 5.0V
3	MCLK	I	Master Clock Input Pin
4	PDN	I	Power-Down Mode Pin When at "L", the AK4393 is in power-down mode and is held in reset. The AK4393 should always be reset upon power-up.
5	BICK	I	Audio Serial Data Clock Pin The clock of 64fs or more than is recommended to be input on this pin.
6	SDATA	I	Audio Serial Data Input Pin 2's complement MSB-first data is input on this pin.
7	LRCK	I	L/R Clock Pin
8	SMUTE	I	Soft Mute Pin in parallel mode When this pin goes " H ", soft mute cycle is initiated. When returning "L", the output mute releases.
	CSN	I	Chip Select Pin in serial mode
9	DFS	I	Double Speed Sampling Mode Pin "L": Normal Speed, "H": Double Speed
10	DEM0	I	De-emphasis Enable Pin in parallel mode
	CCLK	I	Control Data Clock Pin in serial mode
11	DEM1	I	De-emphasis Enable Pin in parallel mode
	CDTI	I	Control Data Input Pin in serial mode
12	DIF0	I	Digital Input Format Pin
13	DIF1	I	Digital Input Format Pin
14	DIF2	I	Digital Input Format Pin
15	BVSS	-	Substrate Ground Pin, 0V
16	VREFL	I	Low Level Voltage Reference Input Pin
17	VREFH	I	High Level Voltage Reference Input Pin
18	AVDD	-	Analog Power Supply Pin, 5.0V
19	AVSS	-	Analog Ground Pin, 0V
20	AOUTR-	O	Rch Negative analog output Pin
21	AOUTR+	O	Rch Positive analog output Pin
22	AOUTL-	O	Lch Negative analog output Pin
23	AOUTL+	O	Lch Positive analog output Pin
24	VCOM	O	Common Voltage Output Pin, 2.6V
25	P/S	I	Parallel/Serial Select Pin (Internal pull-up pin) "L": Serial control mode, "H": Parallel control mode
26	CKS0	I	Master Clock Select Pin
27	CKS1	I	Master Clock Select Pin
28	CKS2	I	Master Clock Select Pin

Note: All input pins except internal pull-up/down pins should not be left floating.

ABSOLUTE MAXIMUM RATINGS

(AVSS, BVSS, DVSS = 0V; Note 1)

Parameter			Symbol	min	max	Unit	
Power Supplies:	Analog		AVDD	-0.3	6.0	V	
	Digital		DVDD	-0.3	6.0	V	
	\| BVSS-DVSS		(Note 2)	- GND	-	0.3	V
Input Current, Any pin Except Supplies			IIN	-	r10	mA	
Input Voltage			VIND	-0.3	DVDD+0.3	V	
Ambient Operating Temperature			Ta	-40	85	qC	
Storage Temperature			Tstg	-65	150	qC	

Notes: 1. All voltages with respect to ground.
2. AVSS, BVSS and DVSS must be connected to the same analog ground plane.

WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS

(AVSS, BVSS, DVSS=0V; Note 1)

Parameter		Symbol	min	typ	max	Unit
Power Supplies:	Analog	AVDD	4.75	5.0	5.25	V
(Note 3)	Digital	DVDD	3.0	3.3	5.25	V
Voltage Reference	"H" voltage reference	VREFH	AVDD-0.5	-	AVDD	V
(Note 4)	"L" voltage reference	VREFL	AVSS	-	-	V
	VREFH-VREFL	VREF	3.0	-	AVDD	V

Notes: 3. The power up sequence between AVDD and DVDD is not critical.
4. Analog output voltage scales with the voltage of (VREFH-VREFL).

AOUT $($ typ. $@ 0 \mathrm{~dB})=(\mathrm{AOUT}+)-($ AOUT -$)=\mathbf{r} 2.4 \mathrm{Vpp} \times($ VREFH -VREFL$) / 5$.

* AKM assumes no responsibility for the usage beyond the conditions in this data sheet.

ANALOG CHARACTERISTICS

$(\mathrm{Ta}=25 \mathrm{qC} ;$ AVDD $=5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V} ; \mathrm{AVSS}, \mathrm{BVSS}, \mathrm{DVSS}=0 \mathrm{~V}, \mathrm{VREFH}=\mathrm{AVDD}, \mathrm{VREFL}=\mathrm{AVSS} ;$
fs $=44.1 \mathrm{kHz} ;$ BICK $=64 \mathrm{fs} ;$ Signal Frequency $=1 \mathrm{kHz} ; 24 \mathrm{bit}$ Input Data; Measurement Bandwidth $=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}$;
$\mathrm{R}_{\mathrm{L}} \mathbf{t} 600=$; External circuit: Figure 11; unless otherwise specified)

Parameter				min	typ	max	Unit
Resolution						24	Bits
Dynamic Characteristics (Note 5)							
THD+N		$\begin{aligned} & \hline \mathrm{fs}=44.1 \mathrm{kHz} \\ & \mathrm{BW}=20 \mathrm{kHz} \\ & \hline \end{aligned}$	0dBFS -60dBFS		$\begin{gathered} \hline-100 \\ -53 \\ \hline \end{gathered}$	\|-90	dB dB
		$\begin{aligned} & \hline \mathrm{fs}=96 \mathrm{kHz} \\ & \mathrm{BW}=40 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { 0dBFS } \\ & -60 \mathrm{dBFS} \end{aligned}$		$\begin{aligned} & -97 \\ & -51 \\ & \hline \end{aligned}$	-86	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Dynamic Range (-60dBFS with A-weighted)		$\mathrm{fs}=44.1 \mathrm{kHz}$ $($ Note 6$)$ (Note 7)		112	$\begin{aligned} & 117 \\ & 120 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
		$\mathrm{fs}=96 \mathrm{k}$	(Note 7)	111	$\begin{aligned} & 116 \\ & 118 \end{aligned}$		dB dB
S/N	(A-weighted	$\mathrm{fs}=44.1$	Hz (Note 8) (Note 7)	112	$\begin{aligned} & 117 \\ & 120 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
		$\mathrm{fs}=96 \mathrm{k}$	(Note 7)	111	$\begin{aligned} & 116 \\ & 118 \end{aligned}$		dB dB
Interchannel Isolation (1kHz)				100	120		dB
DC Accuracy							
Interchannel Gain Mismatch					0.15	0.3	dB
Gain Drift			(Note 9)		20	-	ppm/qC
Output Voltage			(Note 10)	r2.25	r2.4	r2.55	Vpp
Load Resistance			(Note 11)	600			=
Output Current						3.5	mA
Power Supplies							
Power Supply Current							
	Normal Operation (PD AVDD DVDD(fs DVDD(fs AVDD +	$\begin{aligned} & \mathrm{N}=" \mathrm{H} " \\ & 44.1 \mathrm{kHz} \\ & 96 \mathrm{kHz}) \\ & \mathrm{VDD} \end{aligned}$			$\begin{gathered} 60 \\ 3 \\ 5 \end{gathered}$	90	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Power-Down Mode (PDN = "L")					10	50	$\mu \mathrm{A}$
Power Supply Rejection			(Note 13)		50		dB

Notes: 5. At 44.1 kHz , measured by Audio Precision, System Two. Averaging mode.
At 96 kHz , measured by ROHDE \& SCHWARZ, UPD. Averaging mode.
Refer to the eva board manual.
6.101 dB at 16 bit data and 116 dB at 20 bit data.
7. By Figure12. External LPF Circuit Example 2.
8. S / N does not depend on input bit length.
9. The voltage on (VREFH-VREFL) is held +5 V externally.
10. Full-scale voltage (0 dB). Output voltage scales with the voltage of (VREFH-VREFL).

AOUT $($ typ. $@ 0 \mathrm{~dB})=($ AOUT +$)-($ AOUT -$)=\mathbf{r} 2.4 \mathrm{Vpp} \times($ VREFH -VREFL$) / 5$.
11. For AC-load. 1k = for DC-load.
12. In the power-down mode. $\mathrm{P} / \mathrm{S}=\mathrm{DVDD}$, and all other digital input pins including clock pins (MCLK, BICK and LRCK) are held DVSS.
13. PSR is applied to AVDD, DVDD with $1 \mathrm{kHz}, 100 \mathrm{mVpp}$. VREFH pin is held +5 V .

FILTER CHARACTERISTICS ($\mathrm{fs}=44.1 \mathrm{kHz}$)
$(\mathrm{Ta}=25 \mathrm{qC} ; \mathrm{AVDD}=4.75 \sim 5.25 \mathrm{~V} ; \mathrm{DVDD}=3.0 \sim 5.25 \mathrm{~V} ; \mathrm{fs}=44.1 \mathrm{kHz} ;$ Normal Speed Mode; DEM $=\mathrm{OFF})$

Note: 14. The passband and stopband frequencies scale with fs.
For example, $\mathrm{PB}=0.4535 \times f \mathrm{f}(@ \mathbf{r} 0.01 \mathrm{~dB}), \mathrm{SB}=0.546 \times \mathrm{fs}$.
15. The calculating delay time which occurred by digital filtering. This time is from setting the 16/20/24bit data of both channels to input register to the output of analog signal.

FILTER CHARACTERISTICS (fs $=96 \mathrm{kHz}$)

($\mathrm{Ta}=25 \mathrm{qC} ; \mathrm{AVDD}=4.75 \sim 5.25 \mathrm{~V} ; \mathrm{DVDD}=3.0 \sim 5.25 \mathrm{~V} ; \mathrm{fs}=96 \mathrm{kHz} ;$ Double Speed Mode; DEM $=$ OFF)

Parameter		Symbol	min	typ	max	Unit
Digital Filter						
$\begin{array}{ll}\text { Passband } & \text { r0.0 } \\ & -6.0\end{array}$	$1 \mathrm{~dB} \quad$ (Note 14) dB	PB	0	48.0	43.5	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Stopband	(Note 14)	SB	52.5			kHz
Passband Ripple		PR			r 0.005	dB
Stopband Attenuation		SA	75			dB
Group Delay	(Note 15)	GD	-	28	-	1/fs
Digital Filter + SCF						
Frequency Response	0 a 40.0 kHz		-	r 0.3	-	dB

DC CHARACTERISTICS

$(\mathrm{Ta}=25 \mathrm{qC} ; \mathrm{AVDD}=4.75 \sim 5.25 \mathrm{~V} ; \mathrm{DVDD}=3.0 \sim 5.25 \mathrm{~V})$

Parameter	Symbol	min	typ	$\boldsymbol{m a x}$	Unit	
High-Level Input Voltage		VIH	70% DVDD	-	-	V
Low-Level Input Voltage		VIL	-	-	30% DVDD	V
Input Leakage Current	(Note 16)	Iin	-	-	$\mathbf{r} 10$	$\mu \mathrm{~A}$

Note: 16. DFS and P/S pins have internal pull-down or pull-up devices, nominally 100k =.

SWITCHING CHARACTERISTICS

$\left(\mathrm{Ta}=25 \mathrm{qC} ; \operatorname{AVDD}=4.75 \sim 5.25 \mathrm{~V} ; \mathrm{DVDD}=3.0 \sim 5.25 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\right)$

Parameter	Symbol	min	typ	max	Unit
Master Clock Timing (Note 17)					
Normal Speed: 256fs, Double Speed: 128fs Pulse Width Low Pulse Width High	$\begin{gathered} \hline \text { fCLK } \\ \text { tCLKL } \\ \text { tCLKH } \end{gathered}$	$\begin{aligned} & \hline 7.7 \\ & 28 \\ & 28 \end{aligned}$		13.824	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \end{gathered}$
Normal Speed: 384fs, Double Speed: 192fs Pulse Width Low Pulse Width High	$\begin{gathered} \hline \text { fCLK } \\ \text { tCLKL } \\ \text { tCLKH } \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.5 \\ 20 \\ 20 \\ \hline \end{gathered}$		20.736	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \end{gathered}$
Normal Speed: 512fs, Double Speed: 256fs Normal Speed: 768fs, Double Speed: 384fs Pulse Width Low Pulse Width High	$\begin{gathered} \hline \text { fCLK } \\ \text { fCLK } \\ \text { tCLKL } \\ \text { tCLKH } \\ \hline \end{gathered}$	$\begin{gathered} \hline 15.4 \\ 23.0 \\ 7 \\ 7 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 27.648 \\ & 41.472 \end{aligned}$	$\begin{gathered} \hline \mathrm{MHz} \\ \mathrm{MHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \hline \end{gathered}$
LRCK Frequency (Note 18) Normal Speed Mode (DFS = "L") Double Speed Mode (DFS = "H") Duty Cycle	fsn fsd Duty	$\begin{aligned} & 30 \\ & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.1 \\ & 88.2 \end{aligned}$	$\begin{gathered} 54 \\ 108 \\ 55 \end{gathered}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz} \\ \% \end{gathered}$
Serial Interface Timing BICK Period BICK Pulse Width Low Pulse Width High BICK " $\mathrm{n} "$ to LRCK Edge (Note 19) LRCK Edge to BICK " n " (Note 19) SDATA Hold Time SDATA Setup Time	$\begin{gathered} \text { tBCK } \\ \text { tBCKL } \\ \text { tBCKH } \\ \text { tBLR } \\ \text { tLRB } \\ \text { tSDH } \\ \text { tSDS } \\ \hline \end{gathered}$	$\begin{gathered} 140 \\ 60 \\ 60 \\ 20 \\ 20 \\ 20 \\ 20 \\ \hline \end{gathered}$			
```Control Interface Timing CCLK Period CCLK Pulse Width Low Pulse Width High CDTI Setup Time CDTI Hold Time CSN High Time CSN "p" to CCLK "n" CCLK " n " to CSN " n "```	$\begin{gathered} \mathrm{tCCK} \\ \mathrm{tCCKL} \\ \mathrm{tCCKH} \\ \mathrm{tCDS} \\ \mathrm{tCDH} \\ \mathrm{tCSW} \\ \mathrm{tCSS} \\ \mathrm{tCSH} \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 80 \\ 80 \\ 50 \\ 50 \\ 150 \\ 50 \\ 50 \\ \hline \end{gathered}$			
Reset Timing   PDN Pulse Width   (Note 20)	tPW	150			ns

Notes: 17. For Double Speed mode please see Appendix A for relationship of MCLK and BCLK/LRCK.
18. When the normal and double speed modes are switched, AK4393 should be reset by PDN pin or RSTN bit.
19. BICK rising edge must not occur at the same time as LRCK edge.
20. The AK4393 can be reset by bringing PDN "L" to "H".

When the states of CKS2-0 or DFS change, the AK4393 should be reset by PDN pin or RSTN bit.
„ Timing Diagram


For Double Speed mode timing please see Appendix A for relationship of MCLK and BCLK/LRCK.



Power-down Timing

## OPERATION OVERVIEW

## , System Clock

The external clocks, which are required to operate the AK4393, are MCLK, LRCK and BICK. The master clock (MCLK) should be synchronized with LRCK but the phase is not critical. However, in Double Speed Mode, the phase relationship between MCLK and LRCK/BICK is limited. (Refer to Appendix A). The MCLK is used to operate the digital interpolation filter and the delta-sigma modulator. The sampling speed is set by DFS (Table 1). The sampling rate (LRCK), CKS0/1/2 and DFS determine the frequency of MCLK (Table 2).

All external clocks (MCLK, BICK and LRCK) should always be present whenever the AK4393 is in normal operation mode ( $\mathrm{PDN}=$ "H"). If these clocks are not provided, the AK4393 may draw excess current because the device utilizes dynamic refreshed logic internally. If the external clocks are not present, the AK4393 should be in the power-down mode (PDN = "L") or in the reset mode (RSTN = "0"). After exiting reset at power-up etc., the AK4393 is in power-down mode until MCLK and LRCK are input.

DFS	Sampling Rate (fs)	
0	Normal Speed Mode	$30 \mathrm{kHz} \sim 54 \mathrm{kHz}$
1	Double Speed Mode	$60 \mathrm{kHz} \sim 108 \mathrm{kHz}$

Default

Table 1. Sampling Speed

Mode	CKS2	CKS1	CKS0	Normal	Double
0	0	0	0	256 fs	128 fs
1	0	0	1	256 fs	256 fs
2	0	1	0	384 fs	192 fs
3	0	1	1	384 fs	384 fs
4	1	0	0	512 fs	256 fs
5	1	0	1	512 fs	N/A
6	1	1	0	768 fs	384 fs
7	1	1	1	768 fs	N/A

Default

Table 2. System Clocks

LRCK	MCLK				BICK
fs	256 fs	384 fs	512 fs	768 fs	64 fs
32.0 kHz	8.1920 MHz	12.2880 MHz	16.3840 MHz	24.5760 MHz	2.0480 MHz
44.1 kHz	11.2896 MHz	16.9344 MHz	22.5792 MHz	33.8688 MHz	2.8224 MHz
48.0 kHz	12.2880 MHz	18.4320 MHz	24.5760 MHz	36.8640 MHz	3.0720 MHz

Table 3. System clock example (Normal Speed Mode)

LRCK	MCLK				BICK
fs	128 fs	192 fs	256 fs	384 fs	64 fs
88.2 kHz	11.2896 MHz	16.9344 MHz	22.5792 MHz	33.8688 MHz	5.6448 MHz
96.0 kHz	12.2880 MHz	18.4320 MHz	24.5760 MHz	36.8640 MHz	6.1440 MHz

Table 4. System clock example (Double Speed Mode)

## „, Audio Serial Interface Format

Data is shifted in via the SDATA pin using BICK and LRCK inputs. Five data formats are supported and selected by the DIF0-2 as shown in Table 5. In all formats the serial data is MSB-first, 2's compliment format and is latched on the rising edge of BICK. Mode 2 can be used for 20 and 16 MSB justified formats by zeroing the unused LSBs.

Mode	DIF2	DIF1	DIF0	Mode	BICK	Figure
0	0	0	0	$0: 16$ bit LSB Justified	$\mathbf{t 3 2 f s}$	Figure 1
1	0	0	1	$1: 20$ bit LSB Justified	$\mathbf{t 4 0 f s}$	Figure 2
2	0	1	0	$2: 24$ bit MSB Justified	$\mathbf{t 4 8 f s}$	Figure 3
3	0	1	1	$3:$ I 2 S Compatible	$\mathbf{t 4 8 f s}$	Figure 4
4	1	0	0	$4: 24$ bit LSB Justified	$\mathbf{t 4 8 f s}$	Figure 2

Table 5. Audio Data Formats


Figure 1. Mode 0 Timing


Figure 2. Mode 1,4 Timing


Figure 3. Mode 2 Timing


Figure 4. Mode 3 Timing

## ,"De-emphasis filter

A digital de-emphasis filter is available for $32,44.1,48$ or 96 kHz sampling rates ( $\mathrm{tc}=50 / 15 \mu \mathrm{~s}$ ) and is enabled or disabled with the DEM0, DEM1 and DFS input pins.

DEM1	DEM0	DFS	Mode
0	0	0	44.1 kHz
0	1	0	OFF
1	0	0	48 kHz
1	1	0	32 kHz
0	0	1	OFF
0	1	1	OFF
1	0	1	96 kHz
1	1	1	OFF

Table 6. De-emphasis filter control

## „Soft mute operation

Soft mute operation is performed at digital domain. When SMUTE goes to "H", the output signal is attenuated by -f during 1024 LRCK cycles. When SMUTE is returned to "L", the mute is cancelled and the output attenuation gradually changes to 0 dB during 1024 LRCK cycles. If the soft mute is cancelled within 1024 LRCK cycles after starting the operation, the attenuation is discontinued and returned to 0 dB . The soft mute is effective for changing the signal source without stopping the signal transmission.


Notes:
(1) The output signal is attenuated by -f during 1024 LRCK cycles (1024/fs).
(2) Analog output corresponding to digital input has the group delay (GD).
(3) If the soft mute is cancelled within 1024 LRCK cycles, the attenuation is discontinued and returned to 0 dB .

Figure 5. Soft mute operation

## System Reset

The AK4393 should be reset once by bringing PDN = "L" upon power-up. The AK4393 is powered up and the internal timing starts clocking by LRCK " n " after exiting reset and power down state by MCLK. The AK4393 is in the power-down mode until MCLK and LRCK are input.

## Power-Down

The AK4393 is placed in the power-down mode by bringing PDN pin "L" and the anlog outputs are floating (Hi-Z). Figure 6 shows an example of the system timing at the power-down and power-up.


Notes:
(1) The analog output corresponding to digital input has the group delay (GD).
(2) Analog outputs are floating ( $\mathrm{Hi}-\mathrm{Z}$ ) at the power-down mode.
(3) Click noise occurs at the edge of PDN signal. This noise is output even if " 0 " data is input.
(4) The external clocks (MCLK, BICK and LRCK) can be stopped in the power-down mode (PDN = "L").
(5) Please mute the analog output externally if the click noise (3) influences system application.

The timing example is shown in this figure.
Figure 6. Power-down/up sequence example

## „Click Noise from analog output

Click noise occurs from analog output in the following cases.

1) When switching de-emphasis mode by DEM0, DEM1 and DFS pins,
2) When switching serial data mode by DIF0, DIF1 and DIF2 pins,
3) When going and exiting power down mode by PDN pin,
4) When switching normal speed and double speed by DFS pin,

However in case of 1) \& 2), If the input data is " 0 " or the soft mute is enabled (after 1024 LRCK cycles from SMUTE = "H"), no click noise occur except for switching DFS pin.

## Mode Control Interface

Pins (parallel control mode) or registers (serial control mode) can control each functions of the AK4393. For DIF2-0, CKS2-0 and DFS, the setting of pin and register are "ORed" internally. So, even serial control mode, pin setting can also control these functions.

The serial control interface is enabled by the P/S pin = "L". In this mode, pin setting must be all "L". Internal registers may be written by 3 -wire $\mu \mathrm{P}$ interface pins: CSN, CCLK and CDTI. The data on this interface consists of Chip address (2bits, C1/0; fixed to " 01 "), Read/Write (1bit; fixed to " 1 "), Register address (MSB first, 5bits) and Control data (MSB first, 8bits). The AK4393 latches the data on the rising edge of CCLK, so data should be clocked in on the falling edge. The writing of data becomes valid by CSN " $n$ ". The clock speed of CCLK is $5 \mathrm{MHz}(\max )$. The CSN and CCLK must be fixed to " H " when the register does not be accessed.
$\mathrm{PDN}=$ "L" resets the registers to their default values. When the state of P/S pin is changed, the AK4393 should be reset by PDN = "L". In serial mode, the internal timing circuit is reset by RSTN bit, but the registers are not initialized.


Figure 7. Control I/F Timing
*The AK4393 does not support the read command and chip address. C1/0 and R/W are fixed to "011"
*When the AK4393 is in the power down mode (PDN = "L") or the MCLK is not provided, writing into the control register is inhibited.
*For setting the registers, the following sequence is recommended.
y Control 1 register
(1) Writing RSTN $=$ " 0 " and other bits (D6-D1) to the register at the same time.
(2) Writing RSTN $=$ " 1 " to the register. The other bits are no change.
y Control 2 register
This writing sequence has no limitation like control 1 register.
*When RSTN $=$ " 0 ", the click noise is output from AOUT pins.
*If the mode setting is done without setting RSTN = "0", large noise may be output from AOUT pins. (Especially when CKS0/1/2 are changed.)

Register Map

| Addr | Register Name | D7 | $\vdots$ | D6 | $\vdots$ | D5 | D4 | $\vdots$ | D3 | $\vdots$ | D2 |  | D1 | D0 |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 H | Control 1 | 0 | $\vdots$ CKS2 | $\vdots$ | CKS1 | $\vdots$ | CKS0 | $\vdots$ | DIF2 | $\vdots$ | DIF1 | $\vdots$ | DIF0 | $\vdots$ RSTN |
| 01 H | Control 2 | 0 | $\vdots$ | 0 | 0 | $\vdots$ | 0 | $\vdots$ | DFS | $\vdots$ | DEM1 | $\vdots$ | DEM0 | $\vdots$ SMUTE |
| $02 H$ | Test | TEST7 | TEST6 | TEST5 | TEST4 | TEST3 | TEST2 | TEST1 | TEST0 |  |  |  |  |  |

Notes:
For addresses from 03 H to 1 FH , data must not be written.
When PDN pin goes to "L", the registers are initialized to their default values. When RSTN bit goes to " 0 ", the only internal timing is reset and the registers are not initialized to their default values. DIF2-0, CKS2-0 and DFS bits are ORed with pins respectively.

Register Definitions

Addr	Register Name	D7	$\vdots$	D6	$\vdots$	D5	$\vdots$	D4	$\vdots$	D3	$\vdots$	D2	$\vdots$	D1	$\vdots$
00 H	Control 1	0	$\vdots$ CKS2	$\vdots$	CKS1	$\vdots$	CKS0	$\vdots$	DIF2	$\vdots$	DIF1	$\vdots$	DIF0	$\vdots$	RSTN
	default	0	0	0	0	0	0	0	1						

RSTN: Internal timing reset
0 : Reset. All registers are not initialized.
1: Normal Operation
When the states of CKS2-0 or DFS change, the AK4393 should be reset by PDN pin or RSTN bit.
DIF2-0: Audio data interface modes (see Table 5)
Initial: "000", Mode 0
Register bits are ORed with DIF2-0 pins if P/S = "L".
CKS2-0: Master Clock Frequency Select (see Table 2)
Initial: "000", Mode 0
Register bits are ORed with CKS2-0 pins if P/S = "L".

Addr	Register Name	D7	$\vdots$	D6	$\vdots$	D5	$\vdots$	D4	$\vdots$	D3	$\vdots$	D2	$\vdots$	D1	D0
01 H	Control 2	0	$\vdots$	0	$\vdots$	0	$\vdots$	0	$\vdots$	DFS	$\vdots$	DEM1	$\vdots$ DEM0	$\vdots$ SMUTE	
	default	0	0	0		0		0	0	0	0				

SMUTE: Soft Mute Enable
0: Normal operation
1: DAC outputs soft-muted
DEM1-0: De-emphasis response (see Table 6)
Initial: " 00 ", 44.1 kHz
DFS: Sampling speed control (see Table 1)
0 : Normal speed
1: Double speed
Register bit is ORed with DFS pin if P/S = "L".

Addr	Register Name	D7	$\vdots$	D6	$\vdots$	D5	$\vdots$	D4	$\vdots$	D3	$\vdots$	D2	$\vdots$	D1
02H	Test	TEST7	$\vdots$ TEST6	$\vdots$	TEST5	$\vdots$	TEST4	$\vdots$	TEST3	$\vdots$	TEST2	$\vdots$ TEST1	$\vdots$ TEST0	
	default	0	0	0	0	0	0	0	0					

TEST7-0: Test mode. Do not write any data to 02 H .

## SYSTEM DESIGN

Figure 8 and 9 show the system connection diagram. An evaluation board (AKD4393) is available which demonstrates the optimum layout, power supply arrangements and measurement results.


Figure 8. Typical Connection Diagram (Serial mode)
Notes:

- LRCK $=\mathrm{fs}$, BICK $=64 \mathrm{fs}$.
- Power lines of AVDD and DVDD should be distributed separately from the point with low impedance of regulator etc.
- AVSS, BVSS and DVSS must be connected to the same analog ground plane.
- When AOUT drives some capacitive load, some resistor should be added in series between AOUT and capacitive load.
- All input pins except pull-down/pull-up pins should not be left floating.


Figure 9. Typical Connection Diagram (Parallel mode)
Notes:

- LRCK = fs, BICK = 64fs.
- Power lines of AVDD and DVDD should be distributed separately from the point with low impedance of regulator etc.
- AVSS, BVSS and DVSS must be connected to the same analog ground plane.
- When AOUT drives some capacitive load, some resistor should be added in series between AOUT and capacitive load.
- All input pins except pull-down/pull-up pins should not be left floating.


Figure 10. Ground Layout

## 1. Grounding and Power Supply Decoupling

To minimize coupling by digital noise, decoupling capacitors should be connected to AVDD and DVDD, respectively. AVDD is supplied from analog supply in system and DVDD is supplied from digital supply in system. If AVDD and DVDD are supplied separately, the power up sequence is not critical. AVSS, BVSS and DVSS must be connected to analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors for high frequency should be placed as near as possible.

## 2. Voltage Reference

The differential Voltage between VREFH and VREFL set the analog output range. VREFH pin is normally connected to AVDD and VREFL pin is normally connected to AVSS. VREFH and VREFL should be connected with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. VCOM is a signal ground of this chip. An electrolytic capacitor $10 \mu \mathrm{~F}$ parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor attached to VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from VCOM pin. All signals, especially clocks, should be kept away from the VREFH, VREFL and VCOM pins in order to avoid unwanted coupling into the AK4393.

## 3. Analog Outputs

The analog outputs are full differential outputs and 2.4 Vpp (typ@VREF=5V) centered around VCOM. The differential outputs are summed externally, $\mathrm{V}_{\text {AOUT }}=($ AOUT +$)-($ AOUT- $)$ between AOUT + and AOUT-. If the summing gain is 1 , the output range is $4.8 \mathrm{Vpp}(\operatorname{typ} @ \mathrm{VREF}=5 \mathrm{~V})$. The bias voltage of the external summing circuit is supplied externally. The input data format is 2 's complement. The output voltage ( $\mathrm{V}_{\text {AOUT }}$ ) is a positive full scale for 7FFFFFH ( $@ 24 \mathrm{bit}$ ) and a negative full scale for 800000 H (@24bit). The ideal $\mathrm{V}_{\text {AOUT }}$ is 0 V for 000000 H (@24bit).

The internal switched-capacitor filters attenuate the noise generated by the delta-sigma modulator beyond the audio passband.

Figure 11 shows an example of external LPF circuit summing the differential outputs by an op-amp.
Figure 12 shows an example of differential outputs and LPF circuit example by three op-amps.


Figure 11. External LPF Circuit Example 1


Figure 12. External LPF Circuit Example 2

## PACKAGE

28pin SSOP (Unit: mm)


NOTE: Dimension "*" does not include mold flash.


## Material \& Lead finish

Package molding compound:
Lead frame material:
Epoxy
Cu
Lead frame surface treatment:

## MARKING



XXXXBYYYYC: data code identifier
XXXB: Lot number (X: Digit number, B: Alpha character)
YYYYC: Assembly date (Y: Digit number C: Alpha character)

## REVISION HISTORY

Date (Y/M/D)	Revision	Reason	Page	Contents
98/11/11	00	First Edition		
00/06/02	01	Format Change		No specification has been changed.
03/08/29	02	Specification Change	7   8   10/2   23	SWITCHING CHARACTERISTICS   Note 17 O Added   Timing Diagram   "For Double Speed modes timing please see Appendix A for relationship of MCLK and BCLK/LRCK" O Added   OPERATION OVERVIEW   System Clock   "However, in Double Speed Mode, the phase relationship between MCLK and LRCK/BICK is limited. (Refer to Appendix A)." O Added   "Appendix A" O Added
12/01/24	03	Specification Change	$\begin{aligned} & 1,2, \\ & 21,22 \end{aligned}$	AK4393VF was deleted. (28pin VSOP) AK4393VM was added. (28pin SSOP) Ordering Guide was changed. PACKAGE was changed. MARKING was changed.

## IMPORTANT NOTICE

z These products and their specifications are subject to change without notice.
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
z Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
z Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
Z AKM products are neither intended nor authorized for use as critical components ${ }_{\text {Note1 }}$ in any safety, life support, or other hazard related device or system ${ }_{\text {Note2) }}$, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

## Appendix A

In Double Speed Mode, the phase relationship between MCLK and LRCK/BICK is limited (Table 7). If the phase relationship happens during this prohibited period, it is possible to occur the inverse of output channel. The phase relationship must be set to avoid the prohibited period when the AK4393 operates at Double Speed Mode. The prohibited period is specified by the combination of digital power supply voltage (DVDD), MCLK frequency and audio data format (Table 5). When the audio data formats are 16/20/24bit LSB Justified (Mode 0,1,4) and 24bit MSB Justified (Mode 2), the phase relationship (tLRM: Figure 11) between the rising edge of LRCK and the rising edge of MCLK has the prohibited period of min to max in Table 7. In case of $\mathrm{I}^{2}$ S Compatible (Mode 3), the relationship between the falling edge of BICK and the rising edge of MCLK has the prohibited period (tBCM: Figure 12)

Sampling   Mode	Digital Power Supply, DVDD	MCLK   Frequenc   y	Mode Setting				Prohibited Period		Units
			CKS2	CKS1	CKS0	DFS	min	max	
Double Speed	3.0 to 5.25 V	128fs	0	0	0	1	0.4	1.7	ns
Double Speed	3.0 to 5.25 V	192fs	0	1	0	1	-0.5	0.8	ns
Double Speed	3.0 to 5.25 V	256fs	0	0	1	1	-0.7	0.7	ns
Double Speed	3.0 to 5.25 V	256fs	1	0	0	1	-0.7	0.7	ns
Double Speed	3.0 to 5.25 V	384fs	0	1	1	1	-1.7	-0.3	ns
Double Speed	3.0 to 5.25 V	384fs	1	1	0	1	-1.7	-0.3	ns
Double Speed	4.75 to 5.25 V	128fs	0	0	0	1	0.8	1.5	ns
Double Speed	4.75 to 5.25 V	192fs	0	1	0	1	-0.2	0.5	ns
Double Speed	4.75 to 5.25 V	256fs	0	0	1	1	-0.3	0.4	ns
Double Speed	4.75 to 5.25 V	256fs	1	0	0	1	-0.3	0.4	ns
Double Speed	4.75 to 5.25 V	384fs	0	1	1	1	-1.0	-0.3	ns
Double Speed	4.75 to 5.25 V	384fs	1	1	0	1	-1.0	-0.3	ns

Table 7. Prohibited Period


Figure 11. 16/20/24bit LSB Justified, 24bit MSB Justified


Figure 12. I ${ }^{2}$ S Compatible

