imall

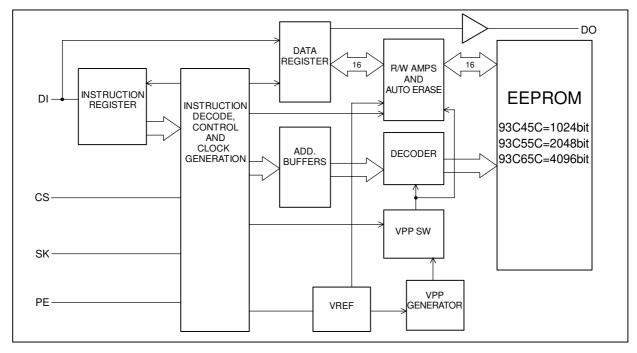
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



AKM

AK93C45C/55C/65C 1K/2K/4Kbit Serial CMOS EEPROM

Features
ADVANCED CMOS EEPROM TECHNOLOGY
READ/WRITE NON-VOLATILE MEMORY
\Box WIDE VCC OPERATION : VCC = 1.5V to 5.5V(READ)
VCC = $1.6V$ to $5.5V$ (WRITE/WRAL/PAGE WRITE)
\Box AK93C45C • 1024 bits, 64 x 16 organization
AK93C55C ••2048 bits, 128 x 16 organization
AK93C65C ··4096 bits, 256 x 16 organization
SERIAL INTERFACE
 Interfaces with popular microcontrollers and standard microprocessors
-1.0MHz(1.5V≤VCC<2.5V), 4.0MHz(2.5V≤VCC≤5.5V)
□ LOW POWER CONSUMPTION
- 0.8μA Max. Standby
High Reliability
- Endurance : 1000K E/W cycles / Address
- Data Retention : 10 years
Automatic address increment (READ)
Automatic write cycle time-out with auto-ERASE
Busy/Ready status signal
□ Software and Hardware controlled write protection
IDEAL FOR LOW DENSITY DATA STORAGE

- Low cost, space saving, 8-pin package (TMSOP, SON, USON)

Block Diagram

General Description

The AK93C45C/55C/65C is a 1024/2048/4096-bit serial CMOS EEPROM divided into 64/128/256 registers of 16 bits each. The AK93C45C/55C/65C has 6 instructions such as READ, WRITE, PAGE WRITE, EWEN, EWDS and WRAL. Those instructions control the AK93C45C/55C/65C.

The AK93C45C/55C/65C can operate full function under wide operating voltage range. The charge up circuit is integrated for high voltage generation that is used for write operation.

A serial interface of AK93C45C/55C/65C, consisting of chip select (CS), serial clock (SK), data-in (DI) and data-out (DO), can easily be controlled by popular microcontrollers or standard microprocessors. AK93C45C/55C/65C takes in the write data from data input pin (DI) to a register synchronously with rising edge of input pulse of serial clock pin (SK). And at read operation, AK93C45C/55C/65C takes out the read data from a register to data output pin (DO) synchronously with rising edge of SK.

The DO pin is usually in high impedance state. The DO pin outputs "L" or "H" in case of data output or Busy/Ready signal output.

Software controlled write protection

When VCC is applied to the part, the part automatically powers up in the ERASE/**WRITE** Disable state. In the ERASE/**WRITE** disable state, execution of WRITE, PAGE WRITE, WRAL instruction is disabled. Before WRITE, PAGE WRITE, WRAL instruction is executed, EWEN instruction must be executed. The ERASE/**WRITE** enable state continues until EWDS instruction is executed or VCC is removed from the part.

Execution of a read instruction is independent of both EWEN and EWDS instructions.

The PE is internally pulled up to VCC. If the PE is left unconnected, the part will accept WRITE, PAGE WRITE, WRAL, EWEN and EWDS instructions.

• Busy/Ready status signal

After a WRITE, PAGE WRITE, WRAL instruction, the DO output serves as a Busy/Ready status indicator. After the falling edge of the CS initiates the self-timed programming cycle, the DO indicates the Busy/Ready status of the chip if the CS is brought high after a minimum of 'tCS'. DO=logical "0" indicates that programming is still in progress. DO=logical "1" indicates that the register at the address specified in the instruction has been written with the new data pattern contained in the instruction and the part is ready for a next instruction.

The Busy/Ready status indicator is only valid when CS is active (high). When CS is low, the DO output goes into a high impedance state.

The Busy/Ready signal outputs until a start bit (Logic"1") of the next instruction is given to the part.

■ Type of Products

Model	Memory size	Temp. Range	VCC	Package
AK93C45CT		-40°C to +85°C	1.5V to 5.5V	8pin Plastic TMSOP
AK93C45CL	1K bits	-40°C to +85°C	1.5V to 5.5V	8pin Plastic SON
AK93C45CU		-40°C to +85°C	1.5V to 5.5V	8pin Plastic USON
AK93C55CT		-40°C to +85°C	1.5V to 5.5V	8pin Plastic TMSOP
AK93C55CL	2K bits	-40°C to +85°C	1.5V to 5.5V	8pin Plastic SON
AK93C55CU		-40°C to +85°C	1.5V to 5.5V	8pin Plastic USON
AK93C65CT		-40°C to +85°C	1.5V to 5.5V	8pin Plastic TMSOP
AK93C65CL	4K bits	-40°C to +85°C	1.5V to 5.5V	8pin Plastic SON
AK93C65CU		-40°C to +85°C	1.5V to 5.5V	8pin Plastic USON

Pin Arrangement

AK93C45CL/55CL/65CL

8pin SON

VCC 1

NC (2

PE (3

GND 4

cs

SK

6 DI

5 DO

8

7

AK93C45CT/55CT/65CT

cs 🗖	1 🔴	8 🗖	VCC
SK 🖂 2	2	7 🗖	NC
	3	6	PE
	4	5	GND

8pin TMSOP

AK93C45CU/55CU/65CU

1	8	CS
2	7	SK
3	6	DI
.4	5	DO
		2 7 3 6

8pin USON

Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
PE	Program Enable
VCC	Power Supply
GND	Ground
NC	Not Connected *1

⁽note) The PE is internally pulled up to VCC (R = typ.2.5M Ω , VCC=5V). *1: Please Open NC pin.

Functional Description

The AK93C45C/55C/65C has 6 instructions such as READ, WRITE, PAGE WRITE, EWEN, EWDS and WRAL. A valid instruction consists of a Start Bit (Logic"1"), the appropriate Op Code and the desired memory Address location.

The CS pin must be brought low for a minimum of 'tCS' between each instruction when the instruction is continuously executed.

Instruction	Start Bit	Op Code	Address	Data	Comments
READ	1	10	A5-A0	D15-D0	Reads data stored in memory, at specified address.
WRITE	1	01	A5-A0	D15-D0	Writes register.
PAGE WRITE	1	11	A5-A0	D15-D0	Page Write register.
EWEN	1	00	11XXXX		Write enable must precede all programming modes.
EWDS	1	00	00XXXX		Disables all programming instructions.
WRAL	1	00	010000	D15-D0	Writes all registers.

X: Don't care

table1. Instruction Set for the AK93C45C

Instruction	Start Bit	Op Code	Address	Data	Comments
READ	1	10	XA6-A0	D15-D0	Reads data stored in memory, at specified address.
WRITE	1	01	XA6-A0	D15-D0	Writes register.
PAGE WRITE	1	11	XA6-A0	D15-D0	Page Write register.
EWEN	1	00	11XXXXXX		Write enable must precede all programming modes.
EWDS	1	00	00XXXXXX		Disables all programming instructions.
WRAL	1	00	01000000	D15-D0	Writes all registers.

X: Don't care

table2. Instruction Set for the AK93C55C

Instruction	Start Bit	Op Code	Address	Data	Comments
READ	1	10	A7-A0	D15-D0	Reads data stored in memory, at specified address.
WRITE	1	01	A7-A0	D15-D0	Writes register.
PAGE WRITE	1	11	A7-A0	D15-D0	Page Write register.
EWEN	1	00	11XXXXXX		Write enable must precede all programming modes.
EWDS	1	00	00XXXXXX		Disables all programming instructions.
WRAL	1	00	01000000	D15-D0	Writes all registers.

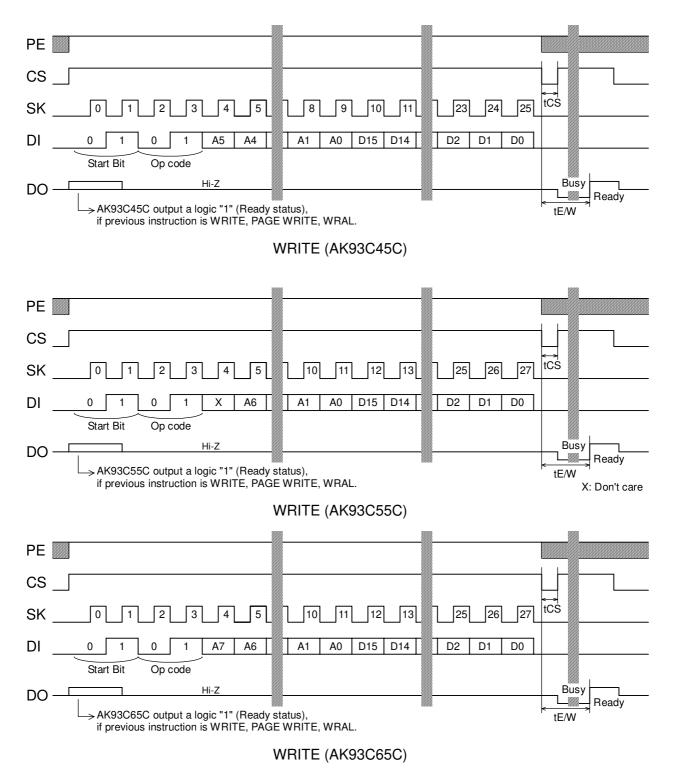
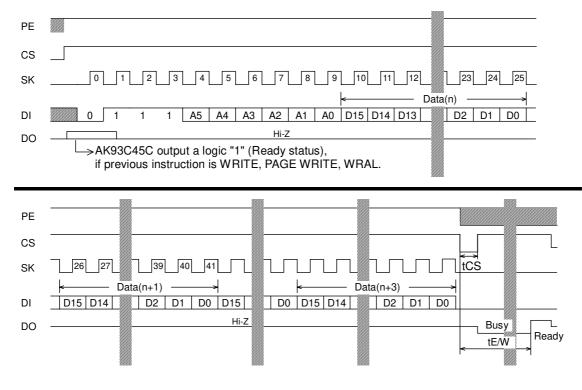

X: Don't care

table3. Instruction Set for the AK93C65C

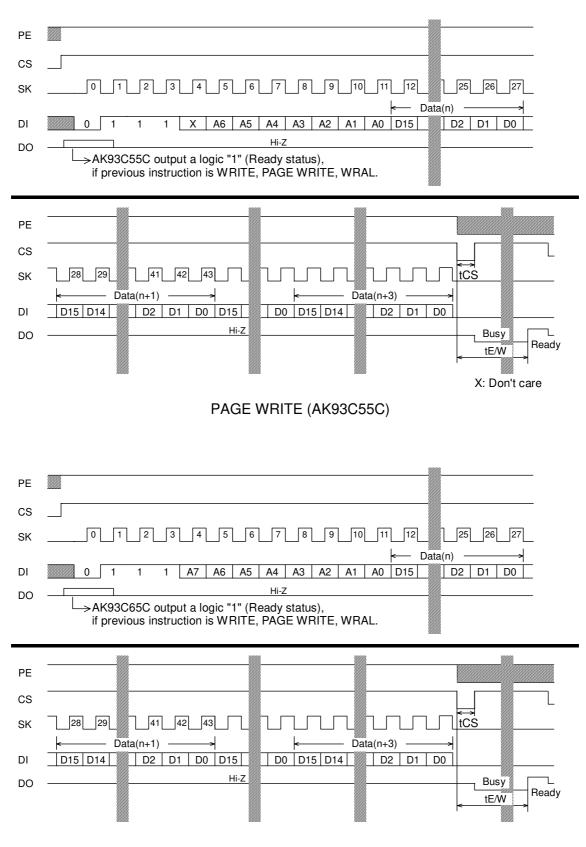
(Note) · The AK93C45C/55C/65C perceives the start bit in the logic"1" and also "01".

WRITE

The write instruction is followed by 16 bits of data to be written into the specified address. After the last bit of data is put on the DI pin, the CS pin must be brought low before the next rising edge of the SK clock. This falling edge of the CS initiates the self-timed programming cycle. The DO indicates the Busy/Ready status of the chip if the CS is brought high after a minimum of 'tCS'. DO=logical "0" indicates that programming is still in progress. DO=logical "1" indicates that the register at the address specified in the instruction has been written with the new data pattern contained in the instruction and the part is ready for a next instruction.

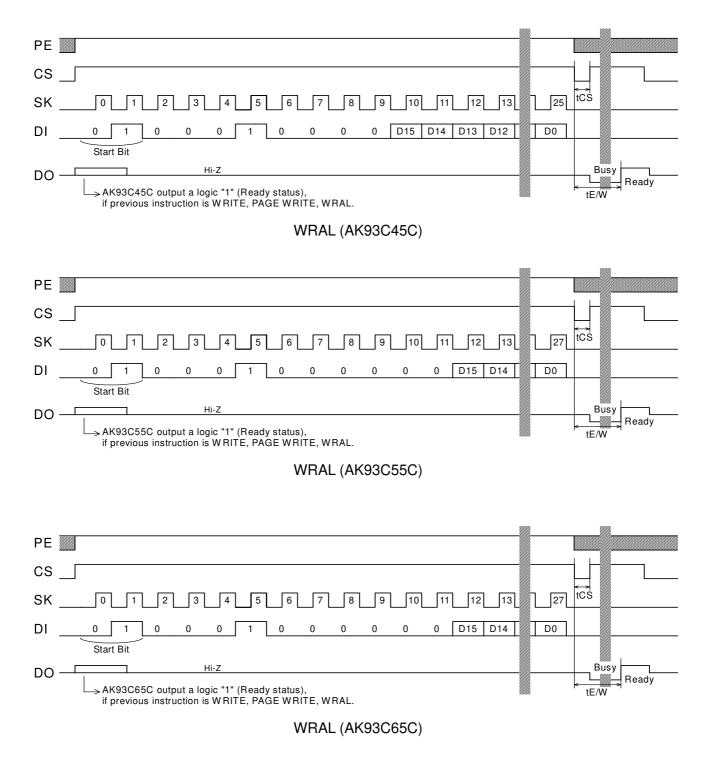

PAGE WRITE

AK93C45C/55C/65C has Page Write mode, which can write the data within 4 words with one programming cycle. The input data sent to the shift register within 4 words. After the last bit of data is put on the DI pin, the CS pin must be brought low before the next rising edge of the SK clock. This falling edge of the CS initiates the self-timed programming cycle. The DO indicates the Busy/Ready status of the chip if the CS is brought high after a minimum of 'tCS'.


After the receipt of each word, the two lower order address pointer bits internally incremented by one. The higher order six bits of the word address remains constant. When the highest address is reached "XXXX XX11", the address counter rolls over to address "XXXX XX00" allowing the page write cycle to be continued indefinitely.

If AK93C45C/55C/65C is transmitted more than 4 words, the address counter will "roll over" and the previously written data will be overwritten. When AK93C45C/55C/65C is transmitted 6 words, fifth word will be overwritten to first word, and sixth word will be overwritten to second word.

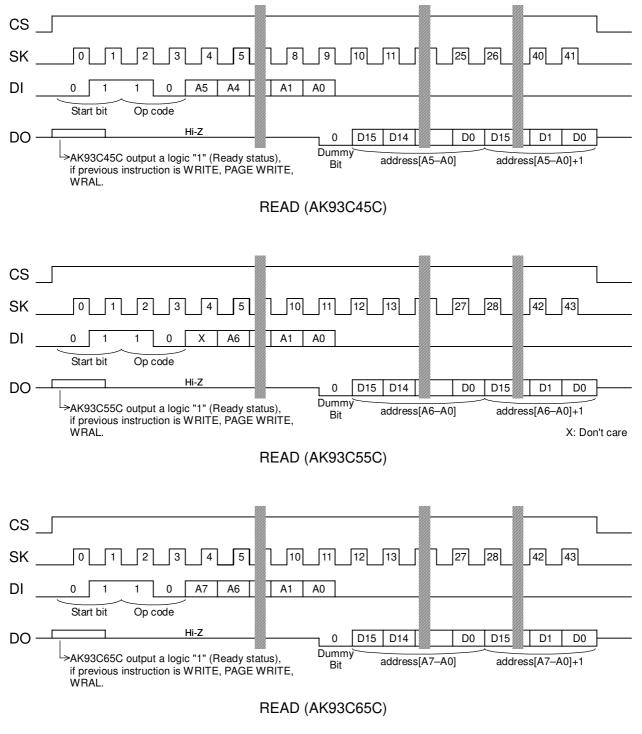
DO=logical "0" indicates that programming is still in progress. DO=logical "1" indicates that the register at the address specified in the instruction has been written with the new data pattern contained in the instruction and the part is ready for a next instruction.


PAGE WRITE (AK93C45C)

PAGE WRITE (AK93C65C)

WRAL

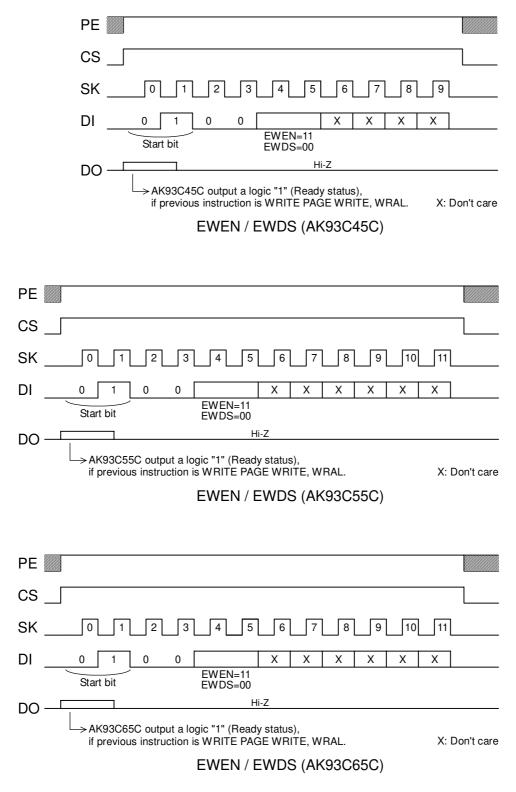
The write instruction is followed by 16 bits of data to be written into all address. After the last bit of data is put on the DI pin, the CS pin must be brought low before the next rising edge of the SK clock. This falling edge of the CS initiates the self-timed programming cycle. The DO indicates the Busy/Ready status of the chip if the CS is brought high after a minimum of 'tCS'. DO=logical "0" indicates that programming is still in progress. DO=logical "1" indicates that the register at the address specified in the instruction has been written with the new data pattern contained in the instruction and the part is ready for a next instruction.


READ

The read instruction is the only instruction which outputs serial data on the DO pin.

Following the Start bit, first Op code and address are decoded, then the data from the selected memory location is available at the DO pin. A dummy bit (logical "0") precedes the 16-bit data from the selected memory location. The output data changes are synchronized with the rising edges of the serial clock (SK).

The data in the next address can be read sequentially by continuing to provide clock. The address automatically cycles to the next higher address after the 16bit data shifted out.


When the highest address is reached, the address counter rolls over to address 00h allowing the read cycle to be continued indefinitely.

EWEN / EWDS

When VCC is applied to the part, the part automatically powers up in the ERASE/**WRITE** Disable state. In the ERASE/**WRITE** disable state, execution of WRITE, PAGE WRITE, WRAL instruction is disable. Before WRITE, PAGE WRITE, WRAL instruction is executed, EWEN instruction must be executed. The ERASE/**WRITE** enable state continues until EWDS instruction is executed or VCC is removed from the part.

Execution of a read instruction is independent of both EWEN and EWDS instructions.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Power Supply	VCC	-0.6	+6.5	V
All Input Voltages with Respect to Ground	VIO	-0.6	VCC+0.6	V
Ambient storage temperature	Tst	-65	+150	°C

Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum conditions for extended periods may affect device reliability.

Recommended Operating Condition

Parameter	Symbol	Min	Max	Unit
Power Supply 1(Except READ)	VCC1	1.6	5.5	V
Power Supply 2(READ)	VCC2	1.5	5.5	V
Ambient Operating Temperature	Та	-40	+85	°C

Electrical Characteristics

(1) D.C. ELECTRICAL CHARACTERISTICS

($1.5V \le VCC \le 5.5V$, $-40^{\circ}C \le Ta \le 85^{\circ}C$, un	nless otherwise specified)
--	----------------------------

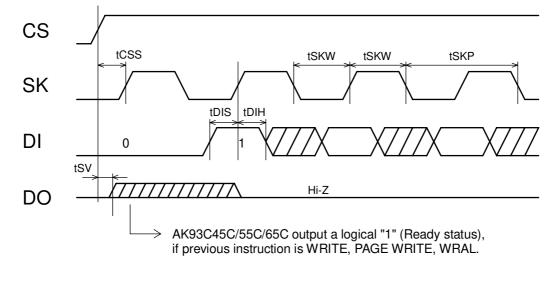
Parameter	Symbol	Condition	Min.	Max.	Unit
Current Dissipation (WRITE)	ICC1	VCC=5.5V, tSKP=250ns, *1		2.5	mA
	ICC2	VCC=1.8V, tSKP=1.0µs, *1		1.5	mA
Current Dissipation (WRAL)	ICC3	VCC=5.5V, tSKP=250ns, *1		2.5	mA
	ICC4	VCC=1.8V, tSKP=1.0µs, *1		1.5	mA
Current Dissipation (READ)	ICC5	VCC=5.5V, tSKP=250ns, *1		1.5	mA
	ICC6	VCC=1.5V, tSKP=1.0µs, *1		0.1	mA
Current Dissipation (Standby)	ICCSB	VCC=5.5V *2		0.8	μA
Input High Voltage	VIH1	VCC=5.0V±10%	2.0	VCC + 0.5	V
	VIH2	$2.5V \leq VCC \leq 5.5V$	0.8 x VCC	VCC + 0.5	V
	VIH3	$1.5V \leq VCC < 2.5V$	0.8 x VCC	VCC + 0.5	V
Input Low Voltage	VIL1	VCC=5.0V±10%	-0.1	0.8	V
	VIL2	$1.8V \leq VCC \leq 5.5V$	-0.1	0.15 x VCC	V
	VIL3	$1.5V \leq VCC < 1.8V$	-0.1	0.1 x VCC	V
Output High Voltage	VOH1	VCC=5.0V±10% IOH=-0.4mA	2.2		V
	VOH2	$2.5V \le VCC \le 5.5V$ IOH=-0.1mA	0.8 x VCC		V
	VOH3	$\begin{array}{l} 1.5V \leq VCC < 2.5V \\ IOH=-0.1mA \end{array}$	0.8 x VCC		V
Output Low Voltage	VOL1	VCC=5.0V±10% IOL=1.5mA		0.4	V
	VOL2	$\begin{array}{l} 2.5V \leq VCC \leq 5.5V \\ IOL=1.0mA \end{array}$		0.4	V
	VOL3	$\begin{array}{l} 1.5V \leq VCC < 2.5V \\ IOL=0.1mA \end{array}$		0.4	V
Input Leakage	ILI	VCC=5.5V, VIN=5.5V *3		±1.0	μA
Output Leakage	ILO	VCC=5.5V, VOUT=5.5V, CS=GND		±1.0	μA

*1 : VIN=VIH/VIL, DO=Open

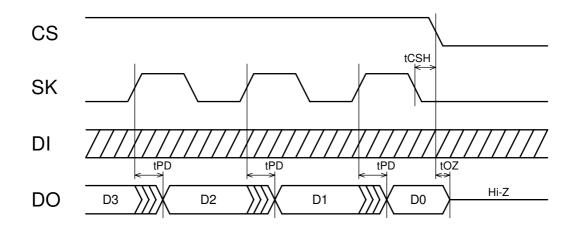
*2 : VIN=VCC/GND, CS=GND, DO=Open, PE=VCC/Open

*3 : CS, SK, DI pin

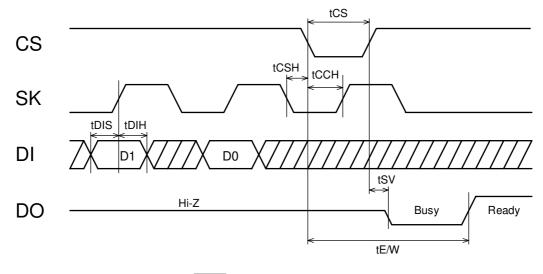
(2) A.C. ELECTRICAL CHARACTERISTICS


($1.5V \le VCC \le 5.5V$, $-40^{\circ}C \le Ta \le 85^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Condition	Min.	Max.	Unit
SK Cycle Time	tSKP1	$2.5V \leq VCC \leq 5.5V$	250		ns
	tSKP2	$1.5V \leq VCC < 2.5V$	1.0		μS
SK Pulse Width	tSKW1	$2.5V \leq VCC \leq 5.5V$	100		ns
	tSKW2	$1.5V \leq VCC < 2.5V$	400		ns
CS Setup Time	tCSS1	$2.5V \leq VCC \leq 5.5V$	80		ns
	tCSS2	$1.5V \leq VCC < 2.5V$	200		ns
CS Hold Time	tCSH		0		ns
Data Setup Time	tDIS1	$2.5V \leq VCC \leq 5.5V$	50		ns
	tDIS2	$1.5V \leq VCC < 2.5V$	100		ns
Data Hold Time	tDIH1	$2.5V \leq VCC \leq 5.5V$	50		ns
	tDIH2	$1.5V \leq VCC < 2.5V$	100		ns
Output delay *4	tPD1	$2.5V \leq VCC \leq 5.5V$		60	ns
	tPD2	$1.5V \leq VCC < 2.5V$		300	ns
Selftimed Programming Time	tE/W	$1.6V \le VCC \le 5.5V$		5	ms
Min CS Low Time	tCS1	$2.5V \leq VCC \leq 5.5V$	60		ns
	tCS2	$1.5V \leq VCC < 2.5V$	200		ns
SK HOLD Time	tCCH1	$2.5V \leq VCC \leq 5.5V$	60		ns
SK HOLD TIME	tCCH2	$1.5V \leq VCC < 2.5V$	200		ns
CS to Status Valid	tSV1	$2.5V \leq VCC \leq 5.5V$		125	ns
	tSV2	$1.6V \leq VCC < 2.5V$		300	ns
CS to Output High-Z	tOZ1	$2.5V \leq VCC \leq 5.5V$		75	ns
	tOZ2	$1.5V \leq VCC < 2.5V$		100	ns
Endurance *5		5.5V, 25°C, PAGE WRITE	1,000,000		E/W cycles/ Address


*4 : CL=100pF

*5 : This parameter is not tested to all samples.


Synchronous Data timing

The Start of Instruction

The End of Instruction

Busy/Ready Signal Output

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
- (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.