: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The ALD1704A/ALD1704B/ALD1704/ALD1704G is a CMOS monolithic operational amplifier with MOSFET input that has rail-to-rail input and output voltage ranges. The input voltage range and output voltage range are very close to the positive and negative power supply voltages. Typically the input voltage can be beyond positive power supply voltage $\mathrm{V}+$, or the negative power supply voltage V - by up to 300 mV . The output voltage swings to within 60 mV of either positive or negative power supply voltages at rated load.

This device is designed as an alternative to the popular JFET input operational amplifiers in applications where lower operating voltages, such as 9 V battery or $\pm 3.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ power supplies are being used. It offers high slew rate of $5 \mathrm{~V} / \mathrm{us}$ at low operating power of 30 mW . Since the ALD1704A/ALD1704B/ALD1704/ALD1704G is designed and manufactured with Advanced Linear Devices' standard enhanced ACMOS silicon gate CMOS process, it also offers low unit cost and exceptional reliability.

The rail-to-rail input and output feature of the ALD1704A/ALD1704B/ ALD1704/ALD1704G allows a lower operating supply voltage for a given signal voltage range and allows numerous analog serial stages to be implemented without losing operating voltage margin. The output stage is designed to drive up to 10 mA into 400 pF capacitive and $1.5 \mathrm{~K} \Omega$ resistive loads at unity gain and up to 4000 pF at a gain of 5 . Short circuit protection to either ground or the power supply rails is at approximately 15 mA clamp current. Due to complementary output stage design, the output can both source and sink 10 mA into a load with symmetrical drive and is ideally suited for applications where push-pull voltage drive is desired.

The offset voltage is trimmed on-chip to eliminate the need for external nulling in many applications. For precision applications, the output is designed to settle to 0.1% in $2 \mu \mathrm{~s}$. For large signal buffer applications, the operational amplifier can function as an ultra high input impedance voltage follower/buffer that allows input and output voltage swings from positive to negative supply voltages. This feature is intended to greatly simplify systems design and eliminate higher voltage power supplies in many applications. Additionally, robust design and rigorous screening make this device especially suitable for operation in temperature-extreme environments and rugged conditions.

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Operating Temperature Range		
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
8-Pin	8 -Pin	8 -Pin
Small Outline	Plastic Dip	CERDIP
Package (SOIC)	Package	Package
ALD1704ASAL	ALD1704APAL	ALD1704ADA
ALD1704BSAL	ALD1704BPAL	ALD17041BDA
ALD1704SAL	ALD1704PAL	ALD1704DA
ALD1704GSAL	ALD1704GPAL	ALD1704GDA

FEATURES

- Rail-to-rail input and output voltage ranges
- 5.0V/us slew rate
- Output settles to 2 mV of supply rails
- High capacitive load capability -- up to 4000 pF
- Symmetrical push-pull output drives
- No frequency compensation required -unity gain stable
- Extremely low input bias currents -- 1.0pA typical (20pAMax)
- Ideal for high source impedance applications
- High voltage gain -- typically $150 \mathrm{~V} / \mathrm{mV}$
- Output short circuit protected
- Unity gain bandwidth of 2.1 MHz
- Suitable for rugged, temperature-extreme environments

APPLICATIONS

- Voltage amplifier
- Voltage follower/buffer
- Charge integrator
- Photodiode amplifier
- Data acquisition systems
- High performance portable instruments
- Signal conditioning circuits
- Low leakage amplifiers
- Active filters
- Sample/Hold amplifier
- Picoammeter
- Current to voltage converter
- Coaxial cable driver
- Capacitive sensor amplifier
- Piezoelectric transducer amplifier

PIN CONFIGURATION

*N/C pins are internally connected. Do not connect externally.

* Contact factory for leaded (non-RoHS) or extended high/low temperature versions.

Supply voltage, V+
Differential input voltage range \qquad -0.3 V to $\mathrm{V}++0.3 \mathrm{~V}$
Power dissipation
_ \qquad 600 mW

Operating temperature range	SAL, PAL packages DA package Storage temperature range$\quad-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead temperature, 10 seconds \qquad $+260^{\circ} \mathrm{C}$
CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.
OPERATING ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	1704A			1704B			1704			1704G			Unit	Test Conditions
		Min	Typ	Max											
Supply Voltage	$\begin{aligned} & V_{S} \\ & V^{+} \end{aligned}$	$\begin{array}{r} \pm 3.25 \\ 6.5 \end{array}$		$\begin{aligned} & \pm 5.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} \pm 3.25 \\ 6.5 \end{array}$		$\begin{aligned} & \pm 5.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} \pm 3.25 \\ 6.5 \end{array}$		$\begin{aligned} & \pm 5.0 \\ & 10.0 \end{aligned}$	$\begin{gathered} \pm 3.25 \\ 6.5 \end{gathered}$		$\begin{aligned} & \pm 5.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	Dual Supply Single Supply
Input Offset Voltage	V_{OS}			$\begin{aligned} & 0.9 \\ & 1.7 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.8 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 5.3 \end{aligned}$			$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Input Offset Current	Ios		1.0	$\begin{array}{r} 15 \\ 240 \end{array}$		1.0	$\begin{array}{r} 15 \\ 240 \end{array}$		1.0	$\begin{array}{r} 15 \\ 240 \end{array}$		1.0	$\begin{array}{r} 25 \\ 240 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current	I_{B}		1.0	$\begin{array}{r} 20 \\ 300 \end{array}$		1.0	$\begin{array}{r} 20 \\ 300 \end{array}$		1.0	$\begin{array}{r} 20 \\ 300 \end{array}$		1.0	$\begin{array}{r} 30 \\ 300 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Input Voltage Range	V_{IR}	-5.3		+5.3	-5.3		+5.3	-5.3		+5.3		± 5.0		V	
Input Resistance	R_{IN}		10^{12}			10^{12}			10^{12}			1012		Ω	
Input Offset Voltage Drift	TCV ${ }_{\text {OS }}$		5			5			5			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\mathrm{R}_{S} \leq 100 \mathrm{~K} \Omega$
Power Supply Rejection Ratio	PSRR	70	80		65	80		65	80		60	80		dB	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Common Mode Rejection Ratio	CMRR	70	83		65	83		65	83		60	83		dB	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Large Signal Voltage Gain	A_{V}	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 32 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		V / mV V / mV V / mV	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$ No Load $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Output Voltage	Volow V_{0} high	4.90	$\begin{array}{r} -4.96 \\ 4.95 \\ \hline \end{array}$	-4.90	4.90	$\begin{array}{r} -4.96 \\ 4.95 \end{array}$	-4.90	4.90	$\begin{array}{r} -4.96 \\ 4.95 \end{array}$	-4.90	4.90	$\begin{array}{r} -4.96 \\ 4.95 \end{array}$	-4.90	V	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Range	Volow V_{O} high	4.99	$\begin{array}{\|r\|} \hline-4.998 \\ 4.998 \\ \hline \end{array}$	-4.99	4.99	$\begin{array}{r} -4.998 \\ 4.998 \\ \hline \end{array}$	-4.99	4.99	$\begin{array}{r} -4.998 \\ 4.998 \end{array}$	-4.99	4.99	$\begin{gathered} \hline-4.998 \\ 4.998 \end{gathered}$	-4.99	V	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Output Short Circuit Current	ISC		15			15			15			15		mA	
Supply Current	Is		3.0	4.5		3.0	4.5		3.0	4.5		3.0	5.0	mA	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ No Load
Power Dissipation	PD		30	45		30	45		30	45		30	50	mW	$V_{S}= \pm 5.0$ No Load
Input Capacitance	$\mathrm{CIN}_{\text {I }}$		1			1			1			1		pF	
Bandwidth	BW		2.1			2.1			2.1			2.1		MHz	
Slew Rate	S_{R}		5.0			5.0			5.0			5.0		V/us	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1 \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega \end{aligned}$
Rise time	t_{r}		0.1			0.1			0.1			0.1		$\mu \mathrm{S}$	$\mathrm{RL}=2.0 \mathrm{~K} \Omega$
Overshoot Factor			15			15			15			15		\%	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$

OPERATING ELECTRICAL CHARACTERISTICS (cont'd)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	1704A			1704B			1704			1704G			Unit	Test Conditions
		Min	Typ	Max											
Maximum Load Capacitance	C_{L}		$\begin{array}{r} 400 \\ 4000 \end{array}$			$\begin{array}{r} 400 \\ 4000 \end{array}$			400 4000			400 4000		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Gain }=1 \\ & \text { Gain }=5 \end{aligned}$
Input Noise Voltage	e_{n}		26			26			26			26		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	$f=1 \mathrm{KHz}$
Input Current Noise	i_{n}		0.6			0.6			0.6			0.6		$f \mathrm{~A} / \sqrt{\mathrm{Hz}}$	$f=10 \mathrm{~Hz}$
Settling Time	t_{s}		$\begin{aligned} & 5.0 \\ & 2.0 \end{aligned}$			5.0 2.0			5.0 2.0			5.0 2.0		$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & 0.1 \% \quad A V=-1 \\ & R_{L}=5 K \Omega \\ & C_{L}=50 p F \end{aligned}$

$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	1704ADA			1704BDA			1704DA			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Input Offset Voltage	V_{OS}			2.0			4.0			7.0	mV	$\mathrm{R}_{S} \leq 100 \mathrm{~K} \Omega$
Input Offset Current	los			8.0			8.0			8.0	nA	
Input Bias Current	IB			10.0			10.0			10.0	nA	
Power Supply Rejection Ratio	PSRR	60	75		60	75		60	75		dB	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Common Mode Rejection Ratio	CMRR	60	83		60	83		60	83		dB	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Large Signal Voltage Gain	AV	30	125		30	125		30	125		V / mV	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$
Output Voltage Range	V_{O} low V_{O} high	4.8	$\begin{array}{r} -4.9 \\ 4.9 \end{array}$	-4.8	4.8	$\begin{array}{r} -4.9 \\ 4.9 \end{array}$	-4.8	4.8	$\begin{array}{r} -4.9 \\ 4.9 \end{array}$	-4.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \end{aligned}$

Design \& Operating Notes:

1. The ALD1704A/ALD1704B/ALD1704/ALD1704G CMOS operational amplifier uses a 3 gain stage architecture and an improved frequency compensation scheme to achieve large voltage gain, high output driving capability, and better frequency stability. The ALD1704A/ ALD1704B/ALD1704/ALD1704G is internally compensated for unity gain stability using a novel scheme that produces a clean single pole roll off in the gain characteristics while providing for more than 70 degrees of phase margin at the unity gain frequency. A unity gain buffer using the ALD1704A/ALD1704B/ALD1704/ALD1704G will typically drive 400 pF of external load capacitance without stability problems. In the inverting unity gain configuration, it can drive up to 800 pF of load capacitance. Compared to other CMOS operational amplifiers, the ALD1704A/ALD1704B/ALD1704/ALD1704G has shown itself to be more resistant to parasitic oscillations.
2. The ALD1704A/ALD1704B/ALD1704/ALD1704G has complementary p -channel and n -channel input differential stages connected in parallel to accomplish rail to rail input common mode voltage range. This means that with the ranges of common mode input voltage close to the power supplies, one of the two differential stages is switched off internally. To maintain compatibility with other operational amplifiers, this switching point has been selected to be about 1.5 V above the negative supply voltage. Since offset voltage trimming on the ALD1704A/ ALD1704B/ALD1704/ALD1704G is made when the input voltage is symmetrical to the supply voltages, this internal switching does not affect a large variety of applications such as an inverting amplifier or non-inverting amplifier with a gain larger than 2 (10V operation), where the common mode voltage does not make excursions below this switching point.
3. The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than 1 pA at room temperature. This low input bias current assures that the analog signal from the source will not be distorted by input bias currents. For applications where source impedance is very high, it may be necessary to limit noise and hum pickup through proper shielding.
4. The output stage consists of symmetrical class $A B$ complementary output drivers, capable of driving a low resistance load with up to 10 mA source current and 10 mA sink current. The output voltage swing is limited by the drain to source on-resistance of the output transistors as determined by the bias circuitry, and the value of the load resistor. When connected in the voltage follower configuration, the oscillation resistant feature, combined with the rail-to-rail input and output feature, makes the ALD1704A/ALD1704B/ALD1704/ALD1704G an effective analog signal buffer for medium to high source impedance sensors, transducers, and other circuit networks.
5. The ALD1704A/ALD1704B/ALD1704/ALD1704G operational amplifier has been designed to provide full static discharge protection. Internally, the design has been carefully implemented to minimize latch up. However, care must be exercised when handling the device to avoid strong static fields that may degrade a diode junction, causing increased input leakage currents. In using the operational amplifier, the user is advised to power up the circuit before, or simultaneously with, any input voltages applied and to limit input voltages to not exceed 0.3 V of the power supply voltage levels.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE REPRESENTATIVE UNITS

LARGE - SIGNAL TRANSIENT RESPONSE

OPEN LOOP VOLTAGE AS A FUNCTION OF FREQUENCY

NPUT OFFSET VOLTAGE AS A FUNCTION OF COMMON MODE INPUT VOLTAGE

SMALL - SIGNAL TRANSIENT
RESPONSE

TYPICAL APPLICATIONS

RAIL-TO-RAIL VOLTAGE FOLLOWER/BUFFER

LOW OFFSET SUMMING AMPLIFIER

WIEN BRIDGE OSCILLATOR (RAIL-TO -RAIL) SINE WAVE GENERATOR

LOW PASS FILTER (RFI FILTER)

Cutoff frequency $=\frac{1}{\pi \mathrm{R1C}^{2}}=3.2 \mathrm{kHz}$
Gain = 10 Frequency roll-off $20 \mathrm{~dB} /$ decade

RAIL-TO-RAIL VOLTAGE COMPARATOR

PHOTO DETECTOR CURRENT TO VOLTAGE CONVERTER

BANDPASS NETWORK

$\begin{aligned} & \text { High Frequency } \begin{array}{l}R_{1}=10 K C_{1}=100 \mathrm{nF} \\ \text { Cutoff } f H=\frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C} 2}=32 \mathrm{KHz}\end{array} \\ & \mathrm{R}_{2}=10 K \mathrm{C}_{2}=500 \mathrm{pF}\end{aligned}$

PRECISION CHARGE INTEGRATOR

SOIC-8 PACKAGE DRAWING

8 Pin Plastic SOIC Package

Dim	Millimeters		Inches			
	Min	Max	Min	Max		
A	1.35	1.75	0.053	0.069		
$\mathbf{A}_{\mathbf{1}}$	0.10	0.25	0.004	0.010		
b	0.35	0.45	0.014	0.018		
\mathbf{C}	0.18	0.25	0.007	0.010		
D-8	4.69	5.00	0.185	0.196		
E	3.50	4.05	0.140	0.160		
e	1.27		BSC	0.050		BSC
\mathbf{H}	5.70	6.30	0.224	0.248		
\mathbf{L}	0.60	0.937	0.024	0.037		
$\boldsymbol{\varnothing}$	0°	8°	0°	8°		
\mathbf{S}	0.25	0.50	0.010	0.020		

PDIP-8 PACKAGE DRAWING

8 Pin Plastic DIP Package

Dim	Millimeters		Inches	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.105	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
$\mathbf{A}_{\mathbf{2}}$	1.27	2.03	0.050	0.080
\mathbf{b}	0.89	1.65	0.035	0.065
$\mathbf{b}_{\mathbf{1}}$	0.38	0.51	0.015	0.020
\mathbf{c}	0.20	0.30	0.008	0.012
$\mathbf{D - 8}$	9.40	11.68	0.370	0.460
\mathbf{E}	5.59	7.11	0.220	0.280
$\mathbf{E}_{\mathbf{1}}$	7.62	8.26	0.300	0.325
\mathbf{e}	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{1}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
S-8	1.02	2.03	0.040	0.080
$\boldsymbol{\sigma}$	0°	15°	0°	15°

CERDIP-8 PACKAGE DRAWING

8 Pin CERDIP Package

Dim	Millimeters		Inches	
	Min	Max	Min	Max
\mathbf{A}	3.55	5.08	0.140	0.200
$\mathbf{A}_{\mathbf{1}}$	1.27	2.16	0.050	0.085
\mathbf{b}	0.97	1.65	0.038	0.065
$\mathbf{b}_{\mathbf{1}}$	0.36	0.58	0.014	0.023
\mathbf{C}	0.20	0.38	0.008	0.015
$\mathbf{D - 8}$	--	10.29	--	0.405
\mathbf{E}	5.59	7.87	0.220	0.310
$\mathbf{E}_{\mathbf{1}}$	7.73	8.26	0.290	0.325
\mathbf{e}	2.54 BSC		0.100 BSC	
$\mathbf{e}_{\mathbf{1}}$	7.62 BSC		0.300 BSC	
\mathbf{L}	3.81	5.08	0.150	0.200
$\mathbf{L}_{\mathbf{1}}$	3.18	--	0.125	--
$\mathbf{L}_{\mathbf{2}}$	0.38	1.78	0.015	0.070
\mathbf{S}	--	2.49	--	0.098
$\boldsymbol{\varnothing}$	0°	15°	0°	15°

