mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CMOS LOW VOLTAGE, LOW CHARGE INJECTION QUAD SPST ANALOG SWITCHES

GENERAL DESCRIPTION

The ALD4201/ALD4202M are quad SPST CMOS analog switches specifically developed for 3 to 12 volt applications where low charge injection and low leakage currents are important analog switch operating characteristics. The main features are precision matching, charge compensation circuitry, fast switching, low on-resistance and micropower consumption. The ALD4201 operates in break-before-make switching whereas the ALD4202M operates in make-before-break switching.

The ALD4201/ALD4202M are designed for precision applications such as charge amplifiers, sample and hold amplifiers, data converter switches, and programmable gain amplifiers. These switches are also excellent for general purpose switching applications for micropower battery operated systems.

APPLICATIONS INFORMATION

The ALD4201/ALD4202M are designed to operate with standard single or dual power supplies of +3V to 10V or \pm 1.5V to \pm 5V. Functionality extends down to +2V or \pm 1V power supply, making it suitable for lithium battery or rechargeable battery operated systems where power efficiency and performance are important design parameters. These switches feature nA quiescent current and interface directly to CMOS logic levels from microprocessor or logic interface circuits. Built- in level shifters at the input stage provide for dual supply analog signal switching. On the board level, low charge injection and fast operation can be obtained by using short leads, minimizing input and output capacitances, and by adequate bypass capacitors placed on the board at the supply nodes. For more information, see Application Note AN4200.

The ALD4201/4202M are manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process, and are also part of the linear elements in Advanced Linear Devices' "Function-Specific" ASIC.

ORDERING INFORMATION

Operating Temperature Range								
-55°C to +125°C	0°C to +70°C	0°C to +70°C						
16-Pin	16-Pin	16-Pin						
CERDIP	Plastic Dip	SOIC						
Package	Package	Package						
ALD4201 DC	ALD4201 PC	ALD4201 SC						
ALD4202M DC	ALD4202M PC	ALD4202M SC						

LOGIC TABLE

Input Logic	Switch State						
input Logio	ALD4201	ALD4202M					
0 1	On Off	Off On					

* Contact factory for industrial temperature range.

FEATURES

- 3V, 5V & 10V supply operation
- ±1.5V, ±2.5V & ±5V supply operation
- 0.1µW power dissipation
- 1pC charge injection
- Rail-to-rail signal range
- Low on-resistance
- · pA leakage current
- 4201 break-before-make switching
- 4202M make-before-break switching
- Built-in dual supply level translator

BENEFITS

- · Fast effective signal throughput
- Low switching transients
- Low signal loss
- Essentially no DC power consumption
- Full analog signal range over power supply rail
- Flexible power supply range for battery operated systems

APPLICATIONS

- Low level signal conditioning circuits
- · Portable battery operated instruments
- · Computer peripherals
- PCMCIA
- Fast sample and hold
- Analog signal multiplexer
- Programmable gain amplifiers
- Switched capacitor circuits
- Micropower based systems
- · Video/audio switches
- Feedback control systems

PIN CONFIGURATION / BLOCK DIAGRAM

© 2005.1 Advanced Linear Devices, Inc. 415 Tasman Drive, Sunnyvale, California 94089 - 1706 Tel: (408) 747-1155 Fax: (408) 747-1286 http://www.aldinc.com

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V+ referenced to V-	
Terminal voltage range (any terminal) Note 1	(V ⁻ -0.3)V to (V ⁺ +0.3)V
Power dissipation	600 mW
Operating temperature range PC, SC package	0°C to +70°C
DC package	55°C to +125°C
Storage temperature range	65°C to +150°C
Lead temperature, 10 seconds	+260°C
DC current (any terminal)	10mA

POWER SUPPLY RANGE

		4201/	4202M (PC	C,SC)	42	01/4202M (DC)		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Supply Voltage	V _{SUPPLY}	±1.5 3.0		±6.0 12.0	±1.5 3.0		±6.0 12.0	V V	Dual Supply Single Supply

DC ELECTRICAL CHARACTERISTICS T_A = 25 $^\circ C$ V+ = +5.0V, V- = -5.0V GND = 0.0V unless otherwise specified

		4201/4202M (PC,SC) 4201/4202M (DC)							
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Analog Signal Range	VA	-5.0		5.0	-5.0		5.0	V	
On - Resistance	R _{ON}		90 120	135 180		90 140	135 210	Ω	V _A = 0V I _A = 1mA 0°C to +70°C -55°C to +125°C
Change of On-Resistance from -V _S to +V _S	ΔR_{ON}		16			16		%	
Change of On-Resistance with Temperature	$\Delta R_{ON} / \Delta T$		0.43			0.43		%/°C	
R _{ON} Match Between Switches			2			2		%	
Source Off Leakage Current	$I_{S(OFF)}$		50	100 500		50	100 4000	pA pA pA	V _S = +/-4.0V, V _D = -/+4.0V 0°C to +70°C -55°C to +125°C
Drain Off Leakage Current	ID(OFF)		50	100 500		50	100 4000	pA pA pA	$V_D = +/-4.0V, V_S = -/+4.0V$ 0°C to +70°C -55°C to +125°C
Channel On Leakage Current	I _{D(ON)}		50	100 500		50	100 4000	pA pA pA	0°C to +70°C -55°C to +125°C
Input High Voltage	V _{IH}	4.0			4.0				Logic "1"
Input Low Voltage	V _{IL}			0.8			0.8	V	Logic "0"
Input High or Input Low Current	I _{IH} I _{IL}			10			10	nA	$\pm 1.5 \le V_{SUPPLY} \le \pm 5.0V$
Supply Current	ISUPPLY		0.01	1		0.01	1	μA	

AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ V+ = +5.0V, V- = -5.0V, GND = 0.0V unless otherwise specified

		4201/4202M (PC)		4201/4202M (DC)		4201/4202M (SC)						
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Turn On Delay time	t _{ON}		150 60	240 110		150 60	240 110		150 60	240 110	ns ns	4201 (Note 2) 4202M
Turn Off Delay time	tOFF		60 100	130 180		60 100	130 180		60 100	130 180	ns ns	4201 (Note 2) 4202M
Break-Before-Make Delay Time	t _{BD}	20	90		20	90		20	90		ns	4201 (Note 3)
Make-Before-Break Delay Time	t _{MD}	15	40		15	40		15	40		ns	4202M (Note 3)
Charge Injection	Q _{INJ}		2 1	5 2.5		2 1	5 2.5		1 0.7	2.5 2.0	pC pC	4201 (Note 3) (Note 4) 4202M
Off Isolation			75			75			75		dB	At f = 100KHz, (Note 5)
Crosstalk			90			90			90		dB	At f = 100KHz, (Note 6)
Total Harmonic Distortion	Т _{НD}		0.05 0.01			0.05 0.01			0.05 0.01		%	RL = 10K RL = 100K
Source/Drain Off Capacitance	C _{S(OFF)} C _{D(OFF)}		3.0			3.0			3.0		pF	
Channel On Capacitance	C _{DS(ON)}		5.7			5.7			5.7		pF	
Pin to Pin Capacitance	C _{PP}		0.5			0.6			0.25		pF	

DC ELECTRICAL CHARACTERISTICS T_A = 25° C V+= +5.0V, V⁻ = GND = 0.0V unless otherwise specified

		ALD4	1201/4202N	I (PC,SC)	ALD	4201/4202M	I (DC)		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Analog Signal Range	VA	0.0		+5.0	0.0		+5.0	v	
On - Resistance	R _{ON}		195 240	280 350		195 270	280 390	Ω	V _A = +2.5V I _A = 1mA 0°C to +70°C -55°C to +125°C
						2/0	000		00 0 10 1120 0
Change of On-Resistance from -V _S to +V _S	ΔR_{ON}		20			20		%	
Change of On-Resistance with Temperature	ΔR _{ON} /ΔT		0.43			0.43		%/°C	
R _{ON} Match Between Switches			2			2		%	
Input High Voltage	V _{IH}	4.0			4.0			V	
Input Low Voltage	V _{IL}			0.8			0.8	V	

Notes:

1. Voltage on any terminal must be less than $(V_+) + 0.3V$ and greater than $(V_-) - 0.3V$, at all times including before power is applied and $V_+ = V_- = 0.0V$. Vsupply power supply needs to be sequenced on first on power turn-on and sequenced off last during power turn-off. **2.** See Switching Time Test

Circuit 3. Guaranteed by design . 4. See Charge Injection Test Circuit 5. See Off Isolation Test Circuit 6. See Crosstalk Test Circuit

DC ELECTRICAL CHARACTERISTICS T_A = 25° C V+ = +3.0V, V⁻ = GND = 0.0V unless otherwise specified

		4201/4;	202M (PC,	SC)	4201	/4202M (DC	2)		
Parameter	Symbol	Min	Тур	Мах	Min	Тур	Max	Unit	Test Conditions
Analog Signal Range	VA	0.0		3.0	0.0		3.0	V	
On - Resistance	R _{ON}		500 620	700 880		500	700	Ω	V _A = 1.5V I _A = 1mA 0°C to +70°C
			1		1 !	680	1000		-55°C to +125°C
Change of On-Resistance from -V _S to +V _S	ΔR_{ON}		43			43		%	
Change of On-Resistance with Temperature	$\Delta R_{ON} / \Delta T$		0.27			0.27		%/°C	
R _{ON} Match Between Switches			2			2		%	
Input High Voltage	V _{IH}	2.4			2.4			V	
Input Low Voltage	V _{IL}	1		0.8			0.8	V	

TYPICAL PERFORMANCE CHARACTERISTICS

ON - RESISTANCE (Ω)

ON RESISTANCE AS A FUNCTION OF SIGNAL VOLTAGE

ON - RESISTANCE (Ω)

TYPICAL PERFORMANCE CHARACTERISTICS

TOTAL HARMONIC DISTORTION(%)

TOTAL HARMONIC DISTORTION AS A FUNCTION OF FREQUENCY

5

10

TEST CIRCUITS

CROSSTALK TEST CIRCUIT

SWITCHING TIME TEST CIRCUIT

CHARGE INJECTION TEST CIRCUIT

TOTAL HARMONIC DISTORTION TEST CIRCUIT

OFF ISOLATION TEST CIRCUIT

