: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Advanced
LINEAR
Devices, Inc.

CMOS LOW VOLTAGE HIGH SPEED QUAD PRECISION ANALOG SWITCHES

GENERAL DESCRIPTION

The ALD4211/ALD4212/ALD4213 are quad SPST CMOS analog switches specifically designed for low voltage, high speed applications where 0.2 pC charge injection, 200pf sampling capacitor, and picoamp leakage current are important analog switch operating characteristics. These analog switches feature fast switching, low on-resistance and micropower consumption.

TheALD4211/4212/4213 are designed for precision applications such as charge amplifiers, sample and hold amplifiers, data converter switches, and programmable gain amplifiers. These switches are also excellent for low voltage micropower general purpose switching applications.

APPLICATIONS INFORMATION

The ALD4211/4212/4213 operate with a standard single power supply from +3 V to $+12 \mathrm{Volts}$. Functionality extends down to a +2 volt power supply making it suitable for lithium battery or rechargeable battery operated systems where power, efficiency, and performance are important design considerations. Break-before-make switching is guaranteed with single supply operation. The ALD4211/4212/4213 may also be used with dual power supplies from ± 1.5 to ± 6 volts.

With special charge balancing and charge cancellation circuitry on chip the ALD4211/ALD4212/ALD4213 were developed for ultra low charge injection applications. Using a 200pF sampling capacitor, very fast precise signal acquisition may be achieved. With ultra low quiescent current, these switches interface directly to CMOS logic levels from microprocessor or logic circuits. On the board level, low charge injection and fast operation may be achieved by using short leads, minimizing input and output capacitances, and by adequate bypass capacitors placed on the board at the supply nodes. For more information, see Application Note AN4200.

The ALD4211/ALD4212/ALD4213 are manufactured with Advanced Linear Devices enhanced ACMOS silicon gate CMOS process. They are designed also as linear cell elements in Advanced Linear Devices' "Function-Specific" ASIC.

ORDERING INFORMATION

Operating Temperature Range		
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
16 -Pin	16 -Pin	16 -Pin
CERDIP	Plastic Dip	SOIC
Package	Package	Package
ALD4211 DC	ALD4211 PC	ALD4211 SC
ALD4212 DC	ALD4212 PC	ALD4212 SC
ALD4213 DC	ALD4213 PC	ALD4213 SC

LOGIC TABLE

Input Logic	Switch State			
	ALD4211	ALD4212	ALD4213	
			Switch 1 / Switch 4	Switch 2 / Switch 3
		On	Off	Off
1	Off	On	On	On
1			Off	

[^0]
ABSOLUTE MAXIMUM RATINGS

Supply voltage, V+ referenced to V-	-0.3V to +13.2V
GND	-0.3V to +13.2V
Terminal voltage range (any terminal) Note 1	$(\mathrm{V}--0.3) \mathrm{V}$ to $(\mathrm{V}++0.3) \mathrm{V}$
Power dissipation	600 mW
Operating temperature range PC, SC package	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC package	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature, 10 seconds	$+260^{\circ} \mathrm{C}$
DC current (any terminal)	- 10 mA

POWER SUPPLY RANGE

Parameter	Symbol	4211/4212/4213 (PC,SC)			4211/4212/4213 (DC)			Unit	
		Min	Typ	Max	Min	Typ	Max		
Supply	VSUPPLY	± 1.5		± 6.0	± 1.5		± 6.0	V	Dual Supply
Voltage		3.0		12.0	3.0		12.0	V	Single Supply

DC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}+=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}$ GND $=0.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	4211/4212/4213 (PC,SC)			4211/4212/4213 (DC)			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Analog Signal Range	V_{A}	-5.0		5.0	-5.0		5.0	V	
On - Resistance	Ron		$\begin{array}{r} 90 \\ 120 \end{array}$	$\begin{aligned} & 135 \\ & 190 \end{aligned}$		$\begin{array}{r} 90 \\ 140 \end{array}$	$\begin{aligned} & 135 \\ & 210 \end{aligned}$	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \quad \mathrm{I}_{\mathrm{A}}=1 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Change of On-Resistance from $-V_{S}$ to $+V_{S}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		16			16		\%	
Change of On-Resistance with Temperature	$\Delta \mathrm{R}_{\mathrm{ON}} / \Delta \mathrm{T}$		0.43			0.43		$\% /{ }^{\circ} \mathrm{C}$	
Ron Match between Switches			2			2		\%	
Off Com Leakage Current	ICOML		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & \mathrm{V}_{\text {COM }}= \pm 4.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-1+4.0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Off Out Leakage Current	IOUTL		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 4.0 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=-/+4.0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
On Channel Leakage Current	$\mathrm{ID}(\mathrm{ON})$		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	4.0			4.0				Logic "1"
Input Low Voltage	V_{IL}			0.8			0.8	V	Logic "0"
Input High or Input Low Current	$\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{II}} \end{aligned}$			10			10	nA	
Supply Current	ISUPPLY		0.01	1		0.01	1	$\mu \mathrm{A}$	

AC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}+=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{GND}=0.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	4211/4212/4213(PC)			4211/4212/4213(DC)			4211/4212/4213(SC)			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Turn On Delay time	ton		60	130		60	130		60	130	ns	(Note 2)
Turn Off Delay time	toff		60	130		60	130		60	130	ns	(Note 2)
Charge Injection	QinJ		0.2	1.0		0.2	1.0		0.2	1.0	pC	(Note 3) (Note 4)
Off Isolation			75			75			75		dB	At $\mathrm{f}=100 \mathrm{KHz}$, (Note 5)
Crosstalk			90			90			90		dB	At f $=100 \mathrm{KHz}$, (Note 6)
Total Harmonic Distortion	T_{HD}		$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$		\%	$\begin{aligned} & R_{L}=10 \mathrm{~K} \\ & R_{L}=100 \mathrm{~K} \end{aligned}$
Com/Out Off Capacitance	COM (OFF) OUT(OFF)		3.0			3.0			3.0		pF	
Channel On Capacitance	CDS (ON)		5.7			5.7			5.7		pF	
Pin to Pin Capacitance	CPP		0.5			0.6			0.25		pF	

DC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}+=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=\mathbf{0 . 0} \mathrm{V}$ unless otherwise specified

Parameter	Symbol	4211/4212/4213 (PC,SC)			4211/4212/4213 (DC)			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Analog Signal Range	V_{A}	0.0		+5.0	0.0		+5.0	V	
On - Resistance	RoN		$\begin{aligned} & 195 \\ & 250 \end{aligned}$	$\begin{aligned} & 280 \\ & 365 \end{aligned}$		$\begin{aligned} & 195 \\ & 270 \end{aligned}$	$\begin{aligned} & 280 \\ & 390 \end{aligned}$	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \mathrm{I}_{\mathrm{A}}=1 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Change of On-Resistance from $-\mathrm{V}_{\mathrm{S}}$ to $+\mathrm{V}_{\mathrm{S}}$	$\Delta \mathrm{R}_{\text {ON }}$		20			20		\%	
Change of On-Resistance with Temperature	$\Delta \mathrm{R}_{\text {ON }} / \Delta \mathrm{T}$		0.43			0.43		$\% /{ }^{\circ} \mathrm{C}$	
Ron Match Between Switches			2			2		\%	
Off Com Leakage Current	ICOML		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & \mathrm{V}_{\text {COM }}=1 \text { to } 4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \text { to } 1 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Off Out Leakage Current	IOUTL		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & \text { VOUT }=1 \text { to } 4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4 \text { to } 1 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
On Channel Leakage Current	$\mathrm{I}_{\mathrm{D}}(\mathrm{ON})$		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Input High Voltage	V_{IH}	4.0			4.0				Logic "1"
Input Low Voltage	V_{IL}			0.8			0.8	V	Logic "0"
Input High or Input Low Current	$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{III}} \end{aligned}$			10			10	nA	
Supply Current	ISUPPLY		0.01	1		0.01	1	$\mu \mathrm{A}$	

Notes: 1. Voltage on any terminal must be less than $\left(\mathrm{V}_{+}\right)+0.3 \mathrm{~V}$ and greater than $(\mathrm{V}-)-0.3 \mathrm{~V}$, at all times including before power is applied and $\mathrm{V}+=\mathrm{V}-=0.0 \mathrm{~V}$. Vsupply power supply needs to be sequenced on first on power turn-on and sequenced off last during power turn-off. 2. See Switching Time Test Circuit. Break-before-make time is not guaranteed. Turn on and turn off time may overlap. 3. Guaranteed by design. 4. See Charge Injection Test Circuit 5. See Off Isolation Test Circuit 6. See Crosstalk Test Circuit. 7. See switching time test circuit.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}+=+5.0 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=0.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	4211/4212/4213 (PC)			4211/4212/4213 (DC)			4211/4212/4213 (SC)			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Turn On Delay time	ton		85	170		85	170		85	170	ns	(Note 7)
Turn Off Delay time	toff		46	90		46	90		46	90	ns	(Note 7)
Break-Before-Make Delay Time	$t_{B D}$	15	40		15	40		15	40		ns	
Charge Injection	Qinj		0.2	1.0		0.2	1.0		0.2	1.0	pC	(Note 3) (Note 4)
Off Isolation			75			75			75		dB	At $\mathrm{f}=100 \mathrm{KHz}$, (Note 5)
Crosstalk			90			90			90		dB	At $\mathrm{f}=100 \mathrm{KHz}$, (Note 6)
Total Harmonic Distortion	THD		$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$		\%	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{~K} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \end{aligned}$
Com/Out Off Capacitance	$\begin{aligned} & \text { COM(OFF) } \\ & \text { OUT(OFF) } \end{aligned}$		3.0			3.0			3.0		pF	
Channel On Capacitance	$\mathrm{C}_{\text {DS (}}(\mathrm{ON}$)		5.7			5.7			5.7		pF	
Pin to Pin Capacitance	CPP		0.5			0.6			0.25		pF	

The ALD4211/ALD4212/ALD4213 feature very high precision due to these factors:

1. The analog switch has ultra low capacitive charge coupling so that the charge stored on a 200pF sampling capacitor is minimally affected.
2. With special charge balancing and charge cancellation circuitry designed on chip, the ALD4211/ALD4212/ ALD4213 achieves ultra low charge injection of typically only 0.2 pC resulting in extremely low signal distortion to the external circuit.
3. The analog switch switching transistors have pA leakage currents minimizing the droop rate of the sampling circuit.
4. The internal switch timing allows for the analog switch to turn off internally without producing any residual transistor channel charge injection, which may affect external circuits. With a low loss polystyrene or polypropylene sampling capacitor, long data retention times are possible without significant signal loss.

The ALD4211/ALD4212/ALD4213 CMOS analog switches, when used with industry standard pinout connection, have the input and output pins reversed with the signal source input connected to OUT pins and COM pins used as output pins. In this connection and when used with $1,000 \mathrm{pF}$ or greater value capacitors, or when connected to a DC current or resistive load, the switch would not be operating in an ultra low charge injection mode. Typical charge injection, in this case, would be 5 pC as the pin to pin capacitive coupling effect would dominate. In this connection, all the other characteristics of the ALD4211/ALD4212/ALD4213 CMOS analog switches remain the same.

DC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}+=+3.0 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	4211/4212/4213 (PC,SC)			4211/4212/4213 (DC)			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Analog Signal Range	V_{A}	0.0		3.0	0.0		3.0	V	
On - Resistance	RON		$\begin{aligned} & 500 \\ & 620 \end{aligned}$	$\begin{aligned} & 700 \\ & 880 \end{aligned}$		$\begin{aligned} & 500 \\ & 680 \end{aligned}$	$\begin{array}{r} 700 \\ 1000 \end{array}$	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \mathrm{I}_{\mathrm{A}}=1 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Change of On-Resistance from $-V_{S}$ to $+V_{S}$	$\Delta \mathrm{RON}$		43			43		\%	
Change of On-Resistance with Temperature	$\Delta \mathrm{R}_{\mathrm{ON}} / \Delta \mathrm{T}$		0.27			0.27		$\% /{ }^{\circ} \mathrm{C}$	
Ron Match Between Switches			2			2		\%	
Off Com Leakage Current	ICOML		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & \mathrm{VCOM}_{\mathrm{CO}}=1 \text { to } 2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2 \text { to } 1 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Off Out Leakage Current	IOUTL		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & \text { VOUT }=1 \text { to } 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=2 \text { to } 1 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		50	$\begin{array}{r} 100 \\ 4000 \end{array}$	pA pA pA	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Input High Voltage	V_{IH}	2.4			2.4				Logic "1"
Input Low Voltage	V_{IL}			0.8			0.8	V	Logic "0"
Input High or Input Low Current	$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$			10			10	nA	
Supply Current	ISUPPLY		0.01	1		0.01	1	$\mu \mathrm{A}$	

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}+=+3.0 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=0.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	4211/4212/4213 (PC)			4211/4212/4213 (DC)			4211/4212/4213 (SC)			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Turn On Delay time	ton		160	300		160	300		160	300	ns	(Note 7)
Turn Off Delay time	toff		78	1500		78	150		78	150	ns	(Note 7)
Break-Before-Make Delay Time	$t_{B D}$	20	82		20	82		20	82		ns	
Charge Injection	QinJ		0.2	0.5		0.2	0.5		0.2	0.5	pC	(Note 3) (Note 4)
Off Isolation			75			75			75			$\mathrm{dB} \quad \mathrm{At} \mathrm{f}=100 \mathrm{KHz}$, (Note 5)
Crosstalk			90			90			90			dB At $\mathrm{f}=100 \mathrm{KHz}$, (Note 6)
Total Harmonic Distortion	THD		$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$		\%	$\begin{aligned} & R_{L}=10 \mathrm{~K} \\ & R_{L}=100 \mathrm{~K} \end{aligned}$
Com/Out Off Capacitance	COM(OFF) OUT(OFF)		3.0			3.0			3.0		pF	
Channel On Capacitance	$\mathrm{C}_{\text {DS (}}$ (ON)		5.7			5.7			5.7		pF	
Pin to Pin Capacitance	Cpp		0.5			0.6			0.25		pF	

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF INPUT VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF INPUT VOLTAGE

SWITCH DELAY TIME AS A FUNCTION OF TEMPERATURE

CROSSTALK TEST CIRCUIT

SWITCHING TIME TEST CIRCUIT

QIRR $=20 \log \left(\mathrm{~V}_{\mathrm{O}} / \mathrm{Vi}\right)$

CHARGE INJECTION TEST CIRCUIT

[^0]: * Contact factory for industrial temperature range.

