Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ### QUAD MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ### **GENERAL DESCRIPTION** The ALD4701A/ALD4701B/ALD4701 is a quad monolithic CMOS micropower high slew rate operational amplifier intended for a broad range of analog applications using ±1V to ±5V dual power supply systems, as well as +2V to +10V battery operated systems. All device characteristics are specified for +5V single supply or ±2.5V dual supply systems. Total supply current for all four operational amplifiers is 1mA maximum at 5V supply voltage. It is manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process. The ALD4701A/ALD4701B/ALD4701 is designed to offer a trade-off of performance parameters providing a wide range of desired specifications. It has been developed specifically for the $\pm 5V$ single supply or $\pm 1V$ to $\pm 5V$ dual supply user and offers the popular industry standard pin configuration of LM324 types and ICL7641 types. Several important characteristics of the device make application easier to implement at these voltages. First, each operational amplifier can operate with rail to rail input and output voltages. This means the signal input voltage and output voltage can be equal to or near to the positive and negative supply voltages. This feature allows numerous analog serial stages and flexibility in input signal bias levels. Second, each device was designed to accommodate mixed applications where digital and analog circuits may operate off the same power supply or battery. Third, the output stage can typically drive up to 50pF capacitive and $10\mathrm{K}\Omega$ resistive loads. These features, combined with extremely low input currents, high open loop voltage gain of 100V/mV, useful bandwidth of 700KHz, a slew rate of $0.7V/\mu s$, low power dissipation of 5mW, low offset voltage and temperature drift, make the ALD4701A/ALD4701B/ALD4701 a versatile, micropower quad operational amplifier. The ALD4701A/ALD4701B/ALD4701, designed and fabricated with silicon gate CMOS technology, offers 1pA typical input bias current. Due to low voltage and low power operation, reliability and operating characteristics, such as input bias currents and warm up time, are greatly improved. Additionally, robust design and rigorous screening make this device especially suitable for operation in temperature-extreme environments and rugged conditions. ### ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS)) | | Operating Temperature Range | | | | | | | | | | | |-----|------------------------------------|--|---------------------------------------|--|--|--|--|--|--|--|--| | 0°C | to +70°C | 0°C to +70°C | -55°C to 125°C | | | | | | | | | | | Pin
all Outline
kage (SOIC) | 14-Pin
Plastic Dip
Package | 14-Pin
CERDIP
Package | | | | | | | | | | ALC |)4701ASBL
)4701BSBL
)4701SBL | ALD4701APBL
ALD4701BPBL
ALD4701PBL | ALD4701ADB
ALD4701BDB
ALD4701DB | | | | | | | | | ^{*} Contact factory for leaded (non-RoHS) or high temperature versions. ### **FEATURES** - All parameters specified for +5V single supply or ±2.5V dual supply systems - Rail-to-rail input and output voltage ranges - · Unity gain stable - Extremely low input bias currents -- 1.0pA - · High source impedance applications - Dual power supply ±1.0V to ±5.0V - Single power supply +2V to +10V - High voltage gain - · Output short circuit protected - Unity gain bandwidth of 0.7MHz - Slew rate of 0.7V/μs - Low power dissipation - Symmetrical output drive - Suitable for rugged, temperature-extreme environments ### **APPLICATIONS** - Voltage follower/buffer/amplifier - · Charge integrator - Photodiode amplifier - · Data acquisition systems - · High performance portable instruments - · Signal conditioning circuits - Sensor and transducer amplifiers - · Low leakage amplifiers - · Active filters - · Sample/Hold amplifier - Picoammeter - · Current to voltage converter ### **PIN CONFIGURATION** ### **ABSOLUTE MAXIMUM RATINGS** | Supply voltage, V+ | 10.6V | |---|------------------| | Differential input voltage range | -0.3V to V++0.3V | | Power dissipation | 600 mW | | Operating temperature range SBL, PBL pack | ages0°C to +70°C | | DB package | 55°C to +125°C | | Storage temperature range | 65°C to +150°C | | Lead temperature, 10 seconds | +260°C | **CAUTION:** ESD Sensitive Device. Use static control procedures in ESD controlled environment. # OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ $V_S = \pm 2.5V$ unless otherwise specified | | | | 4701A | | | 4701B | | | 4701 | | | Test | |---------------------------------|---|--------------|------------------|--------------|--------------|------------------|--------------|--------------|------------------|--------------|----------------------|--| | Parameter | Symbol | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | Conditions | | Supply
Voltage | Vs
V+ | ±1.0
2.0 | | ±5.0
10.0 | ±1.0
2.0 | | ±5.0
10.0 | ±1.0
2.0 | | ±5.0
10.0 | V
V | Dual Supply
Single Supply | | Input Offset
Voltage | V _{OS} | | | 2.0
2.8 | | | 5.0
5.8 | | | 10.0
11.0 | mV
mV | $R_S \le 100K\Omega$
$0^{\circ}C \le T_A \le +70^{\circ}C$ | | Input Offset
Current | los | | 1.0 | 25
240 | | 1.0 | 25
240 | | 1.0 | 25
240 | pA
pA | $T_A = 25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$ | | Input Bias
Current | IB | | 1.0 | 30
300 | | 1.0 | 30
300 | | 1.0 | 30
300 | pA
pA | $T_A = 25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$ | | Input Voltage
Range | V _{IR} | -0.3
-2.8 | | 5.3
2.8 | -0.3
-2.8 | | 5.3
2.8 | -0.3
-2.8 | | 5.3
2.8 | V
V | $V^{+} = +5$
$V_{S} = \pm 2.5V$ | | Input
Resistance | R _{IN} | | 10 ¹² | | | 10 ¹² | | | 10 ¹² | | Ω | | | Input Offset
Voltage Drift | TCV _{OS} | | 5 | | | 5 | | | 7 | | μV/°C | R _S ≤ 100KΩ | | Power Supply
Rejection Ratio | PSRR | 65
65 | 80
80 | | 65
65 | 80
80 | | 60
60 | 80
80 | | dB
dB | $R_S \le 100 K\Omega$
$0^{\circ}C \le T_A \le +70^{\circ}C$ | | Common Mode
Rejection Ratio | CMRR | 65
65 | 83
83 | | 65
65 | 83
83 | | 60
60 | 83
83 | | dB
dB | $R_S \le 100 K\Omega$
$0^{\circ}C \le T_A \le +70^{\circ}C$ | | Large Signal
Voltage Gain | A _V | 15
10 | 100
300 | | 15
10 | 100
300 | | 10
7 | 80
300 | | V/mV
V/mV
V/mV | $\begin{aligned} R_L &= 100 K \Omega \\ R_L &\geq 1 M \Omega \\ R_L &= 100 K \Omega \\ 0^{\circ} C &\leq T_A \leq +70^{\circ} C \end{aligned}$ | | Output
Voltage | V _O low
V _O high | 4.99 | 0.001
4.999 | 0.01 | 4.99 | 0.001
4.999 | 0.01 | 4.99 | 0.001
4.999 | 0.01 | V | $R_L = 1M\Omega V^+ = +5V$
$0^{\circ}C \le T_A \le +70^{\circ}C$ | | Range | V _O low
V _O high | 2.40 | -2.48
2.48 | -2.40 | 2.40 | -2.48
2.48 | -2.40 | 2.40 | -2.48
2.48 | -2.40 | V
V | $R_L = 100K\Omega$ $0^{\circ}C \le T_A \le +70^{\circ}C$ | | Output Short
Circuit Current | I _{SC} | | 1 | | | 1 | | | 1 | | mA | | | Supply
Current | IS | | 490 | 1000 | | 490 | 1000 | | 490 | 1000 | μΑ | V _{IN} = 0V
No Load | | Power
Dissipation | P _D | | | 5.0 | | | 5.0 | | | 5.0 | mW | Both amplifiers $V_S = \pm 2.5 V$ | ### **OPERATING ELECTRICAL CHARACTERISTICS (cont'd)** $T_A = 25^{\circ}C$ $V_S = \pm 2.5V$ unless otherwise specified | | | | 4701A | | | 4701B | | | 4701 | | | Test | |-----------------------|-----------------|-----|-------|-----|-----|-------|-----|-----|------|-----|------|--| | Parameter | Symbol | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | Conditions | | Input
Capacitance | C _{IN} | | 1 | | | 1 | | | 1 | | pF | | | Bandwidth | BW | | 700 | | | 700 | | | 700 | | KHz | | | Slew Rate | S _R | | 0.7 | | | 0.7 | | | 0.7 | | V/µs | $A_V = +1$ $R_L = 100 K\Omega$ | | Rise time | t _r | | 0.2 | | | 0.2 | | | 0.2 | | μS | R _L = 100KΩ | | Overshoot
Factor | | | 20 | | | 20 | | | 20 | | % | R_L = 100KΩ C_L = 50pF | | Settling
Time | t _S | | 10.0 | | | 10.0 | | | 10.0 | | μs | 0.1% $A_V = -1$ $C_L = 50pF R_L = 100K\Omega$ | | Channel
Separation | CS | | 120 | | | 120 | | | 120 | | dB | A _V = 100 | ## $T_A = 25^{\circ}C$ $V_S = \pm 5.0V$ unless otherwise specified | | | | 4701A | | | 4701B | | | 4701 | | | Test | |---------------------------------|---|------|---------------|-------|------|---------------|-------|------|---------------|-------|--------|----------------------------------| | Parameter | Symbol | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | Conditions | | Power Supply
Rejection Ratio | PSRR | | 83 | | | 83 | | | 83 | | dB | R _S ≤ 100KΩ | | Common Mode
Rejection Ratio | CMRR | | 83 | | | 83 | | | 83 | | dB | R _S ≤ 100KΩ | | Large Signal
Voltage Gain | A _V | | 250 | | | 250 | | | 250 | | V/mV | R _L = 100KΩ | | Output Voltage
Range | V _O low
V _O high | 4.90 | -4.98
4.98 | -4.90 | 4.90 | -4.98
4.98 | -4.90 | 4.90 | -4.98
4.98 | -4.90 | V
V | R _L = 100KΩ | | Bandwidth | BW | | 1.0 | | | 1.0 | | | 1.0 | | MHz | | | Slew Rate | S _R | | 1.0 | | | 1.0 | | | 1.0 | | V/µs | Av = +1
C _L = 50pF | ### Vs = \pm 2.5V -55°C \leq TA \leq +125°C unless otherwise specified | | | | 4701AD | Α | | 4701BE | DΑ | | 4701[| DΑ | | Test | |---------------------------------|---|------|---------------|-------|------|---------------|-------|------|---------------|-------|--------|------------------------| | Parameter | Symbol | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | Conditions | | Input Offset
Voltage | V _{OS} | | | 3.0 | | | 6.0 | | | 15.0 | mV | R _S ≤ 100KΩ | | Input Offset
Current | los | | | 8.0 | | | 8.0 | | | 8.0 | nA | | | Input Bias
Current | IB | | | 10.0 | | | 10.0 | | | 10.0 | nA | | | Power Supply
Rejection Ratio | PSRR | 60 | 75 | | 60 | 75 | | 60 | 75 | | dB | R _S ≤ 100KΩ | | Common Mode
Rejection Ratio | CMRR | 60 | 83 | | 60 | 83 | | 60 | 83 | | dB | R _S ≤ 100KΩ | | Large Signal
Voltage Gain | A _V | 10 | 50 | | 10 | 50 | | 7 | 50 | | V/mV | R _L ≤ 100KΩ | | Output Voltage
Range | V _O low
V _O high | 2.35 | -2.47
2.45 | -2.40 | 2.35 | -2.47
2.45 | -2.40 | 2.35 | -2.47
2.45 | -2.40 | V
V | R _L ≤ 100KΩ | ### **Design & Operating Notes:** - 1. The ALD4701A/ALD4701B/ALD4701 CMOS operational amplifier uses a 3 gain stage architecture and an improved frequency compensation scheme to achieve large voltage gain, high output driving capability, and better frequency stability. In a conventional CMOS operational amplifier design, compensation is achieved with a pole splitting capacitor together with a nulling resistor. This method is, however, very bias dependent and thus cannot accommodate the large range of supply voltage operation as is required from a stand alone CMOS operational amplifier. The ALD4701A/ALD4701B/ALD4701 is internally compensated for unity gain stability using a novel scheme that does not use a nulling resistor. This scheme produces a clean single pole roll off in the gain characteristics while providing for more than 70 degrees of phase margin at the unity gain frequency. - 2. The ALD4701A/ALD4701B/ALD4701 has complementary p-channel and n-channel input differential stages connected in parallel to accomplish rail-to-rail input common mode voltage range. This means that with the ranges of common mode input voltage close to the power supplies, one of the two differential stages is switched off internally. To maintain compatibility with other operational amplifiers, this switching point has been selected to be about 1.5V below the positive supply voltage. Since offset voltage trimming on the ALD4701A/ALD4701B/ ALD4701 is made when the input voltage is symmetrical to the supply voltages, this internal switching does not affect a large variety of applications such as an inverting amplifier or non-inverting amplifier with a gain larger than 2.5 (5V operation), where the common mode voltage does not make excursions above this switching point. The user should however, be aware that this switching does take place if the operational amplifier is connected as a unity gain buffer and should make provision in his design to allow for input offset voltage variations. - The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than 1pA at room - temperature. This low input bias current assures that the analog signal from the source will not be distorted by input bias currents. Normally, this extremely high input impedance of greater than $10^{12}\Omega$ would not be a problem as the source impedance would limit the node impedance. However, for applications where source impedance is very high, it may be necessary to limit noise and hum pickup through proper shielding. - 4. The output stage consists of class AB complementary output drivers, capable of driving a low resistance load. The output voltage swing is limited by the drain to source on-resistance of the output transistors as determined by the bias circuitry, and the value of the load resistor. When connected in the voltage follower configuration, the oscillation resistant feature, combined with the rail to rail input and output feature, makes an effective analog signal buffer for medium to high source impedance sensors, transducers, and other circuit networks. - 5. The ALD4701A/ALD4701B/ALD4701 operational amplifier has been designed to provide full static discharge protection. Internally, the design has been carefully implemented to minimize latch up. However, care must be exercised when handling the device to avoid strong static fields that may degrade a diode junction, causing increased input leakage currents. In using the operational amplifier, the user is advised to power up the circuit before, or simultaneously with, any input voltages applied and to limit input voltages not to exceed 0.3V of the power supply voltage levels. - 6. The ALD4701A/ALD4701B/ALD4701, with its micropower operation, offers numerous benefits in reduced power supply requirements, less noise coupling and current spikes, less thermally induced drift, better overall reliability due to lower self heating, and lower input bias current. It requires practically no warm up time as the chip junction heats up to only 0.4°C above ambient temperature under most operating conditions. ### TYPICAL PERFORMANCE CHARACTERISTICS # SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE ## OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF LOAD RESISTANCE # COMMON MODE INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE ## INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ### TYPICAL PERFORMANCE CHARACTERISTICS (cont'd) # OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE AND TEMPERATURE # INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE # INPUT OFFSET VOLTAGE AS A FUNCTION OF COMMON MODE INPUT VOLTAGE # LARGE - SIGNAL TRANSIENT RESPONSE # OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE ## OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY ## LARGE - SIGNAL TRANSIENT RESPONSE ## SMALL - SIGNAL TRANSIENT RESPONSE ### TYPICAL APPLICATIONS ### **RAIL-TO-RAIL VOLTAGE FOLLOWER/BUFFER** # HIGH INPUT IMPEDANCE RAIL-TO-RAIL PRECISION DC SUMMING AMPLIFIER $R_{IN} = 10M\Omega$ Accuracy limited by resistor tolerances and input offset voltage ### WIEN BRIDGE OSCILLATOR (RAIL-TO-RAIL) SINE WAVE GENERATOR ### TRANSCONDUCTANCE AMPLIFIER # PHOTO DETECTOR CURRENT TO VOLTAGE CONVERTER ### **RAIL-TO-RAIL WINDOW COMPARATOR** ### **FUNCTION GENERATOR** ## **SOIC-14 PACKAGE DRAWING** ## 14 Pin Plastic SOIC Package | | Millim | neters | Inc | hes | | | |----------------|--------|--------|-----------|-------|--|--| | Dim | Min | Max | Min | Max | | | | Α | 1.35 | 1.75 | 0.053 | 0.069 | | | | A ₁ | 0.10 | 0.25 | 0.004 | 0.010 | | | | b | 0.35 | 0.45 | 0.014 | 0.018 | | | | С | 0.18 | 0.25 | 0.007 | 0.010 | | | | D-14 | 8.55 | 8.75 | 0.336 | 0.345 | | | | E | 3.50 | 4.05 | 0.140 | 0.160 | | | | е | 1.27 | BSC | 0.050 BSC | | | | | Н | 5.70 | 6.30 | 0.224 | 0.248 | | | | L | 0.60 | 0.937 | 0.024 | 0.037 | | | | Ø | 0° | 8° | 0° | 8° | | | | S | 0.25 | 0.50 | 0.010 | 0.020 | | | ## **PDIP-14 PACKAGE DRAWING** ### 14 Pin Plastic DIP Package | | Millin | neters | Inc | hes | | | |----------------|--------|--------|-------|-------|--|--| | Dim | Min | Max | Min | Max | | | | Α | 3.81 | 5.08 | 0.105 | 0.200 | | | | Α1 | 0.38 | 1.27 | 0.015 | 0.050 | | | | A ₂ | 1.27 | 2.03 | 0.050 | 0.080 | | | | b | 0.89 | 1.65 | 0.035 | 0.065 | | | | b ₁ | 0.38 | 0.51 | 0.015 | 0.020 | | | | С | 0.20 | 0.30 | 0.008 | 0.012 | | | | D-14 | 17.27 | 19.30 | 0.680 | 0.760 | | | | E | 5.59 | 7.11 | 0.220 | 0.280 | | | | E ₁ | 7.62 | 8.26 | 0.300 | 0.325 | | | | е | 2.29 | 2.79 | 0.090 | 0.110 | | | | e ₁ | 7.37 | 7.87 | 0.290 | 0.310 | | | | L | 2.79 | 3.81 | 0.110 | 0.150 | | | | S-14 | 1.02 | 2.03 | 0.040 | 0.080 | | | | ø | 0° | 15° | 0° | 15° | | | ## **CERDIP-14 PACKAGE DRAWING** ## 14 Pin CERDIP Package | | Millim | neters | Inc | hes | | | |----------------|--------|--------|-----------|-------|--|--| | Dim | Min | Max | Min | Max | | | | Α | 3.55 | 5.08 | 0.140 | 0.200 | | | | A ₁ | 1.27 | 2.16 | 0.050 | 0.085 | | | | b | 0.97 | 1.65 | 0.038 | 0.065 | | | | b ₁ | 0.36 | 0.58 | 0.014 | 0.023 | | | | С | 0.20 | 0.38 | 0.008 | 0.015 | | | | D-14 | | 19.94 | | 0.785 | | | | E | 5.59 | 7.87 | 0.220 | 0.310 | | | | E ₁ | 7.73 | 8.26 | 0.290 | 0.325 | | | | е | 2.54 E | BSC | 0.100 BSC | | | | | e ₁ | 7.62 E | BSC | 0.300 | BSC | | | | L | 3.81 | 5.08 | 0.150 | 0.200 | | | | L ₁ | 3.18 | | 0.125 | | | | | L ₂ | 0.38 | 1.78 | 0.015 | 0.070 | | | | S | | 2.49 | | 0.098 | | | | Ø | 0° | 15° | 0° | 15° | | |