imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ALPHA-TRX433S ALPHA-TRX868S ALPHA-TRX915S

ALPHA RF Transceiver

Features

- FM Transceiver Module
- Low cost, high performance
- Fast PLL lock time
- Wakeup timer
- 2.2V 3.8V power supply
- Low power consumption
- 10MHz crystal for PLL timing
- Clock and reset signal output for external MCU use

Ċ

- 16 bit RX Data FIFO
- SPI interface
- Internal data filtering and clock recover
- Digital signal strength indicator (DRSSI)
- Programmable TX frequency deviation (from 15 to 240 KHz)
- Programmable receiver bandwidth (from 67 to 400 kHz)
- Standby current less than 0.3uA
- Two 8 bit TX data registers
- High data rate (up to 115.2 kbps with internal demodulator, with external RC filter highest data rate is 256 kbps)
- Operates from -45 to +850C

Applications

- Wireless Security Systems
- Car Alarms
- Remote Gate Controls
- Remote Sensing
- Data Capture
- Sensor Reporting

Introduction

The Alpha Modules are extremely cost effective but high performance radio modules. Supplied in a miniature Surface mount package this Transceiver module can Transmit/Receive at up to 115Kbps at a maximum of 300m.

Operating at 2.2-3.6V, the module monitors its battery voltage and can sleep with very low standby current. The module can wake intermittently and provide direct control outputs to a microcontroller making it ideally suited to battery applications.

These Modules will suit one to one multi-node wireless links in applications including car and building security, POS and inventory tracking, remote process monitoring.

Part Number		Description
	ALPHA-TRX433S	FM Transceiver Module, pre-set to 433MHz
	ALPHA-TRX868S	FM Transceiver Module, pre-set to 868MHz
	ALPHA-TRX915S	FM Transceiver Module, pre-set to 915MHz

Ordering Information

www.rfsolutions.co.uk

Pin Description

PIN	Definition	Туре	Function
11	nINT/VDI	DI/ DO	Interrupt input (active low)/Valid data indicator
9	VDD	S	Positive power supply
12	SDI	DI	SPI data input
13	SCK	DI	SPI clock input
8	ANT	IN	Antenna Connection
1	SDO	DO	Serial data output with bus hold
2	nIRQ	DO	Interrupts request output (active low)
3	FSK/DATA/nFFS	DI/DO/DI	Transmit FSK data input/ Received data output (FIFO not used)/ FIFO select
4	DCLK/CFIL/FFIT	DO/AIO/DO	Clock output (no FIFO)/ external filter capaci- tor(analog mode)/ FIFO interrupts(active high) when FIFO level set to 1, FIFO empty interrup- tion can be achieved
5	CLK	DO	Clock output for external microcontroller
6	nRES	DIO	Reset Input (active low)
7, 10	GND	S	Power ground
14	nSEL	DI	Chip select (active low)

Mechanical Dimensions

Maximum (not in working mode)

Symbol	Parameter	Minimum	Maximum	Unit
V _{dd} Positive power supply		-0.5	6.0	V
V _{in} All pin input level		-0.5	Vdd+0.5	V
l _{in}	Input current except power	-25	25	mA
ESD	Human body model		1000	V
T _{st}	Storage temperature	-55	125	°C
T _{Id}	Soldering temperature(10s)		260	°C

Recommended working range

Symbol	Parameter	Minimum	Maximum	Unit
V _{dd}	Positive power supply	2.2	3.8	V
T _{op}	Working temperature	-40	85	°C

DC Characteristics

Test Conditions: T_{op} 27°C V_{cc} = 3.3V

Symbol	Parameter	Remark	Minimum	Typical	Maximum	Unit
l _{ad_TX_0}	Supply current (TX mode, P _{out} = 0dBm)	433MHz band 868MHz band 915MHz band		15 16 17		mA
I _{dd_TX_} PMAX	Supply current (TX mode, P _{out} = P _{max})	433MHz band 868MHz band 915MHz band		22 23 24	26 27 28	mA
l _{ad_RX}	Supply current (RX mode)	433MHz band 868MHz band 915MHz band		11 12 13	13 14 15	mA
l _x	Stand by current	Crystal and base band on		3.0	3.5	mA
l _{pd}	Sleep mode current	All blocks off		0.3		uA
I _{IЬ}	Low battery detection			0.5	1.7	uΑ
V _{Ib}	Low battery step	0.1V per step	2.2		5.3	V
$V_{\sf lba}$	Low battery detection accuracy			75		mν
V _{il}	Low level input				0.3*V _{dd}	V
V _{ih}	High level input		0.7*V _{dd}			V
l _{il}	Leakage current	V _{il} =OV	-1		1	uA
l _{ih}	Leakage current	V _{ih} =V _{dd} , V _{dd} =5.4V	-1		1	uA
V _{ol}	Low level output	l _{o≓} 2mA			0.4	V
V_{oh}	High level output	l _{oh} =-2mA	V _{dd} r0.4			V

AC Characteristics

PLL Parameters

Symbol	Parameter	Remark	Min	Typical	Max	Unit
f _{ref}	PLL frequency		9	10	11	MHz
t _{iock}	PLL lock time	After 10MHz step hopping, frequency error <10 kHz		30		us
T _{stP}	PLL Start up time	With running crystal oscillator		200	300	us
f _{LO}	frequency (10MHz crystal used)	433 MHz band 2.5KHz steps 868 MHz band 5KHz steps 915 MHz band 7.5KHz steps	430.24 860.48 900.72		439.75 879.51 929.27	MHz

AC Characteristics

Receiver

Symbol	Parameter	Remark	Min	Typical	Max	Unit
BW	Receiver bandwidth	Mode 1 Mode2 Mode 3 Mode 4 Mode 5	60 120 180 240 300	67 134 200 270 350	75 150 225 300 375	KHz
	FCR III I	Mode 6	360	400	450	
BK	FSK bit rate	With internal digital demodulator	0.6		115.2	kbps
BRA	FSK bit rate	With external RC filter			256	kbps
AFC _{range}	AFC working range	df _{FSK} FSK deviation in the received signal		0.8* df _{FSK}		
P _{min}	Receiver Sensitivity	BER 10-3, BW=67 kHz, BR=1.2 kbps, 868 MHz Band		-110		dBm
IIP3 _{inh}	Input IP3	ln band interferers in high bands (868 MHz, 915 MHz)		-21		dBm
IIP3 _{outh}	Input IP3	Out of band interferers l f-fo l > 4 MHz		-18		dBm
IIP3 _{in1}	IIP3 (LNA –6 dB gain)	In band interferers in low band (433 MHz)		- 15		dBm
IIP3 _{outl}	IIP3 (LNA –6 dB gain)	Out of band interferers f-fo > 4 MHz		-12		dBm
P _{max}	Maximum Power Input	LNA High Gain	0			dBm
C _{in}	RF Input Capacitance			1		рF
RS _A	RSSI accuracy			±6		dB
RS _{Rs}	RSSIrange			46		dB
C _{ARSSI}	ARSSI filter		1			nF
RS _{step}	RSSI programmable step			6		dB
RS _{resp}	DRSSI response time	RSSI output high after valid , CARRSI=5nF		500		us
P _{sp}	Receiver Spurious emission				-60	dBm

AC Characteristics (Transmitter)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
lout	Open Collector output DC	Programmable	0.5		6	mA
6	Max. output power deliv-	In 433MHz band		7		15
P _{max_50}	suitable matching network	In 868MHz / 915MHz band		5		asm
P _{max_ant}	Max. EIRP with suitable selected PCB antenna	In 433 MHz band with mono- pole antenna with matching network		7		dBm
		IN 868 MHZ / 915 MHZ Darids		(
Pout	Typical output power	Selectable in 2.5dB steps	P _{max} - 17.5		P _{max}	dBm
P	Spurious emission f-f _{sp} l > 1 MHz	At max power 50 ohm load			-55	dBc
οp		With PCB antenna			-60	
5		At max power 50 ohm load			-35	dBc
Pharm	Harmonic suppression	With PCB antenna			-42	dBc
Ç	Output capacitance (set by the automatic antenna tuning circuit)	In 433MHz band In 868 and 915MHz bands	2 2.1	2.6 2.7	3.2 3.3	pf
Q .	Quality factor of the output capacitance	In 433MHz band In 868 and 915MHz bands	13 8	15 10	17 12	
Lout	Output phase noise	100 kHz from carrier 1 MHz from carrier			-75 -85	dbc/HZ
BR	FSK bit rate	Via internal TX data register			172	kbps
BRA	FSK bit rate	TX data connected to the FSK input			256	
df _{fsk}	FSK frequency deviation	Programmable in 15 kHz steps	15		240	kHz

AC Characteristic (Turn-on/Turnaround timings)

Symbol	Parameter	Remark	Min	Typical	Max	Unit
T _{st}	Crystal oscillator startup time	Crystal ESR < 100			5	ms
T _{tx_rx_XTAL_ON}	Transmitter - Receiver turnover time	Synthesizer off, crystal oscillator on		450		us
T _{ix_tx_XTAL_ON}	Receiver - Transmitter turnover time	Synthesizer off, crystal oscillator on		350		us
T _{tx_rx_SYNT_ON}	Transmitter - Receiver turnover time	Synthesizer on, crystal oscillator on		425		us
T _{rx_tx_SYNT_ON}	Receiver - Transmitter turnover time	Synthesizer on, crystal oscillator on		300		us
C _{×I}	Crystal load capacitance	Programmable in 0.5 pF steps, toler- ance+/- 10%	8.5		16	pf
t _{por}	Internal POR timeout	After V _{dd} has reached 90% of final value			100	ms
t _{PBt}	Wake-up timer clock period	Calibrated every 30 seconds	0.96		1.05	ms
C _{in, D}	Digital input apacitance				2	pf
t _{r.f}	Digital output rise/fall time	15pF pure capacitive load			10	ns

Programming Guide

Brief Description

ALPHA-TRX supports a command interface to setup frequency, deviation, output power and also data rate. There is no need to change any hardware when using frequency-hopping applications.

Commands to the transmitter are sent serially. Data bits on pin SDI are shifted into the device upon the rising edge of the clock on pin SCK whenever the chip select pin nSEL is low. When the nSEL signal is high, it initializes the serial interface. All commands consist of a command code, followed by a varying number of parameter or data bits. All data are sent MSB first (e.g. bit 15 for a 16- bit command). Bits having no influence (don't care) are indicated with X. Special care must be taken when the microcontroller's builtin hardware serial port is used. If the port cannot be switched to 16-bit mode then a separate I/O line should be used to control the nSEL pin to ensure the low level during the whole duration of the command or a software serial control interface should be implemented. The Power-On Reset (POR) circuit sets default values in all control and command registers. The receiver will generate an interrupt request (IT) for the microcontroller - by pulling the nIRQ pin low - on the following events:

- The TX register is ready to receive the next byte (RGIT)
- The RX FIFO has received the preprogrammed amount of bits (FFIT)
- Power-on reset (POR)
- RX FIFO overflow (FFOV) / TX register underrun (RGUR)
- Wake-up timer timeout (WKUP)
- Negative pulse on the interrupt input pin nINT (EXT)
- Supply voltage below the preprogrammed value is detected (LBD)

FFIT and FFOV are applicable when the RX FIFO is enabled. RGIT and RGUR are applicable only when the TX register is enabled. To identify the source of the IT, the status bits should be read out.

Symbol	Parameter	Min value (ns)
t _{сн}	Clock high time	25
ta	Clock time low	25
t _{ss}	Select setup time (nSEL falling edge to SCK rising edge)	10
t _{sh}	Select hold time (SCK falling edge to nSEL rising edge)	10
t _{shi}	Select high time	25
t _{DS}	Select high time 25 t DS Data setup time (SDI transition to SCK rising edge)	5
t _{DH}	Data hold time (SCK rising edge to SDI transition)	5
t _{DD}	Data delay time	10

Control Commands

	Control Command	Related Parameter/Functions	Related control bits
1	Configuration Setting Command	Frequency band, crystal oscillator load capacitance, RX FIFO and TX register enable	el, ef, b1 to b0, x3 to x0
2	Power Management Command	Receiver/Transmitter mode change, synthesizer, crystal oscillator, PA, wake-up timer, clock output enable	er, ebb, et, es, ex, eb, ew, dc
3	Frequency Setting Command	Frequency of the local oscillator/carrier signal	f11 to f0
4	Data Rate Command	Bit rate	cs, r6 to r0
5	Receiver Control Command	Function of pin 16, Valid Data Indicator, baseband band- width, LNA gain, digital RSSI threshold	p16, d1to d0, i2to i0, g1to g0, r2to r0
6	Data Filter Command	Data filter type, clock recovery parameters	al, ml, s, f2to f0
7	FIFO and Reset Mode Command	Data FIFO IT level, FIFO start control, FIFO enable and FIFO fill enable, POR sensitivity	f3 to f0, sp, ff, al, dr
8	Synchron Pattern Command	Synchron pattern	b7to b0
9	Receiver FIFO Read Command	RX FIFO read	
10	AFC Command	AFC parameters	a1 to a0, rl1 to rl0, st, fi, oe, en
11	TX Configuration Control Command	Modulation parameters, output power	mp, m3 to m0, p2 to p0
12	PLL Setting Command	CLK out buffer speed, dithering, PLL bandwidth	ob1to ob0, ddit, dly, bw0
13	Transmitter Register Write Command	TX data register write	t7 to t0
14	Wake-Up Timer Command	Wake-up time period	r4 to r0, m7 to m0
15	Low Duty-Cycle Command	Enable and set low duty-cycle mode	d6to d0, en
16	Low Battery Detector and Microcontroller Clock Divider Command	LBD voltage and microcontroller clock division ratio	d2 to d0, v3 to v0
17	Status Read Command	Status bit readout	

In general, setting the given bit to one will activate the related function. In the following tables, the POR column shows the default values of the command registers after power-on.

Control register Values

	Control Register	Power on Reset Value
1	Configuration Setting Command	8008h
2	Power Management Command	8208h
3	Frequency Setting Command	A680h
4	Data Rate Command	C623h
5	Receiver Control Command	9080h
6	Data Filter Command	C22Ch
7	FIFO and Reset Mode Command	CA80h
8	Synchron Pattern Command	CED4h
9	Receiver FIFO Read Command	B000h
10	AFC Command	C4F7h
11	TX Configuration Control Command	9800h
12	PLL Setting Command	CC77h
13	Transmitter Register Write Command	B8AAh
14	Wake-Up Timer Command	E196h
15	Low Duty-Cycle Command	C80Eh
16	Low Battery Detector and Microcontroller Clock Divider Command	C000h
17	Status Read Command	0000h

Commands Timing Diagram

Configuration Setting Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	0	0	0	0	0	el	ef	b1	bO	xЗ	x2	X1	хO	8008h

e I: Enable TX register e f: Enable RX FIFO buffer

b1	bO	Band[MHz]
0	0	Reserved
0	1	433
1	0	868
1	1	915

x3..x0: select crystal load capacitor

х3	x2	X1	x0	Load capacitor [pF]
0	0	0	0	8.5
0	0	0	1	9.0
0	0	1	0	9.5
0	0	1	1	10.0
1	1	1	0	15.5
1	1	1	1	16.0

Power Management Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	0	0	0	1	0	er	ebb	et	es	ex	eb	ew	dc	8208h

er: Enable receiver

ebb: Enable base band block

et: Enable transmitter

es: Enable synthesizer

ex: Enable crystal oscillator

eb: Enable low battery detector

ew: Enable wake-up timer

dc: Disable clock output of CLK pin

Frequency Setting Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	1	0	f11	f10	f9	f8	f7	f6	f5	f4	f3	f2	f1	fO	A680h

f11.f0: Set operation frequency: 433band: Fc=430+F*0.0025 MHz 868band: Fc=860+F*0.0050 MHz 915band: Fc=900+F*0.0075 MHz Fc is carrier frequency and F is the frequency parameter. 36≤F≤3903

Data Rate Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	1	1	0	CS	r6	r5	r4	r3	r2	r1	rO	C623h

r6..r0: Set data rate:

BR=1000000/29/ (R+1) / (1+cs*7)

Receiver Control Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	1	0	P16	d1	dO	i2	i1	iO	g1	gO	r2	r1	rO	9080h

P16: select function of pin16

P16	
0	Interrupt input
1	VDI output

i2..i0:select baseband bandwidth

12	i1	i0	Baseband Bandwidth [kHz]
0	0	0	reserved
0	0	1	400
0	1	0	340
0	1	1	270
1	0	0	200
1	0	1	134
1	1	0	67
1	1	1	reserved

d1..d0: select VDI response time

d1	dO	Response
0	0	Fast
0	1	Medium
1	0	Slow
1	1	Always on

g1..g0: select LNA gain

g1	gO	LNA gain (dBm)
0	0	0
0	1	-6
1	0	-14
1	1	-20

r2..r0: select DRSSI threshold

r2	r1	r0	RSSIsetth [dBm]
0	0	0	-103
0	0	1	-97
0	1	0	-91
0	1	1	-85
1	0	0	-79
1	0	1	-73
1	1	0	Reserved
1	0	1	Reserved

The actual DRSSI threshold is related to LNA setup: SSIth = RSSIsetth + GLNA.

Data Filter Command

bit	15	14	13	12	11	10	9	8	7	б	5	4	3	2	1	0	POR
	1	1	0	0	0	0	1	0	al	ml	1	S	1	f2	f1	fO	C22Ch

al: Enable clock recovery auto-lock ml: Enable clock recovery fast mode s: select data filter type

S	Filter type
0	Digital filter
1	Analog RC filter

f1..f0: Set DQD threshold

FIFO and Reset Mode Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	0	1	0	f3	f2	f1	fO	sp	al	ff	dr	CA80h

f3..f0: Set FIFO interrupt level

sp: Select the length of the synchron pattern:

sp	Byte1	Byte0 (POR)	Synchron Pattern (Byte1+Byte0)
0	2Dh	D4h	2DD4h
1	Not used	D4h	D4h

al: select FIFO fill start condition

al	Condition
0	Sync-word
1	Always

ff: Enable FIFO fill

dr: Disable hi sensitivity reset mode

Synchron Pattern Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	1	1	0	b7	b6	b5	b4	b3	b2	b1	bO	CED4h

This command is used to reprogram the synchronic pattern;

Receiver FIFO Read Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	BOOOh

This command is used to read FIFO data when FFIT interrupt generated. FIFO data output starts at 8th SCK period.

AFC Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	1	0	0	a1	aO	rh	rlO	st	fi	oe	en	C4F7h

If crystal oscillator, synthesizer and power amplifier are auto-controlled, this command will close power amplifier and synthesizer immediately, then stop crystal oscillator after S periods of CLK signal

a1..a0: select AFC auto-mode:

a1	aO	
0	0	Controlled by MCU
0	1	Run once at power on
1	0	Keep offset when VDI hi
1	1	Keeps independently from VDI

rl1..rl0: select range limit

r1	r0	Range (fres)
0	0	No restriction
0	1	+15/-16
1	0	+7/-8
1	1	+3-4

freq

315, 433band: 2.5kHz 868band: 5kHz 915band: 7.5kHz

st: st goes hi will store offset into output register

fi: Enable AFC hi accuracy mode

oe: Enable AFC output register

en: Enable AFC function

TX Configuration Control Command

bit	15	14	13	12	11	10	9	8	7	б	5	4	3	2	1	0	POR
	1	0	0	1	1	0	0	mp	m3	m2	m1	тO	0	р2	р1	рО	9800h

m: select modulation polarity m2..m0: select frequency deviation:

m3	m 2	m1	mO	Frequency Deviation [kHz]
0	0	0	0	15
0	0	0	1	30
0	0	1	0	45
0	0	1	1	60
0	1	0	0	75
0	1	0	1	90
0	1	1	0	105
0	1	1	1	120
1	0	0	0	135
1	0	0	1	150
1	0	1	0	165
1	0	1	1	180
1	1	0	0	195
1	1	0	1	210
1	1	1	0	225
1	1	1	1	240

p2..p0: select output power

p2	р1	р0	Output power[dBm]
0	0	0	0
0	0	1	-3
0	1	0	-6
0	1	1	-9
1	0	0	-12
1	0	1	-15
1	1	0	-18
1	0	1	-21

PLL Setting Command

		<u> </u>															
bit	15	14	13	12	11	10	9	8	7	б	5	4	3	2	1	0	POR
	1	1	0	0	1	1	0	0	0	ob1	ob0	lpx	ddy	ddit	1	bw0	CC67h

ob1-ob0: Microcontroller output clock buffer rise and fall time control.

ob1	ob0	Selected uC CLK frequency
0	0	5 or 10 MHz (recommended)
0	1	3.3 MHz
1	Х	2.5 MHz or less

Ipx: select low power mode of the crystal oscillator.

lpx	Crystal start-up time (typ)	Power consumption (typ)
0	1 ms	620 uA
1	2 ms	460 uA

ddy: phase detector delay enable. ddi: disables the dithering in the PLL loop. bw1-bw0: select PLL bandwidth

bw0	Max bit rate [kbps]	Phase noise at 1MHz offset [dBc/Hz]
0	86.2	-107
1	256	-102

Transmitter Register Write Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	1	1	1	0	0	0	t7	t6	t5	t4	t3	t2	t1	tO	B8AAh

This command is use to write a data byte to RF12 and then RF12 transmit it

Wake-Up Timer Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	1	r4	r3	r2	r1	rO	m7	m6	m5	m4	m3	m2	m1	тO	E196h

The wake-up period is determined by: Twake-up = M * 2R [ms]

Low Duty-Cycle Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	0	0	0	d6	d5	d4	d3	d2	d1	dO	en	C80Eh

d6..d0: Set duty cycle D.C.= (D * 2 +1) / M *100%

En: Enable low duty cycle mode

Low Battery Detector and Microcontroller Clock Divider Command

bit	15	14	13	12	11	10	9	8	7	б	5	4	3	2	1	0	POR
	1	1	0	0	0	0	0	0	d2	d1	dO	0	٧3	v2	V1	VO	COOOh

d2..d0: select frequency of CLK pin

d2	d1	dO	Clock Frequency [MHz]
0	0	0	1
0	0	1	1.25
0	1	0	1.66
0	1	1	2
1	0	0	2.5
1	0	1	3.33
1	1	0	5
1	1	1	10

CLK signal is derive form crystal oscillator and it can be applied to MCU clock in to save a second crystal.

If not used, please set bit "dc" to disable CLK output

To integrate the load capacitor internal can not only save cost, but also adjust reference frequency by software

v3..v0: Set threshold voltage of Low battery detector: VIb=2.2+V*0.1 [V]

www.rfsolutions.co.uk

Status Read Command

la in	45	4.4	45	40	44	40	0	0	7			4	~	<u> </u>	4	\sim	
סוכ	15	14	13	12		10	9	8	(0	5	4	3	2		U	PUR
	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-

Bit	
15	TX ready for next byte or FIFO received data status
14	Power on reset status
13	TX Register under run or RX FIFO Overflow status
12	Wakeup timer overflow status
11	Interrupt on external source status
10	Low battery detect status
9	FIFO empty status
8	Antenna tuning signal strength
7	Received signal strength indicator
6	Data Quality Detector status
5	Clock Recovery Locked status
4	Toggling in each AFC cycle
3	Measured Offset Frequency Sign Value 1='+', O='-'
2	Measured offset Frequency value (3 bits)
1	Measured offset Frequency value (3 bits)
0	Measured offset Frequency value (3 bits)

This command starts with a O and be used to read internal status register. Data output starts at 8th SCK period.

Transmitter Operation Flow

Receiver Operation Flow

After Initialisation, open FIFO receive mode and wait for nIRQ low, only then can the MCU read received and stored data in FIFO. For the next received package please reset FIFO

Meets the following EC Directives:

DO NOT Discard with normal waste, please recycle.

ROHS Directive 2002/95/EC

Specifies certain limits for hazardous substances.

WEEE Directive 2002/96/EC

Waste electrical & electronic equipment. This product must be disposed of through a licensed WEEE collection point. RF Solutions Ltd., fulfills its WEEE obligations by membership of an approved compliance scheme.

Waste Batteries and Accumulators Directive 2006/66/EC

Where batteries are fitted, before recycling the product, the batteries must be removed and disposed of at a licensed collection point

Environment Agency producer registration number: WEE/JB0104WV.

Disclaimer:

Whist the information in this document is believed to be correct at the time of issue, RF Solutions Ltd does not accept any liability whatsoever for its accuracy, adequacy or completeness. No express or implied warranty or representation is given relating to the information contained in this document. RF Solutions Ltd reserves the right to make changes and improvements to the product(s) described herein without notice. Buyers and other users should determine for themselves the suitability of any such information or products for their own particular requirements or specification(s). RF Solutions Ltd shall not be liable for any loss or damage caused as a result of user's own determination of how to deploy or use RF Solutions Ltd's products. Use of RF Solutions Ltd products or components in life support and/or safety applications is not authorised except with express written approval. No licences are created, implicitly or otherwise, under any of RF Solutions Ltd's intellectual property rights. Liability for loss or damage resulting or a used by reliance on the information contained herein or from the use of the product (s) ductors liability resulting from negligence or where RF Solutions Ltd was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict RF Solutions Ltd's liability for death or personal injury resulting from its negligence.

ò

www.rfsolutions.co.uk

RF Solutions Ltd William Alexander House, William Way, Burgess Hill, West Sussex, RH159AG Sales: +44(0)1444 227 910 Tech Support: +44(0)1444 227909