: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

AMIS-30523

Product Preview

CAN Micro-Stepping Motor Driver

Introduction

The AMIS-30523 is a micro-stepping stepper motor driver for bipolar stepper motors with an embedded CAN transceiver.

The motor driver is connected through I/O pins and a SPI interface with an external microcontroller. It has an on-chip voltage regulator, reset-output and watchdog reset, able to supply peripheral devices. It contains a current-translation table and takes the next micro-step depending on the clock signal on the "NXT" input pin and the status of the "DIR" (=direction) register or input pin.

The CAN transceiver is the interface between a (CAN) protocol controller and the physical bus. It provides differential transmit capability to the bus and differential receive capability to the CAN controller. To cope with the long bus delay the communication speed needs to be low. The integrated transceiver allows low transmit data rates down 10 kbit/s or lower.

The AMIS-30523 is ideally suited for general-purpose stepper motor applications in the automotive, industrial, medical, and marine environment. With the on-chip voltage regulator and embedded CAN transceiver it further reduces the BOM for mechatronic stepper applications.
Key Features
Motor Driver

- Dual H-Bridge for 2-Phase Stepper Motors
- Programmable Peak-Current up to 1.2 A Continuous (1.6 A for a Short Time)*
- On-Chip Current Translator
- SPI Interface
- Seven Step Modes from Full Step up to 32 Micro-Steps
- PWM Current Control with Automatic Selection of Fast and Slow Decay and Fully Integrated Current-Sense
- Full Output Protection and Diagnosis
- Thermal Warning and Shutdown
- Integrated 5 V Regulator to Supply External Microcontroller

CAN Transceiver

- Compatible with the ISO 11898 Standard
- Wide Range of Bus Communication Speed (0 up to 1 Mbit/s)
- Allows Low Transmit Data Rate in Networks Exceeding 1 km
- Extremely Low Current Standby Mode with Wake-up via the Bus
*Output Current Level May be Limited by Ambient Temperature and Heat Sinking

BLOCK DIAGRAM

Figure 2. Pin Out AMIS-30523

Table 1. PIN DESCRIPTION

Name	Pin	Description	Type	Equivalent Schematic
GND	1,2	Ground	Supply	
$/$	3	No function (to be left open in normal operation)		
VCC	4	CAN Supply voltage	Supply	
$/$	5	No function (to be left open in normal operation)		
RXD	6	CAN Receive data output; dominant transmitter \rightarrow low output	Digital Output	
VSPLIT	7	CAN common-mode stabilization output	Supply	
DI	8	SPI Data In	Digital Input	Type 2
CLK	9	SPI Clock Input	Digital Input	Type 2
NXT	10	Next micro-step input	Digital Input	Type 2
$/$	$11 . .16$	No function (to be left open in normal operation)	Tigital Output	Type 4
DIR	17	Direction input	Analog Output	Type 5
ERRB	18	Error output (open drain)	High Voltage	
SLA	19	Speed load angle output	High Voltage	
CPN	20	Negative connection of charge pump capacitor	High Voltage	
CPP	21	Positive connection of charge pump capacitor	Digital Input	Type 1
VCP	22	Charge pump filter-capacitor	Digital Input	Type 2
CLR	23	"Clear" = chip reset input	Supply	Type 3
CSB	24	SPI chip select input	Driver Output	
VBB	25,26	High voltage supply Input	Supply	
MOTYP	27,28	Negative end of phase Y coil output		
GND	29,30	Ground, heat sink		

AMIS-30523

Table 1. PIN DESCRIPTION

Name	Pin	Description	Type	Equivalent Schematic
MOTYN	31,32	Positive end of phase Y coil output	Driver Output	
$/$	33	No function (to be left open in normal operation)		
MOTXN	34,35	Positive end of phase X coil output	Driver Output	
GND	36,37	Ground, heat sink	Supply	
MOTXP	38,39	Negative end of phase X coil output	Driver Output	Supply
VBB	40,41	High voltage supply input	Type 3	
PORB/WD	42	Power-on-reset and watchdog reset output (open drain)	Digital Output	Type 2
TSTO	43	Test pin input (to be tied to ground in normal operation)	Digital Input	
$/$	44	No function (to be left open in normal operation)		Type 4
DO	45	SPI data output (open drain)	Supply	Type 6
VDD	46	$5 V$ Logic Supply Output (needs external decoupling capacitor)	Supply	
GND	47	Ground	Analog Output	
CANH	48	High-level CAN bus line (high in dominant mode)	Analog Output	
CANL	49	Low-level CAN bus line (low in dominant mode)		
$/$	50	No function (to be left open in normal operation)	Digital Input	
STB	51	CAN stand-by mode control input	Digital Input	
TXD	52	CAN transmit data input; low input \rightarrow dominant driver; internal pull-up current		

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
$V_{B B}$	Analog DC supply voltage (Note 1)	-0.3	+40	V
V_{CC}	CAN Supply voltage	-0.3	+7	V
$\mathrm{V}_{\text {CANH }}$, $V_{\text {CANL }}$, $V_{\text {SPLIT }}$	DC voltage CANH ,CANL and VSPLIT (Note 2)	-50	+50	V
$\mathrm{V}_{\text {TRANS }}$	Transient voltage CANH, CANL and VSPLIT (Note 3)	-300	+300	V
$\mathrm{T}_{\text {ST }}$	Storage temperature	-55	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under bias (Note 4)	-40	+170	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	Electrostatic discharges on component level, All pins (Note 5)	-2	+2	kV
$\mathrm{V}_{\text {ESD }}$	Electrostatic discharges on component level, All pins (Note 7)	-500	+500	V
$V_{\text {ESD }}$	Electrostatic discharges on CANH, CANL and VSPLIT (Note 6)	-6	+6	kV
$V_{\text {ESD }}$	Electrostatic discharges on CANH and CANL (Note 7)	-500	+500	V
$\mathrm{V}_{\text {ESD }}$	Electrostatic discharges on component level, HiV pins (Note 6)	-6	+6	kV
Latch-up	Static latch-up at all pins		100	mA

[^0]Table 3. THERMAL RESISTANCE

| | Thermal Resistance | | |
| :---: | :---: | :---: | :---: | :---: |
| | $\begin{array}{c}\text { Junction-to-Exposed Pad } \\ \text { (Rth } \\$\end{array} | Junction-to-Ambient (Rth | |$)$

EQUIVALENT SCHEMATICS
Following figure gives the equivalent schematics of the user relevant inputs and outputs. The diagrams are simplified representations of the circuits used.

TYPE 1: CLR Input

TYPE 2: CLK, DI, $\overline{C S}$, NXT, DIR Inputs

TYPE 4: DO and ERR Open Drain Outputs

TYPE 5: SLA Analog Output

TYPE 3: V_{DD} and V_{BB} Power Supply
Figure 3. In- and Output Equivalent Diagrams

PACKAGE THERMAL CHARACTERISTICS

The AMIS-30523 is available in a QFN-52 package. For cooling optimizations, the QFN has an exposed thermal pad which has to be soldered to the PCB ground plane. The ground plane needs thermal vias to conduct the heat to the bottom layer. Figure 4 gives an example for good power distribution solutions.

For precise thermal cooling calculations the major thermal resistances of the device are given. The thermal media to which the power of the devices has to be given are:

- Static environmental air (via the case)
- PCB board copper area (via the exposed pad)

The thermal resistances are presented in Table 5: DC Parameters Motor Driver.

The major thermal resistances of the device are the Rth from the junction to the ambient ($\mathrm{Rth}_{\mathrm{J}-\mathrm{A}}$) and the overall Rth from the junction to exposed pad ($\mathrm{Rth}_{\mathrm{J}-\mathrm{EP}}$). In Table 3 one can find the values for the $\mathrm{Rth}_{\mathrm{J}-\mathrm{A}}$ and $\mathrm{Rt} \mathrm{h}_{\mathrm{J}-\mathrm{EP}}$, simulated according to JESD-51:

The Rth ${ }_{\mathrm{J}-\mathrm{A}}$ for 2 S 2 P is simulated conform JEDEC JESD-51 as follows:

- A 4-layer printed circuit board with inner power planes and outer (top and bottom) signal layers is used
- Board thickness is 1.46 mm (FR4 PCB material)
- The 2 signal layers: $70 \mu \mathrm{~m}$ thick copper with an area of $5500 \mathrm{~mm}^{2}$ copper and 20% conductivity
- The 2 power internal planes: $36 \mu \mathrm{~m}$ thick copper with an area of $5500 \mathrm{~mm}^{2}$ copper and 90% conductivity The Rth ${ }_{\mathrm{J}-\mathrm{A}}$ for 1 SOP is simulated conform JEDEC JESD-51 as follows:
- A 1-layer printed circuit board with a single power and signal layer
- Board thickness is 1.46 mm (FR4 PCB material)
- The layer has a thickness of $70 \mu \mathrm{~m}$ copper with an area of $5500 \mathrm{~mm}^{2}$ copper and 20% conductivity

Figure 4. Example of QFN-52 PCB Ground Plane Layout in Top View (preferred layout at top and bottom)

ELECTRICAL SPECIFICATION

Recommend Operation Conditions

Operating ranges define the limits for functional operation and parametric characteristics of the device. Note that the functionality of the chip outside these operating
ranges is not guaranteed. Operating outside the recommended operating ranges for extended periods of time may affect device reliability.

Table 4. OPERATING RANGES

Symbol	Parameter	Min	Max
$V_{B B}$	Motor Driver Analog DC supply	6	30
$\mathrm{~V}_{\mathrm{CC}}$	CAN transceiver DC supply	V	
T_{J}	Junction temperature (Note 8)	4.75	5.25

8. No more than 100 cumulative hours in life time above T_{tw}.

AMIS-30523

Table 5. DC PARAMETERS MOTOR DRIVER

(The DC Parameters are Given for V_{BB} and Temperature in Their Operating Ranges Unless Otherwise Specified) Convention: Currents Flowing in the Circuit are Defined as Positive.

Symbol	Pin(s)	Parameter	Remark/ Test Conditions	Min	Typ	Max	Unit

SUPPLY AND VOLTAGE REGULATOR

$V_{B B}$	VBB	Nominal operating supply range		6		30	V
$\mathrm{I}_{\text {BB }}$		Total internal current consumption	Unloaded outputs			8	mA
$\mathrm{I}_{\text {BBS }}$		Sleep current in $\mathrm{V}_{\text {BB }}$ (Note 9)	Unloaded outputs			100	$\mu \mathrm{A}$
$V_{\text {DD }}$	VDD	Regulated Output Voltage		4.50	5	5.50	V
$\mathrm{I}_{\text {INT }}$		Internal load current	Unloaded outputs			8	mA
ILOAD		Max. Output Current (external and internal loads)	$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BB}}<8 \mathrm{~V}$	15			mA
			$8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BB}} \vee 30 \mathrm{~V}$	40			mA
IdDLIM		Current limitation	Pin shorted to ground			200	mA
ILOAD_pD		Output current in Power Down		1			mA

POWER ON RESET (POR)

$\mathrm{V}_{\text {DDH }}$	VDD	Internal POR comparator threshold	VDD rising	3.9	4.15	4.4	V
$V_{\text {DDL }}$		Internal POR comparator threshold	VDD falling		3.80		V
$V_{\text {DDHYS }}$		Hysteresis between $\mathrm{V}_{\text {DDH }}$ and $\mathrm{V}_{\text {DDL }}$		0.1	0.35	0.6	V

MOTORDRIVER

$I_{\text {MDmax, Peak }}$	MOTXP MOTXN MOTYP MOTYN	Max current through motor coil in normal operation			1600		mA
${ }^{1}$ Mdmax, RMS		Max RMS current through coil in normal operation			800		mA
$I_{\text {Mdabs }}$		Absolute error on coil current		-10		10	\%
${ }^{\text {Mdrel }}$		Error on current ratio $\mathrm{I}_{\text {coilx }} / \mathrm{I}_{\text {coily }}$		-7		7	\%
$\mathrm{I}_{\text {SET_TC1 }}$		Temperature coefficient of coil current set-level, CUR[4:0] = 0 ... 27 (Note 10)	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 160^{\circ} \mathrm{C}$		-240		ppm/K
ISET_TC2		Temperature coefficient of coil current set-level, CUR[4:0] = 28 ... 31 (Note 10)	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 160^{\circ} \mathrm{C}$		-490		ppm/K
R_{HS}		On-resistance high-side driver,	$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=27^{\circ} \mathrm{C}$		0.45	0.56	Ω
			$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=160^{\circ} \mathrm{C}$		0.94	1.25	Ω
RLS3		On-resistance low-side driver,	$\mathrm{V}_{B B}=12 \mathrm{~V}, \mathrm{~T}_{J}=27^{\circ} \mathrm{C}$		0.45	0.56	Ω
		CUR[4.0] = $23 \ldots 31$	$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=160^{\circ} \mathrm{C}$		0.94	1.25	Ω
RLS2		On-resistance low-side driver,	$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=27^{\circ} \mathrm{C}$		0.90	1.2	Ω
			$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=160^{\circ} \mathrm{C}$		1.9	2.5	Ω
$\mathrm{R}_{\text {LS } 1}$		On-resistance low-side driver,	$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{J}=27^{\circ} \mathrm{C}$		1.8	2.3	Ω
			$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=160^{\circ} \mathrm{C}$		3.8	5.0	Ω
RLSo		On-resistance low-side driver,	$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=27^{\circ} \mathrm{C}$		3.6	4.5	Ω
			$\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=160^{\circ} \mathrm{C}$		7.5	10	Ω
$\mathrm{I}_{\text {Mpd }}$		Pull down current motor pins	HiZ mode		1		mA

9. Characterization Data Only, not tested in production
10. The coil current at a given junction temperature is calculated as: $I_{\text {coil }} @ T_{J}=I_{\text {coil }}\left[1+\left(T_{J}-125\right) \times I_{\text {SET TCi }} \times 10^{-6}\right]$.

See also paragraph Programmable Peak Current.
11. Not valid for pins with internal Pull Down resistor.
12. No more than 100 cumulated hours in life time above $T_{t w}$.
13. Thermal shutdown is derived from Thermal Warning.

Table 5. DC PARAMETERS MOTOR DRIVER

(The DC Parameters are Given for $V_{B B}$ and Temperature in Their Operating Ranges Unless Otherwise Specified)
Convention: Currents Flowing in the Circuit are Defined as Positive.

Symbol	Pin(s)	Parameter	Remark/ Test Conditions	Min	Typ	Max	Unit

DIGITAL INPUTS

$\mathrm{l}_{\text {leak }}$	$\begin{array}{\|l} \hline \text { DI, CLK } \\ \text { NXT, } \\ \text { DIR } \\ \text { CLR, } \\ \text { CSB } \end{array}$	Input Leakage (Note 11)	$\mathrm{T}_{J}=160^{\circ} \mathrm{C}$		1	$\mu \mathrm{A}$
V_{IL}		Logic Low Threshold		0	0.65	V
V_{IH}		Logic High Threshold		2.20	$V_{D D}$	V
$\mathrm{R}_{\text {pd_CLR }}$	CLR	Internal Pull Down Resistor		120	300	k Ω
$\mathrm{R}_{\text {pd_TST }}$	TST0	Internal Pull Down Resistor		3	9	k Ω

DIGITAL OUTPUTS

$V_{\text {OL }}$	DO, ERRB, PORB/ WD	Logic Low level open drain	$\mathrm{IOL}=5 \mathrm{~mA}$			0.3

THERMAL WARNING \& SHUTDOWN

T_{tw}		Thermal Warning		138	145	152	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{tsd}}$		Thermal shutdown (Notes 12 and 13)			$\mathrm{T}_{\mathrm{tw}}+20$		${ }^{\circ} \mathrm{C}$

CHARGE PUMP

$V_{\text {opCP }}$	VCP	Output voltage	$6 \mathrm{~V}<\mathrm{V}_{\mathrm{BB}}<15 \mathrm{~V}$		$\begin{aligned} & 2 * V_{B B} \\ & -2 \end{aligned}$		V
			$15 \mathrm{~V}<\mathrm{V}_{\mathrm{BB}}<30 \mathrm{~V}$	$\mathrm{V}_{\mathrm{BB}}+9$	$\begin{gathered} \mathrm{V}_{\mathrm{BB}}+ \\ 11.5 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{BB}}+ \\ 16 \end{gathered}$	V

PACKAGE THERMAL RESISTANCE VALUE

Rth_{J-A}	QFN package	Thermal Resistance Junction-to-Ambient	Simulated Conform JEDEC JESD-51, (2S2P)	30	K/W
Rth ${ }_{\text {J-EP }}$		Thermal Resistance Junction-to-Exposed Pad		0.95	K/W

SPEED AND LOAD ANGLE OUTPUT

| $\mathrm{V}_{\text {out }}$ | Output Voltage Range | | 0.2 | | $\mathrm{~V}_{\mathrm{DD}}-$ | V |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| | | | | | | |$)$

9. Characterization Data Only, not tested in production
10. The coil current at a given junction temperature is calculated as: $I_{\text {coil }} @ T_{J}=I_{\text {coil }}\left[1+\left(T_{J}-125\right) \times I_{S E T}\right.$ TCi $\left.\times 10^{-6}\right]$.

See also paragraph Programmable Peak Current.
11. Not valid for pins with internal Pull Down resistor.
12. No more than 100 cumulated hours in life time above $T_{\text {tw }}$.
13. Thermal shutdown is derived from Thermal Warning.

Table 6. AC PARAMETERS MOTOR DRIVER (The AC Parameters are Given for V_{BB} and Temperature in Their Operating Ranges)

Symbol	Pin(s)	Parameter	Remark/ Test Conditions	Min	Typ	Max	Unit

INTERNAL OSCILLATOR

$\mathrm{f}_{\text {osc }}$		Frequency of internal oscillator		3.6	4	4.4	MHz

MOTOR DRIVER

$\mathrm{f}_{\text {PWM }}$	MOTxx	PWM frequency	Frequency depends only on internal oscillator	20.8	22.8	24.8	kHz
		Double PWM frequency		41.6	45.6	49.6	kHz
f_{d}		PWM jitter Depth (Note 14)			10		\% fPWM
tbrise	MOTxx	Turn-on voltage slope, 10\% to 90\%	EMC[1:0] = 00		150		V/us
			EMC[1:0] = 01		100		V/us
			EMC[1:0] = 10		50		V/us
			EMC[1:0] = 11		25		V/us
$t b_{\text {fall }}$	MOTxx	Turn-off voltage slope, 90\% to 10\%	EMC[1:0] = 00		150		V/us
			EMC[1:0] = 01		100		V/us
			EMC[1:0] = 10		50		V/us
			EMC[1:0] = 11		25		$\mathrm{V} / \mu \mathrm{s}$

DIGITAL OUTPUTS

| $\mathrm{t}_{\mathrm{H} 2 \mathrm{~L}}$ | DO
 ERRB | Output fall-time from $\mathrm{V}_{\text {inH }}$ to $\mathrm{V}_{\text {inL }}$ (Note 14) | Capacitive load 400 pF
 and pull--up resistor of
 $1.5 \mathrm{k} \Omega$ | ns |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |

CHARGE PUMP

f_{CP}	CPN CPP	Charge pump frequency		250	kHz		
$\mathrm{t}_{\text {CPU }}$	MOTxx	Start-up time of charge pump (Note 14)	Spec external components See Table 10			5	ms

CLR FUNCTION

$\mathrm{t}_{\text {CLR }}$	CLR	Hard reset duration time		100			$\mu \mathrm{~s}$

POWER-UP

$t_{\text {PU }}$	PORB/ WD	Power-up time	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}= \\ & 50 \mathrm{~mA}, \mathrm{C}_{\mathrm{LOAD}}=220 \mathrm{nF} \end{aligned}$		110	$\mu \mathrm{s}$
$\mathrm{t}_{\text {POR }}$		Reset duration	See Figure 22		100	ms
$\mathrm{t}_{\text {RF }}$		Reset filter time	See Figure 22	1		$\mu \mathrm{s}$

WATCHDOG

$t_{\text {WDTO }}$	$\begin{aligned} & \hline \text { PORB/ } \\ & \text { WD } \end{aligned}$	Watchdog time out interval	See Figure 23	32		512	ms
twDPR		Prohibited watchdog acknowledge delay	See Figure 23		2		ms

NXT FUNCTION

$\mathrm{t}_{\mathrm{NXT}} \mathrm{HI}^{\text {d }}$	NXT	NXT Minimum, High Pulse Width	See Figure 5	2		us
$\mathrm{t}_{\mathrm{NXT}} \mathrm{HI}^{\text {d }}$		NXT Minimum, Low Pulse Width	See Figure 5	2		us
toir_SET		NXT Hold Time, Following Change of DIR	See Figure 5		2	$\mu \mathrm{S}$
tolR_HOLD		NXT Hold Time, Before Change of DIR	See Figure 5		2	$\mu \mathrm{s}$

14. Characterization Data Only, not tested in production.

Figure 5. NXT-Input Timing Diagram
Table 7. SPI TIMING PARAMETERS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {CLK }}$	SPI clock period	1			us
tclk_high	SPI clock high time	100			ns
tcLk_LOW	SPI clock low time	100			ns
tset_DI	DI set up time, valid data before rising edge of CLK	50			ns
thold_d	DI hold time, hold data after rising edge of CLK	50			ns
tCSB_HIGH	CSB high time	2.5			us
$\mathrm{t}_{\text {SET_CSB }}$	CSB set up time, CSB low before rising edge of CLK	100			ns
$\mathrm{t}_{\text {SET_CLK }}$	CLK set up time, CLK low before rising edge of CSB	100			ns

Figure 6. SPI Timing

Table 8. DC PARAMETERS CAN TRANSCEIVER
(The DC parameters are given for V_{CC} and temperature in its operating range; $\mathrm{T}_{J}=-40$ to $+150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{LT}}=60 \Omega$ unless otherwise specified) Convention: currents flowing in the circuit are defined as positive.

Symbol	Pin(s)	Parameter	Remark / Test Conditions	Min	Typ	Max	Unit

SUPPLY

Icc	VCC	Supply current	Dominant; $\mathrm{V}_{\mathrm{T}_{\times \mathrm{D}}}=0 \mathrm{~V}$ Recessive; $\mathrm{V}_{\mathrm{TxD}}=\mathrm{V}_{\mathrm{CC}}$	45	65	mA
Iccs		Supply current in standby mode	$\mathrm{T}_{\mathrm{J}, \text { max }}=100^{\circ} \mathrm{C}$	4	8	mA

TRANSMITTER DATA INPUT

V_{iH}	TXD	High-level input voltage	CAN bus output recessive	2.0	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
V_{iL}		Low-level input voltage	CAN bus output dominant	-0.3	-	+0.8	V
$\mathrm{l}_{\text {iH }}$		High-level input current	$\mathrm{V}_{\mathrm{TXD}}=\mathrm{V}_{\mathrm{CC}}$	-5	0	+5	$\mu \mathrm{A}$
$\mathrm{l}_{\text {iL }}$		Low-level input current	$\mathrm{V}_{\text {TXD }}=0 \mathrm{~V}$	-75	-200	-350	$\mu \mathrm{A}$
C_{i}		Input capacitance	(Note 15)	-	5	10	pF

TRANSMITTER MODE SELECT

V_{iH}	TXD	High-level input voltage	Standby mode	2.0	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
$V_{\text {iL }}$		Low-level input voltage	Normal mode	-0.3	-	+0.8	V
l_{iH}		High-level input current	$\mathrm{V}_{\text {STB }}=\mathrm{V}_{\text {CC }}$	-5	0	+5	$\mu \mathrm{A}$
I_{iL}		Low-level input current	$\mathrm{V}_{\text {STB }}=0 \mathrm{~V}$	-1	-4	-10	$\mu \mathrm{A}$
C_{i}		Input capacitance	(Note 15)	-	5	10	pF

RECEIVER DATA OUTPUT

V_{OH}	RXD	High-level output voltage	$\mathrm{I}_{\mathrm{RXD}}=-10 \mathrm{~mA}$	$\begin{aligned} & 0.6 x \\ & V_{C C} \end{aligned}$		$\begin{aligned} & 0.75 x \\ & V_{C C} \end{aligned}$	V
V OL		Low-level output voltage	$\mathrm{I}_{\mathrm{RXD}}=5 \mathrm{~mA}$		0.25	0.45	V
$\mathrm{I}_{\text {oh }}$		High-level output current	$\mathrm{V}_{\mathrm{O}}=0.7 \times \mathrm{V}_{\text {CC }}$	-5	-10	-15	mA
101		Low-level output current	$\mathrm{V}_{\mathrm{O}}=0.3 \times \mathrm{V}_{\mathrm{CC}}$	5	10	15	mA
C_{i}		Input capacitance	(Note 15)	-	5	10	pF

15. Characterization Data Only, not tested in production.

AMIS-30523

Table 8. DC PARAMETERS CAN TRANSCEIVER
(The DC parameters are given for V_{CC} and temperature in its operating range; $\mathrm{T}_{\mathrm{J}}=-40$ to $+150^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{LT}}=60 \Omega$ unless otherwise specified) Convention: currents flowing in the circuit are defined as positive.

Symbol	Pin(s)	Parameter	Remark / Test Conditions	Min	Typ	Max	Unit

BUS LINES

$V_{o \text { (reces) }}$ (norm)	CANH CANL	Recessive bus voltage	$\mathrm{V}_{\mathrm{TXD}}=\mathrm{V}_{\mathrm{CC}} ;$ no load normal mode	2.0	2.5	3.0	V
$\begin{gathered} \hline \mathrm{V}_{\mathrm{O} \text { (reces) }} \text { (stby) } \end{gathered}$		Recessive bus voltage	$\mathrm{V}_{\mathrm{TXD}}=\mathrm{V}_{\mathrm{CC}} ; \text { no load }$ standby mode	-100	0	100	mV
I_{o} (reces) (CANH)		Recessive output current at pin CANH	$\begin{aligned} & -35 \mathrm{~V}<\mathrm{V}_{\mathrm{CANH}}<+35 \mathrm{~V} ; \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V} \end{aligned}$	-2.5	-	+2.5	mA
I_{o} (reces) (CANL)		Recessive output current at pin CANL	$\begin{aligned} & -35 \mathrm{~V}<\mathrm{V}_{\mathrm{CANL}}<+35 \mathrm{~V} ; \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V} \end{aligned}$	-2.5	-	+2.5	mA
$\mathrm{V}_{\mathrm{o} \text { (dom) }}$ (CANH)		Dominant output voltage at pin CANH	$\mathrm{V}_{\text {TXD }}=0 \mathrm{~V}$	3.0	3.6	4.25	V
$V_{\text {o(dom) }}$ (CANL)		Dominant output voltage at pin CANL	$\mathrm{V}_{\text {TXD }}=0 \mathrm{~V}$	0.5	1.4	1.75	V
$\begin{gathered} \mathrm{V}_{\text {(diff) }} \\ \text { (bus_dom) } \end{gathered}$		Differential bus output voltage ($\mathrm{V}_{\mathrm{CANH}}-\mathrm{V}_{\mathrm{CANL}}$)	$\begin{aligned} & \mathrm{V}_{T \times D}=0 \mathrm{~V} \text {; dominant; } \\ & 42.5 \Omega<\mathrm{R}_{\mathrm{LT}}<60 \Omega \end{aligned}$	1.5	2.25	3.0	V
$V_{\text {o(dif) }}$ (bus_rec)		Differential bus output voltage ($\mathrm{V}_{\text {CANH }}$ - $\mathrm{V}_{\text {CANL }}$)	$\mathrm{V}_{\mathrm{TXD}}=\mathrm{V}_{\mathrm{CC}}$; recessive; no load	-120	0	+50	mV
$\mathrm{I}_{0 \text { (sc) (CANH) }}$		Short circuit output current at pin CANH	$\mathrm{V}_{\text {CANH }}=0 \mathrm{~V} ; \mathrm{V}_{\text {TXD }}=0 \mathrm{~V}$	-45	-70	-120	mA
$\mathrm{I}_{\mathrm{O}(\mathrm{sc})}$ (CANL)		Short circuit output current at pin CANL	$\begin{aligned} & \mathrm{V}_{\mathrm{CANL}}=36 \mathrm{~V} ; \mathrm{V}_{\mathrm{TXD}}= \\ & 0 \mathrm{~V} \end{aligned}$	45	70	120	mA
$\mathrm{V}_{\text {i(dif) }}$ (th)		Differential receiver threshold voltage (see Figure 8)	$\begin{aligned} & -5 \mathrm{~V}<\mathrm{V}_{\mathrm{CANL}}<+12 \mathrm{~V} ; \\ & -5 \mathrm{~V}<\mathrm{V}_{\mathrm{CANH}}<+12 \mathrm{~V} ; \end{aligned}$	0.5	0.7	0.9	V
$\mathrm{V}_{\text {ihcm }}$ (dif) (th)		Differential receiver threshold voltage for high common-mode (see Figure 8))	$\begin{aligned} & -35 \mathrm{~V}<\mathrm{V}_{\mathrm{CANL}}<+35 \mathrm{~V} ; \\ & -35 \mathrm{~V}<\mathrm{V}_{\mathrm{CANH}}<+35 \mathrm{~V} ; \end{aligned}$	0.40	0.7	1.00	V
$\mathrm{V}_{\text {(} \text { (dif) (hys) }}$		Differential receiver input voltage hysteresis (see Figure 8)	$\begin{aligned} & -35 \mathrm{~V}<\mathrm{V}_{\mathrm{CANL}}<+35 \mathrm{~V} ; \\ & -35 \mathrm{~V}<\mathrm{V}_{\mathrm{CANH}}<+35 \mathrm{~V} ; \end{aligned}$	50	70	100	mV
$\mathrm{R}_{\mathrm{i}(\mathrm{cm})}$ (CANH)		Common-mode input resistance at pin CANH		15	26	37	$\mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{i}(\mathrm{cm})}$ (CANL)		Common-mode input resistance at pin CANL		15	26	37	k Ω
$\mathrm{R}_{\mathrm{i}(\mathrm{cm})(\mathrm{m})}$		Matching between pin CANH and pin CANL common mode input resistance	$\mathrm{V}_{\text {CANH }}=\mathrm{V}_{\text {CANL }}$	-3	0	+3	\%
$\mathrm{R}_{\mathrm{i} \text { (dif) }}$		Differential input resistance		25	50	75	k Ω
$\mathrm{C}_{\mathrm{i} \text { (CANH) }}$	CANH CANL	Input capacitance at pin CANH	$\mathrm{V}_{\text {TxD }}=\mathrm{V}_{\text {CC }}$; (Note 15)		7.5	20	pF
$\mathrm{C}_{\mathrm{i}(\text { CANL) }}$		Input capacitance at pin CANL	$\mathrm{V}_{\text {TXD }}=\mathrm{V}_{\text {CC }}$; (Note 15)		7.5	20	pF
$\mathrm{C}_{\text {i(dif) }}$		Differential input capacitance	$\mathrm{V}_{\text {TXD }}=\mathrm{V}_{\mathrm{CC}}$; (Note 15)		3.75	10	pF

COMMON-MODE STABILIZATION

$\mathrm{V}_{\text {SPLIT }}$	VSPLIT	Reference output voltage at pin $\mathrm{V}_{\text {SPLIT }}$	Normal mode; $-500 \mu \mathrm{~A}<\mathrm{I}_{\text {SPLIT }}<$ $500 \mu \mathrm{~A}$	$\begin{aligned} & 0.3 x \\ & V_{C C} \end{aligned}$	-	$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$	
ISPLIT(i)		$\mathrm{V}_{\text {SPLIT }}$ leakage current	Stand-by mode	-5		+5	$\mu \mathrm{A}$
ISPLIT(lim)		$\mathrm{V}_{\text {SPLIT }}$ limitation current	Normal mode	-3		+3	mA

POWER ON RESET (POR)

| PORL | POR level | CANH, CANL, V Vef in
 tri-state below POR
 level | 2.2 | 3.5 | 4.7 | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |

15. Characterization Data Only, not tested in production.

Table 9. AC PARAMETER CAN TRANSCEIVER
The AC parameters are given for $V_{C C}$ and temperature in its operating range; $T_{J}=-40$ to $+150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{LT}}=60 \Omega$ unless otherwise specified

Symbol	Pin(s)	Parameter	Remark/ Test Conditions	Min	Typ	Max	Unit

TIMING CHARACTERISTICS

$\mathrm{t}_{\text {(TxD-BUSon) }}$	Delay TXD to bus active	$\mathrm{C}_{\mathrm{l}}=100 \mathrm{pF}$ between CANH to CANL	40	85	105	ns
$\mathrm{t}_{\text {(T }}$ (xD-BUSoff)	Delay TXD to bus inactive	$\mathrm{C}_{\mathrm{I}}=100 \mathrm{pF}$ between CANH to CANL	30	60	105	ns
$\mathrm{t}_{\mathrm{d} \text { (BUSon-RXD) }}$	Delay bus active to RXD	$\mathrm{C}_{\text {rxd }}=15 \mathrm{pF}$	25	55	105	ns
$\mathrm{t}_{\mathrm{d} \text { (BUSoff-RXD) }}$	Delay bus inactive to RXD	$\mathrm{C}_{\mathrm{rxd}}=15 \mathrm{pF}$	40	100	105	ns
$\mathrm{t}_{\text {pd(rec-dom) }}$	Propagation delay TXD to RXD from recessive to dominant	$\mathrm{C}_{\mathrm{I}}=100 \mathrm{pF}$ between CANH to CANL	90		230	ns
$\mathrm{t}_{\mathrm{d} \text { (dom-rec) }}$	Propagation delay TXD to RXD from dominant to recessive	$\mathrm{C}_{\mathrm{l}}=100 \mathrm{pF}$ between CANH to CANL	90		245	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{stb} \text {-nm) }}$	Delay standby mode to normal mode		5	7.5	10	$\mu \mathrm{s}$
$\mathrm{t}_{\text {dbus }}$	Dominant time for wake-up via bus		0.75	2.5	5	$\mu \mathrm{s}$

16. Characterization Data Only, not tested in production

Figure 7. Test Circuit for Transients

Figure 8. Hysteresis of the Receiver

AMIS-30523

Figure 9. Test Circuit for Timing Characteristics

Figure 10. Timing Diagram for AC Characteristics

Figure 11. Basic Test Set-up for EME

Figure 12. EME Measurements

TYPICAL APPLICATION SCHEMATIC

Figure 13. Typical Application Schematic AMIS-30523

Table 10. EXTERNAL COMPONENTS LIST AND DESCRIPTION

Component	Function	Typ Value	Tolerance	Unit
C_{1}	V_{BB} buffer capacitor (Note 17)	100	-20 +80\%	$\mu \mathrm{F}$
$\mathrm{C}_{2}, \mathrm{C}_{3}$	$V_{\text {BB }}$ decoupling block capacitor	100	-20 +80\%	nF
C_{4}	Charge-pump pumping capacitor	220	$\pm 20 \%$	nF
C_{5}	Charge-pump buffer capacitor	220	$\pm 20 \%$	nF
$\mathrm{C}_{6}, \mathrm{C}_{7}$	$\mathrm{V}_{\text {DD }}$ buffer capacitor	100	$\pm 20 \%$	nF
C_{8}	Low pass filter SLA	10	$\pm 20 \%$	nF
C_{9}	VSPLIT decoupling capacitor	47	$\pm 20 \%$	nF
R_{1}	Low pass filter SLA	100	$\pm 1 \%$	Ω
R_{2}	Pull up resistor open drain DO output	1	$\pm 1 \%$	$k \Omega$
$\mathrm{R}_{3}, \mathrm{R}_{4}$	Pull up resistor open drain output	10	$\pm 1 \%$	$\mathrm{k} \Omega$
$\mathrm{R}_{5}, \mathrm{R}_{6}$	CAN termination resistors	56	$\pm 1 \%$	Ω
D_{1}	CAN protection diode	NUP2105		

[^1]
FUNCTIONAL DESCRIPTION MOTOR DRIVER

Introduction

The AMIS-30523 is a micro-stepping stepper motor driver for bipolar stepper motors embedded with an integrated CAN transceiver.

The motor driver is connected through I/O pins and a SPI interface with an external microcontroller. It has an on-chip voltage regulator, reset-output and watchdog reset, able to supply peripheral devices. It contains a current-translation table and takes the next micro-step depending on the clock signal on the "NXT" input pin and the status of the "DIR" (=direction) register or input pin. A proprietary PWM algorithm is used for reliable current control. The motor driver provides a so-called "speed and load angle" output. This allows the creation of stall detection algorithms and control loops based on load-angle to adjust torque and speed.

H-Bridge Drivers

A full H -bridge is integrated for each of the two stator windings. Each H-bridge consists of two low-side and two high-side N-type MOSFET switches. Writing logic ' 0 ' in bit <MOTEN> disables all drivers (high-impedance). Writing logic ' 1 ' in this bit enables both bridges and current can flow in the motor stator windings.

In order to avoid large currents through the H -bridge switches, it is guaranteed that the top- and bottom-switches of the same half-bridge are never conductive simultaneously (interlock delay).

A two-stage protection against shorts on motor lines is implemented. In a first stage, the current in the driver is limited. Secondly, when excessive voltage is sensed across the transistor, the transistor is switched off.

In order to reduce the radiated/conducted emission, voltage slope control is implemented in the output switches. The output slope is defined by the gate-drain capacitance of output transistor and the (limited) current that drives the gate. There are two trimming bits for slope control (see Table 15 SPI Control Parameter Overview EMC[1:0]).

The power transistors are equipped with so-called "active diodes": when a current is forced trough the transistor switch in the reverse direction, i.e. from source to drain, then the transistor is switched on. This ensures that most of the current flows through the channel of the transistor instead of through the inherent parasitic drain-bulk diode of the transistor.
Depending on the desired current range and the micro-step position at hand, the $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ of the low-side transistors will be adapted such that excellent current-sense accuracy is maintained. The $\mathrm{R}_{\mathrm{DS}(\text { on })}$ of the high-side transistors remain unchanged; see Table 5 DC Parameters Motor driver, for more details.

PWM Current Control

A PWM comparator compares continuously the actual winding current with the requested current and feeds back the information to a digital regulation loop. This loop then generates a PWM signal, which turns on/off the H -bridge switches. The switching points of the PWM duty-cycle are synchronized to the on-chip PWM clock. The frequency of the PWM controller can be doubled and an artificial jitter can be added (see Table 15 SPI Control Parameter Overview PWMJ). The PWM frequency will not vary with changes in the supply voltage. Also variations in motor-speed or load-conditions of the motor have no effect. There are no external components required to adjust the PWM frequency.

Automatic Forward and Slow-Fast Decay

The PWM generation is in steady-state using a combination of forward and slow-decay. The absence of fast-decay in this mode, guarantees the lowest possible current-ripple "by design". For transients to lower current levels, fast-decay is automatically activated to allow high-speed response. The selection of fast or slow decay is completely transparent for the user and no additional parameters are required for operation.

Figure 14. Forward and Slow/Fast Decay PWM

Automatic Duty Cycle Adaptation

In case the supply voltage is lower than 2 * Bemf, then the duty cycle of the PWM is adapted automatically to $>50 \%$ to maintain the requested average current in the coils. This
process is completely automatic and requires no additional parameters for operation. The over-all current-ripple is divided by two if PWM frequency is doubled (see Table 15 SPI Control Parameter Overview PWMF)

Step Translator and Step Mode

The step translator provides the control of the motor by means of SPI register Stepmode: SM[2:0], SPI register DIRCNTRL and input pins DIR and NXT. It is translating consecutive steps in corresponding currents in both motor coils for a given step mode.

One out of seven possible stepping modes can be selected through SPI-bits SM[2:0] (see Table 15 SPI Control Parameter Overview) After power-on or hard reset, the coil-current translator is set to the default $1 / 32$ micro-stepping at position ' 0 '. Upon changing the step mode, the translator jumps to position 0^{*} of the
corresponding stepping mode. When remaining in the same step mode, subsequent translator positions are all in the same column and increased or decreased with 1 . Table 12 lists the output current vs. the translator position.

As shown in Figure 16 the output current-pairs can be projected approximately on a circle in the $\left(\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}\right)$ plane. There are, however, two exceptions: uncompensated half step and full step. In these step modes the currents are not regulated to a fraction of $I_{\text {max }}$ but are in all intermediate steps regulated at 100%. In the $\left(\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}\right)$ plane the current-pairs are projected on a square. Table 11 lists the output current vs. the translator position for these cases.

Table 11. SQUARE TRANSLATOR TABLE FOR FULL STEP AND UNCOMPENSATED HALF STEP

MSP[6:0]	Stepmode (SM[2:0])		\% of Imax	
	101	110	Coil x	Coil y
	Uncompensated Half-Step	Full Step		
0000000	0	-	0	100
0010000	1	1	100	100
0100000	2	-	100	0
0110000	3	2	100	-100
1000000	4	-	0	-100
1010000	5	3	-100	-100
1100000	6	-	-100	0
1110000	7	0	-100	100

1/4th Micro Step SM[2:0] = 011

Uncompensated Half Step SM[2:0] = 101

Full Step SM[2:0] = 110

Figure 16. Translator Table: Circular and Square

Table 12. CIRCULAR TRANSLATOR TABLE

MSP[6:0]	Stepmode (SM[2:0])					\% of $\mathrm{I}_{\text {max }}$	
	000	001	010	011	100		
	1/32	1/16	1/8	1/4	1/2	Coil x	Coil y
0000000	'0'	0*	0*	0*	0*	0	100
0000001	1	-	-	-	-	3.5	98.8
0000010	2	1	-	-	-	8.1	97.7
0000011	3	-	-	-	-	12.7	96.5
0000100	4	2	1	-	-	17.4	95.3
0000101	5	-	-	-	-	22.1	94.1
0000110	6	3	-	-	-	26.7	93
0000111	7	-	-	-	-	31.4	91.8
0001000	8	4	2	1	-	34.9	89.5
0001001	9	-	-	-	-	38.3	87.2
0001010	10	5	-	-	-	43	84.9
0001011	11	-	-	-	-	46.5	82.6
0001100	12	6	3	-	-	50	79
0001101	13	-	-	-	-	54.6	75.5
0001110	14	7	-	-	-	58.1	72.1
0001111	15	-	-	-	-	61.6	68.6
0010000	16	8	4	2	1	65.1	65.1
0010001	17	-	-	-	-	68.6	61.6
0010010	18	9	-	-	-	72.1	58.1
0010011	19	-	-	-	-	75.5	54.6
0010100	20	10	5	-	-	79	50
0010101	21	-	-	-	-	82.6	46.5
0010110	22	11	-	-	-	84.9	43
0010111	23	-	-	-	-	87.2	38.3
0011000	24	12	6	3	-	89.5	34.9
0011001	25	-	-	-	-	91.8	31.4
0011010	26	13	-	-	-	93	26.7
0011011	27	-	-	-	-	94.1	22.1
0011100	28	14	7	-	-	95.3	17.4
0011101	29	-	-	-	-	96.5	12.7
0011110	30	15	-	-	-	97.7	8.1
0011111	31	-	-	-	-	98.8	3.5
0100000	32	16	8	4	2	100	0
0100001	33	-	-	-	-	98.8	-3.5
0100010	34	17	-	-	-	97.7	-8.1
0100011	35	-	-	-	-	96.5	-12.7
0100100	36	18	9	-	-	95.3	-17.4
0100101	37	-	-	-	-	94.1	-22.1
0100110	38	19	-	-	-	93	-26.7
0100111	39	-	-	-	-	91.8	-31.4
0101000	40	20	10	5	-	89.5	-34.9
0101001	41	-	-	-	-	87.2	-38.3
0101010	42	21	-	-	-	84.9	-43
0101011	43	-	-	-	-	82.6	-46.5
0101100	44	22	11	-	-	79	-50
0101101	45	-	-	-	-	75.5	-54.6
0101110	46	23	-	-	-	72.1	-58.1
0101111	47	-	-	-	-	68.6	-61.6
0110000	48	24	12	6	3	65.1	-65.1
0110001	49	-	-	-	-	61.6	-68.6
0110010	50	25	-	-	-	58.1	-72.1
0110011	51	-	-	-	-	54.6	-75.5
0110100	52	26	13	-	-	50	-79
0110101	53	-	-	-	-	46.5	-82.6
0110110	54	27	-	-	-	43	-84.9
0110111	55	-	-	-	-	38.3	-87.2
0111000	56	28	14	7	-	34.9	-89.5
0111001	57	-	-	-	-	31.4	-91.8
0111010	58	29	-	-	-	26.7	-93
0111011	59	-	-	-	-	22.1	-94.1
0111100	60	30	15	-	-	17.4	-95.3
0111101	61	-	-	-	-	12.7	-96.5
0111110	62	31	-	-	-	8.1	-97.7
0111111	63	-	-	-	-	3.5	-98.8

Table 12. CIRCULAR TRANSLATOR TABLE

MSP[6:0]	Stepmode (SM[2:0])					\% of Imax	
	000	001	010	011	100	Coil x	Coil y
	1/32	1/16	1/8	1/4	1/2		
1000000	64	32	16	8	4	0	-100
1000001	65	-	-	-	-	-3.5	-98.8
1000010	66	33	-	-	-	-8.1	-97.7
1000011	67	-	-	-	-	-12.7	-96.5
1000100	68	34	17	-	-	-17.4	-95.3
1000101	69	-	-	-	-	-22.1	-94.1
1000110	70	35	-	-	-	-26.7	-93
1000111	71	-	-	-	-	-31.4	-91.8
1001000	72	36	18	9	-	-34.9	-89.5
1001001	73	-	-	-	-	-38.3	-87.2
1001010	74	37	-	-	-	-43	-84.9
1001011	75	-	-	-	-	-46.5	-82.6
1001100	76	38	19	-	-	-50	-79
1001101	77	-	-	-	-	-54.6	-75.5
1001110	78	39	-	-	-	-58.1	-72.1
1001111	79	-	-	-	-	-61.6	-68.6
1010000	80	40	20	10	5	-65.1	-65.1
1010001	81	-	-	-	-	-68.6	-61.6
1010010	82	41	-	-	-	-72.1	-58.1
1010011	83	-	-	-	-	-75.5	-54.6
1010100	84	42	21	-	-	-79	-50
1010101	85	-	-	-	-	-82.6	-46.5
1010110	86	43	-	-	-	-84.9	-43
1010111	87	-	-	-	-	-87.2	-38.3
1011000	88	44	22	11	-	-89.5	-34.9
1011001	89	-	-	-	-	-91.8	-31.4
1011010	90	45	-	-	-	-93	-26.7
1011011	91	-	-	-	-	-94.1	-22.1
1011100	92	46	23	-	-	-95.3	-17.4
1011101	93	-	-	-	-	-96.5	-12.7
1011110	94	47	-	-	-	-97.7	-8.1
1011111	95	-	-	-	-	-98.8	-3.5
1100000	96	48	24	12	6	-100	0
1100001	97	-	-	-	-	-98.8	3.5
1100010	98	49	-	-	-	-97.7	8.1
1100011	99	-	-	-	-	-96.5	12.7
1100100	100	50	25	-	-	-95.3	17.4
1100101	101	-	-	-	-	-94.1	22.1
1100110	102	51	-	-	-	-93	26.7
1100111	103	-	-	-	-	-91.8	31.4
1101000	104	52	26	13	-	-89.5	34.9
1101001	105	-	-	-	-	-87.2	38.3
1101010	106	53	-	-	-	-84.9	43
1101011	107	-	-	-	-	-82.6	46.5
1101100	108	54	27	-	-	-79	50
1101101	109	-	-	-	-	-75.5	54.6
1101110	110	55	-	-	-	-72.1	58.1
1101111	111	-	-	-	-	-68.6	61.6
1110000	112	56	28	14	7	-65.1	65.1
1110001	113	-	-	-	-	-61.6	68.6
1110010	114	57	-	-	-	-58.1	72.1
1110011	115	-	-	-	-	-54.6	75.5
1110100	116	58	29	-	-	-50	79
1110101	117	-	-	-	-	-46.5	82.6
1110110	118	59	-	-	-	-43	84.9
1110111	119	-	-	-	-	-38.3	87.2
1111000	120	60	30	15	-	-34.9	89.5
1111001	121	-	-	-	-	-31.4	91.8
1111010	122	61	-	-	-	-26.7	93
1111011	123	-	-	-	-	-22.1	94.1
1111100	124	62	31	-	-	-17.4	95.3
1111101	125	-	-	-	-	-12.7	96.5
1111110	126	63	-	-	-	-8.1	97.7
1111111	127	-	-	-	-	-3.5	98.8

Direction

The direction of rotation is selected by means of following combination of the DIR input pin and the SPI-controlled direction bit <DIRCTRL>. (see Table 15 SPI Control Parameter Overview)

NXT input

Changes on the NXT input will move the motor current one step up/down in the translator table (even when the motor is disabled). Depending on the NXT-polarity bit <NXTP> (see Table 15 SPI Control Parameter Overview), the next step is initiated either on the rising edge or the falling edge of the NXT input.

Translator Position

The translator position MSP[6:0] can be read in SPI Status Register 3 (See Table 18 SPI Status Registers). This is a 7 -bit number equivalent to the $1 / 32^{\text {th }}$ micro-step from Table 12 "Circular Translator Table". The translator position is updated immediately following a NXT trigger.

Synchronization of Step Mode and NXT Input

When step mode is re-programmed to another resolution (Figure 18), then this is put in effect immediately upon the first arriving "NXT" input. If the micro-stepping resolution is increased, the coil currents will be regulated to the nearest micro-step, according to the fixed grid of the increased resolution. If however the micro-stepping resolution is decreased, then it is possible to introduce an offset (or phase shift) in the micro-step translator table.
If the step resolution is decreased at a translator table position that is shared both by the old and new resolution setting, then the offset is zero and micro-stepping is proceeds according to the translator table.
If the translator position is not shared both by the old and new resolution setting, then the micro-stepping proceeds with an offset relative to the translator table (See Figure 18 right hand side).

More information can be found in application note AND8399/D.

Figure 17. Translator Position Timing Diagram

Figure 18. NXT-Step-Mode Synchronization
Left: change from lower to higher resolution. The left-hand side depicts the ending half-step position during which a new step mode resolution was programmed. The right-hand side diagram shows the effect of subsequent NXT commands on the micro-step position.

Right: change from higher to lower resolution. The left-hand side depicts the ending micro-step position during which a new step mode resolution was programmed. The right-hand side diagram shows the effect of subsequent NXT commands on the half-step position.

NOTE: It is advised to reduce the micro-stepping resolution only at micro-step positions that overlap with desired micro-step positions of the new resolution.

Programmable Peak-Current

The amplitude of the current waveform in the motor coils (coil peak current $=\mathrm{I}_{\max }$) is adjusted by means of an SPI parameter "CUR[4:0]" (see Table 15 SPI Control Parameter

Overview). Whenever this parameter is changed, the coil-currents will be updated immediately at the next PWM period. Figure 19 presents the Peak-Current and Current Ratings in conjunction to the Current setting CUR[4:0].

Figure 19. Programmable Peak-Current Overview

Speed and Load Angle Output

The SLA-pin provides an output voltage that indicates the level of the Back-e.m.f. voltage of the motor. This Back-e.m.f. voltage is sampled during every so-called "coil
current zero crossings". Per coil, two zero-current positions exist per electrical period, yielding in total four zero-current observation points per electrical period.

Figure 20. Principle of Bemf Measurement

Because of the relatively high recirculation currents in the coil during current decay, the coil voltage $\mathrm{V}_{\text {COIL }}$ shows a transient behavior. As this transient is not always desired in application software, two operating modes can be selected by means of the bit <SLAT> (see "SLA-transparency" in Table 15 SPI Control Parameter Overview). The SLA pin shows in "transparent mode" full visibility of the voltage transient behavior. This allows a sanity-check of the speed-setting versus motor operation and characteristics and supply voltage levels. If the bit "SLAT" is cleared, then only the voltage samples at the end of each coil current zero crossing are visible on the SLA-pin. Because the transient behavior of the coil voltage is not visible anymore, this mode
generates smoother Back e.m.f. input for post-processing, e.g. by software.

In order to bring the sampled Back e.m.f. to a descent output level (0 to 5 V), the sampled coil voltage $\mathrm{V}_{\text {COIL }}$ is divided by 2 or by 4 . This divider is set through an SPI bit <SLAG> (see Table 15 SPI Control Parameter Overview).
The following drawing illustrates the operation of the SLA-pin and the transparency-bit. "PWMsh" and "I $I_{\text {coil }}=0 "$ are internal signals that define together with SLAT the sampling and hold moments of the coil voltage.
More information can be found in application note AND8399/D.

Figure 21. Timing Diagram of SLA-Pin

Warning, Error Detection and Diagnostics Feedback

Thermal Warning and Shutdown

When junction temperature rises above T_{TW}, the thermal warning bit <TW> is set (Table 17 SPI Status registers Address SR0). If junction temperature increases above thermal shutdown level, then the circuit goes in "Thermal Shutdown" mode (<TSD>) and all driver transistors are disabled (high impedance) (see Table 17 SPI Status registers Address SR2). The conditions to reset flag <TSD> is to be at a temperature lower than T_{TW} and to clear the $<\mathrm{TSD}>$ flag reading out Status Register 2.

Over-Current Detection

The over-current detection circuit monitors the load current in each activated output stage. If the load current exceeds the over-current detection threshold, then the over-current flag is set and the drivers are switched off to reduce the power dissipation and to protect the integrated circuit. Each driver transistor has an individual detection bit in (see Table 17 SPI Status registers Address SR1 and SR2: <OVCXij> and <OVCYij>). Error condition is latched and the microcontroller needs to clear the status bits (by reading Status Register 1 or 2) to reactivate the drivers.

Note: Successive reading the SPI StatusRegisters 1 and 2 in case of a short circuit condition, may lead to damage to the drivers

Open Coil/Current Not Reached Detection

Open coil detection is based on the observation of 100% duty cycle of the PWM regulator. If in a coil 100% duty cycle is detected for longer than 200 ms then the related driver transistors are disabled (high-impedance) and an appropriate bit in the SPI status register is set (<OPENX> or <OPENY>). (Table 17 SPI Status Register Address SR0)

When the resistance of a motor coil is very large and the supply voltage is low, it can happen that the motor driver is not able to deliver the requested current to the motor. Under these conditions the PWM controller duty cycle will be 100% and after 200 ms the error pin and <OPENX>, <OPENY> will flag this situation (motor current is kept alive). This feature can be used to test if the operating conditions (supply voltage, motor coil resistance) still allow reaching the requested coil-current or else the coil current should be reduced.

Charge Pump Failure

The charge pump is an important circuit that guarantees low $\mathrm{R}_{\mathrm{DS}(\text { on })}$ for all drivers, especially for low supply voltages. If supply voltage is too low or external components are not properly connected to guarantee $\mathrm{R}_{\mathrm{DS}(\text { on })}$ of the drivers, then the bit <CPFAIL> is set in Table 17. Also after POR the charge pump voltage will need some time to exceed
the required threshold. During that time $\mathrm{t}_{\mathrm{CPU}}<\mathrm{CPFAIL}>$ will be set to " 1 ".

Error Output

This is a digital output to flag a problem to the external microcontroller. The signal on this output is active low and the logic combination of:

$$
\begin{aligned}
& \text { NOT(ERRB) }=\text { <TW> OR <TSD> OR <OVCXij> OR } \\
& \text { < OVCYij> OR <OPENi> OR <CPFAIL> }
\end{aligned}
$$

This open drain output can be wired OR-ed with error outputs other motor drivers.

Logic Supply Regulator

AMIS-30523 has an on-chip 5 V low-drop regulator with external capacitor to supply the digital part of the chip, some low-voltage analog blocks and external circuitry. The voltage level is derived from an internal bandgap reference. To calculate the available drive-current for external circuitry, the specified $\mathrm{I}_{\text {load }}$ should be reduced with the consumption of internal circuitry (unloaded outputs) and the loads connected to logic outputs. See Table 5 DC parameters Motor Driver.

Power-On Reset (POR) Function

The open drain output pin PORB/WD provides an "active low" reset for external purposes. At power-up of AMIS-30523, this pin will be kept low for some time to reset for example an external microcontroller. A small analogue filter avoids resetting due to spikes or noise on the V_{DD} supply.

Figure 22. Power-on-Reset Timing Diagram

[^0]: Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 1. For limited time $<0.5 \mathrm{~s}$.
 2. For $0<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unlimited time
 3. Applied transient waveforms in accordance with ISO 7637 part 3, test pulses 1, 2, 3a, and 3b.
 4. Circuit functionality not guaranteed.
 5. Standardized Human body model (100 pF via $1.5 \mathrm{k} \Omega$, according to JEDEC EIA-JESD22-A114-B).
 6. Standardized human body model electrostatic discharge (ESD) pulses (100 pF via $1.5 \mathrm{k} \Omega$) stressed pin to ground.
 7. Standardized charged device model ESD pulses when tested according to ESD STM5.3.1-1999.
[^1]: 17. Low ESR < 1Ω.
