: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

Description

Avago's AMMC-6545 is an easy-to-use broadband sub-harmonic mixer, with the LO injected at half the frequency of that required by a conventional mixer. MMIC includes an 180° balanced diode based mixer. The MMIC is fabricated using PHEMT technology. The sub-harmonic mixer is designed to be an easy-to-use component for any chip and wire application. Intended applications include microwave radios, 802.16, VSAT and satellite receivers. Since this one mixer can cover several bands, the AMMC-6545 can reduce part inventory. For improved reliability and moisture protection, the die is passivated at the active areas.

IF

Chip Size: $885 \mu \mathrm{mx} 825 \mu \mathrm{~m}$
Chip Size Tolerance: $\pm 10 \mu \mathrm{~m}(\pm 0.4$ mils) Chip Thickness: $100 \pm 10 \mu \mathrm{~m}$ (4 ± 0.4 mils) Pad Dimensions: $120 \times 80 \mu \mathrm{~m}$ (4.7×3.2 mils)

Features

- RF Frequency: $18-45 \mathrm{GHz}$
- LO Frequency: $9-24 \mathrm{GHz}$
- IF Frequency: DC-3GHz
- Suitable for Up and Down Conversion
- Diode Mixer

Typical Performance

- Conversion Loss: $11.0 \pm 1.5 \mathrm{~dB}$
- 2*LO Leakage @ R port: -39 dBm
- 2*LO Leakage @ I port: -50 dBm
- L-R Isolation: 40 dB
- L-I Isolation: 36 dB
- $\mathrm{IP}_{3}(@ \mathrm{LO}=+17 \mathrm{dBm}):+15 \mathrm{dBm}$
- LO Drive Power: + 15 dBm
- LO Drive range $(\mathrm{dBm}):+12$ to +20

Applications

- Microwave Radio systems
- Satellite VSAT, DBS Up/Down Link
- LMDS \& Pt-Pt mmW Long Haul
- Broadband Wireless Access (including 802.16 and 802.20 WiMax)
- WLL and MMDS loops

Absolute Maximum Ratings ${ }^{[1]}$

Symbol	Parameter/Condition	Units	Minimum	Maximum
Pin RF	CW Input Power to RF Port	dBm		25
Tb	Operating Backside Temp.	${ }^{\circ} \mathrm{C}$	-55	
Tstg	Storage Temp.	${ }^{\circ} \mathrm{C}$	-65	
Tmax	Maximum Assembly Temp (60 sec max)	${ }^{\circ} \mathrm{C}$		260

Note:

1. Operation in excess of any one of these conditions may result in permanent damage to this device.

DC Specifications/Physical Properties ${ }^{[2]}$

1. Operation in excess of any of these conditions may result in permanent damage to this device. The absolute maximum ratings for Pin were determined at an ambient temperature of $25^{\circ} \mathrm{C}$ unless noted otherwise.
2. Ambient operational temperature $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless noted.
3. Channel-to-backside Thermal Resistance ($\mathrm{T}_{\text {channel }}=34^{\circ} \mathrm{C}$) as measured using infrared microscopy. Thermal Resistance at backside temp. $\left(\mathrm{T}_{\mathrm{b}}\right)=25^{\circ} \mathrm{C}$ calculated from measured data.

AMMC-6545 Operating Conditions

Symbol	Parameters and Test Conditions	Units	Minimum	Typical	Maximum
Rffreq	RF Frequency	GHz	18		48
LOfreq	LO Frequency	GHz	9	24	
Iffreq	IF Frequency	GHz	DC		3
LO	LO Drive Power	dBm	+12	+15	+22

AMMC-6545 RF Specifications

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Zo}=50 \Omega, \mathrm{LO}=+15 \mathrm{dBm}, \mathrm{IF}=2 \mathrm{GHz}$.

Symbol	Parameters	Frequency (GHz)	Units	Minimum	Typical	Maximum
CL	Conversion Loss ${ }^{[2]}$	$\begin{aligned} & \mathrm{RF}=21 \mathrm{GHz}, \mathrm{LO}=11.5 \mathrm{GHz} \\ & \mathrm{RF}=23 \mathrm{GHz}, \mathrm{LO}=12.5 \mathrm{GHz} \\ & \mathrm{RF}=26 \mathrm{GHz}, \mathrm{LO}=14 \mathrm{GHz} \end{aligned}$	dB		10	12
IIP3	Input Third Order Intercept ${ }^{[2]}$	$\begin{aligned} & \mathrm{RF}=21 \mathrm{GHz}, \mathrm{LO}=11.5 \mathrm{GHz} \\ & \mathrm{RF}=23 \mathrm{GHz}, \mathrm{LO}=12.5 \mathrm{GHz} \\ & \mathrm{RF}=26 \mathrm{GHz}, \mathrm{LO}=14 \mathrm{GHz} \\ & \hline \end{aligned}$	dBm dBm dBm	$\begin{aligned} & 11 \\ & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.3 \\ & 10.9 \\ & \hline \end{aligned}$	
2LO-R	2LO-R Leakage	$\begin{aligned} & \mathrm{RF}=21 \mathrm{GHz}, \mathrm{LO}=10.5 \mathrm{GHz} \\ & \mathrm{RF}=23 \mathrm{GHz}, \mathrm{LO}=11.5 \mathrm{GHz} \\ & \mathrm{RF}=26 \mathrm{GHz}, \mathrm{LO}=13 \mathrm{GHz} \end{aligned}$	dBm dBm dBm		-45	-35
2LO-I	2LO-I Leakage	$\begin{aligned} & \mathrm{RF}=21 \mathrm{GHz}, \mathrm{LO}=10.5 \mathrm{GHz} \\ & \mathrm{RF}=23 \mathrm{GHz}, \mathrm{LO}=11.5 \mathrm{GHz} \\ & \mathrm{RF}=26 \mathrm{GHz}, \mathrm{LO}=13 \mathrm{GHz} \\ & \hline \end{aligned}$	dBm dBm dBm		-50	
L-R	Isolation		dB		40	
L-I	Isolation		dB		36	

Notes:

1. Production RF tested at 21,23 and 26 GHz in up-converter configuration.
2. All tested parameters are guaranteed with $\pm 0.5 \mathrm{~dB}$ for CL and $\pm 1.5 \mathrm{dBm}$ for IIP3 and 2LO-R leakage.

AMMC-6545 Typical Performance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{LO}=+15 \mathrm{dBm}, \mathrm{IF}=1 \mathrm{GHz}$, LO Power $=+15 \mathrm{dBm}$ unless otherwise noted

Figure 1. Down-Conversion Loss at $\mathrm{L}=+12$ to +20 dBm [LO Freq. $=(\mathrm{RF}+\mathrm{IF}) / 2, \mathrm{IF}=1 \mathrm{GHz}$].

Figure 3. Down-Conversion IIP3 at $\mathrm{L}=+12$ to +20 dBm [LO Freq. $=(\mathrm{RF}+\mathrm{IF}) / 2, \mathrm{IF}=1 \mathrm{GHz}]$.

Figure 5.2*LO-R and 2*LO-I Power Leakage @LO=+15dBm.

Figure 2. Up-Conversion Loss at $\mathrm{L}=+13$ to +20 dBm [LO Freq. = (RF+IF)/2, IF=1GHz].

Figure 4. Up-Conversion IIP3 at $\mathrm{L} 0=+12$ to +20 dBm [LO Freq. $=(\mathrm{RF}+\mathrm{IF}$) $/ 2, \mathrm{IF}=1 \mathrm{GHz}$].

Figure 6. L-R and L-I Isolation @LO=+15dBm.

Figure 7. Die dimension details.
Figure 8. Simplified Schematic of the mixer.

AMMC-6545 Ordering Information

AMMC-6545-W10 $=10$ devices per tray
AMMC-6545-W50 $=50$ devices per tray

