

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Zentri AMW007 Data Sheet

Disclaimer

While the information provided in this document is believed to be accurate, it is under development and Zentri reserves the right to make changes without further notice to the product described herein to improve reliability, function, or design, and makes no guarantee or warranty concerning the accuracy of said information, nor shall it be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon, such information. Zentri makes no warranties of any kind, whether express, implied or arising by custom or course of trade or performance, and specifically disclaims the implied warranties of title, non-infringement, merchantability, or fitness for a particular purpose.

No part of this document may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photographic, or otherwise, or used as the basis for manufacture or sale of any items without the prior written consent of Zentri.

Trademarks

Zentri and the Zentri logo are trademarks of Zentri. Other trademarks in this document belong to their respective owners.

© 2016-2018 Zentri.

All rights reserved.

Document Number: ADS-MW007

Release Date: April 4, 2018

Contact

https://www.silabs.com/about-us/contact-us

About this Data Sheet

This document provides information on the AMW007 802.11b/g/n Wi-Fi networking module from Zentri. Specifications for the module I/O, peripherals the WLAN subsystem were compiled from vendor datasheets and measured data.

Organization

This 1	data sheet is organized into the following sectio General Description	
2	Block Diagram	
3		
	Electrical Specifications	
4	WLAN RF Specifications	
5	Pinout and Signal Descriptions	
6	Design Guidelines	10
7	Regulatory Certification	16
8	Packaging, Handling and Storage, RoHS	24
9	Ordering Information	27
10	Revision History & Glossary	28
11	Poforoncos	20

AMW007 Data Sheet Embedded Wi-Fi Networking Solution

General Features

- Self-contained ultra-low power Wi-Fi module with support for ZentriOS-WL Firmware, including industry standard SSL/TLS secure TCP/IP network stack.
- Integrated SPI-serial flash for software upgrades and user accessible read/write file system

Wi-Fi

- Single band 2.4GHz IEEE 802.11b/g/n 1x1 Wi-Fi transceiver
- Includes support for all Wi-Fi security modes including Open, WEP, WPA, and WPA2-PSK

Microprocessorp

- 32-bit application processor
- Operates up to 160MHz core frequency

Interfaces*

- UART: 1 x 4-wire, 1 x TX only up to 4.5Mbit/s
- GPIO: Up to 8 GPIOs (overlaid with peripherals)
- A/D converter: 1 x 10-bit resolution
- PWM: Up to 4 PWM outputs
- Wake-up: Wake pin for ultra-low power operation
 *Some interfaces share module pins

Operational & Radio

- Single operating voltage: 3.3V (typical)
- Operational Temperature Range: -40°C to +85°C
- Size: 12 x 11 x 1.8mm (0.47" x 0.43" x 0.07")
- Weight: 0.03 oz (1g)
- Current consumption @ 3.3V, 25°C
 - Standby: 0.9mA
 - Deep sleep / RTC : 20 / 60μA
 - Sleep (Memory Retention): 0.31mA
 - Wi-Fi Powersave : 0.86mA (DTIM = 3)
 - Active receive: 65mA
 - Active transmit :
 - 100mA @ +0dBm
 - 200mA @ +18dBm
- Maximum RF transmit power
 - 802.11b/g: +20 dBm
 - 802.11n:+16 dBm
- Minimum Receive sensitivity
 - 802.11b/g: -93 dBm
 - 802.11n: -85 dBm

Applications

- Industrial, M2M and Home Automation
 - Environmental monitoring
 - Energy monitoring
 - Wireless sensing, remote data logging
 - HVAC, power, light, & thermostat control
 - Appliance control
- Security
 - Cameras, Doors/Window monitoring
 - Alarms, Smoke Detectors
 - Door and entry control
- Health & Fitness
 - Fitness Equipment
 - Home health monitoring e.g. weight scales
- Consumer
 - Audio, Toys, Robots

ZentriOS-WL Firmware Features

The ZentriOS-WL firmware supplied with the AMW007 provides a wide range of features beyond the underlying hardware, and supports application development via its command API.

For complete documentation of ZentriOS-WL, see:

https://docs.zentri.com/zentrios/wl/latest/

Software APIs

ZentriOS-WL command API

Interfaces

- Serial (UART, remote terminal)
- SoftAP and WLAN client (not concurrent)

Servers

- TCP, UDP, HTTP, DHCP, DNS
- HTTP Server with RESTful API
- Fully customizable mobile responsive Web application with JavaScript and Python libraries

Clients

- TCP, TLS, NTP, DHCP, DNS
- HTTP(S) client
- Websocket client

Setup

 Multiple Wi-Fi setup options, including via serial command and Web setup with SoftAP

Peripherals and Sensors

- GPIOs for control, indication and monitoring
- Automated broadcast and streaming of sensor data
- Local caching of sensor data

Update and Recovery

Wireless OTA (Over-the-Air) update to remote manage firmware using the Zentri DMS (Device Management Service)

System Management

- System configuration and monitoring via setting and getting a wide range of variables
- Configurable power states Sleep/wake timers

File System

- Read/write file system
- Storage of large files
- HTTP download to file system, HTTP upload from file system

Contents

1	Ge	neral	l Description1	-	7	Re	egulat	ory Certification	16
	1.1	Zer	ntriOS1			7.1	Un	ited States	16
2	Blo	ck D	iagram2			7.	1.1	Labeling and User Information	
3	Ele	ctric	al Specifications3			Re	equire	ements	
	3.1	Abs	solute Maximum Ratings3			7.	1.2	RF Exposure	17
	3.2	Red	commended Operating Conditions3			7.	1.4	Approved External Antenna Types	
	3.2	2.1	DC Operating Conditions3			7.	1.5	Further Information	18
	3.2	2.2	Environmental Conditions4			7.3	Cai	nada	19
	3.3	Pov	wer Consumption4				3.1	Labeling and User Information	10
	3.4	Dig	gital IO Characteristics5				•	ements	
4	WL	AN F	RF Specifications6				3.2	External Antenna Types	
	4.1	Sur	mmary WLAN Specifications6				3.3	Further Information	
	4.2		AN Specifications7			7.5		rope	21
5	Pin		and Signal Descriptions8				5.1 Pauire	Labeling and User Information	21
	5.1		out8				5.1	External Antenna Requirements	
	5.2		Description8				5.2	Further Information	
6	Des		Guidelines10			7.6		stralia	
	6.1	_	nensions10				6.1	External Antenna Requirements	
	6.2		commended PCB Footprint11				6.2	Further Information	
	6.3		uting Recommendations11			7.7		w Zealand	
	6.4		dering Information12				7.1	External Antenna Requirements	
	6.5	Мо	odule Photograph13				7.2	Further Information	
	6.6	Ext	ernal Antennas13			7.8		oan	
	6.6		PCB Trace Antenna13		8		-	ng, Handling and Storage, RoHS	
	6.6	5.2	Compact PCB Trace Antenna13			8.1	_	ckaging	
	6.6		Wire Antenna14			8.2		ndling & Storage	
			ntenna14			8.3		HS Directive	
	6.6	5.4	Monopole Antenna14			8.4		pe and Reel Specifications	
	6.7		wer Supply14		9			ng Information	
	6.8		plication Examples15			9.1		dering an Unspecified ZentriOS Versior	
	6.8		Operation using ZentriOS15			9.2		dering a Specific ZentriOS-WL Version	
	6.8		Hardware Design Guidelines15					rmware Version	
			5						

General Description, Section 1

ç	9.3	ZentriOS Version History	.28
10	Rev	ision History & Glossary	.28
1	l0.1	Revision History	.28
1	10.2	Glossary	.28
11	Ref	erences	.29

1 General Description

The AMW007 module from Zentri provides an advanced stand-alone Wi-Fi and networking solution.

An integrated module avoids difficult RF layout and enables designers to rapidly embed Wi-Fi and secure networking functionality into virtually any device.

The ZentriOS embedded connected operating system, pre-programmed into all modules, may be used to fast-track module integration into end-products.

With dimensions of just 12mm x 11mm and a wide temperature range, the module is suitable for integration into most embedded applications.

The Wi-Fi device includes an integrated RF transmit power amplifier and provides superior Wi-Fi performance and full compatibility with all 2.4GHz 802.11b/g/n Wi-Fi networks.

The AMW007 microcontroller core operates at a frequency of 160MHz.

The AMW007 module offers extensive I/O and peripheral interfaces listed below, and provides additional interface combinations by leveraging multiplexing and alternate function capabilities.

- 1 x 4-Wire UART interface
- 8 x GPIOs
- 1 x 10-bit A/D converters
- 4 x PWM outputs
- 1 x ultra-low power wake input

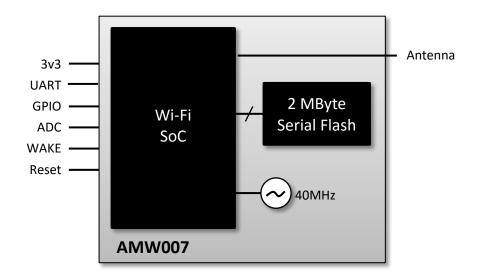
The module is powered by a single 3.3V power supply.

Various powersave modes offer ultra-low power operation. Wake from low power sleep mode is possible using IO pins or the internal real-time clock, and wake from ultra-low power standby mode is achieved using the dedicated wake pin.

The module has numerous modular approvals. See Section 7, Regulatory Certification.

1.1 ZentriOS

This document is designed to cover the physical and electrical characteristics of the AMW007 module. For information on ZentriOS see http://docs.zentri.com/zentrios/wl/latest/



2 Block Diagram

Figure 1 is a block diagram of the AMW007 module. The main components of the module are a Wi-Fi System-on-Chip (SoC) and the quad-SPI serial flash. The processor and peripherals are driven by a 40MHz crystal. An on-board 2 MByte serial flash chip may be used to store user

applications, data and configuration, and firmware images as part of the Zentri secure over the air (OTA) update process.

Figure 1. AMW007 Architecture

3 Electrical Specifications

3.1 Absolute Maximum Ratings

CAUTION! The absolute maximum ratings in Table 1 and Table 2 indicate levels where permanent damage to the device can occur, even if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.

Table 1. Absolute Maximum Voltage Ratings

Symbol	Ratings	Min	Max	Unit
VDD	External power supply voltage	-0.3	3.6	
V _{in}	Input voltage on any other GPIO pin	GND - 0.3	VDD + 0.4	V

Table 2. Absolute Maximum Environmental Ratings

Characteristic	Note	Min	Max	Unit
Storage Temperature	-	-40	+125	°C
Storage Humidity	Non-condensing (storage)	_	65	%
Electrostatic Discharge (HBM)	TEMP=25°C		2	kV
Electrostatic Discharge (CDM)	TEMP=25°C		0.5	kV
Maximum Soldering Temperature	IPC/JEDEC JSTD-020		260	°C

3.2 Recommended Operating Conditions

Functional operation is not guaranteed outside the limits shown in Table 3 and Table 4, and operation outside these limits for extended periods can adversely affect long-term reliability of the device.

3.2.1 DC Operating Conditions

Table 3. Recommended DC Operating Conditions

Symbol	Ratings	Min	Тур	Max	Unit
VDD ¹	External power supply voltage	3.0	3.3	3.6	V

Notes:

1. The performance of the Wi-Fi subsystem is degraded significantly at low voltages

3.2.2 Environmental Conditions

Table 4. Recommended Environmental Conditions

Characteristic	Note	Min	Max	Unit
Ambient Temperature	Limited by crystal specification	-30 ¹	+85	°C
Relative Humidity	Non-condensing (operating)	_	85	%

Notes:

1. If you require an extended temperature range, contact Zentri.

3.3 Power Consumption

Table 5. Power consumption (VDD_3V3, VDD_WIFI, VBAT @ 3.3V)

Parameters	Min	Typical	Max	Unit
Transmit @ +18dBm ¹		200		mA
Transmit @ +12dBm		150		mA
Transmit @ +0dBm		100		mA
Receive		50		mA
Application running, radio off		25		mA
Sleep		10		μΑ
Power up, 70ms boot time		15		mA

Notes:

A low impedance power supply, capable of delivering a continuous 300mA, is recommended to cater for inrush currents at extremes of temperature and supply voltage. See 6.7, Power Supply.

3.4 Digital IO Characteristics

All digital IO pads are bidirectional, non-inverting and tri-state. Each pad includes an input and an output buffer with tristate control inputs. When the AMW007 is powered down, all output enable signals can be set to hold high or low to minimize power consumption.

The hold functionality introduces some positive feedback into the pad. Hence, the external driver that drives the pad must be stronger than the positive feedback. The required drive strength is however small – in the range of 5uA.

Table 6. Digital IO Characteristics

Parameters	Min	Max	Unit
Input low voltage	-0.3	0.25 x VDD	V
Input high voltage	0.75 x VDD	3.6	V
Input leakage current		50	μΑ
Output low voltage		0.1 x VDD	V
Output high voltage	0.8 x VDD		V
Input pin capacitance		2	pF
Maximum drive capability		12	mA

4 WLAN RF Specifications

Unless otherwise stated, the specifications in this section apply when the operating conditions are within the limits specified in Section 3.2, Recommended Operating Conditions. Functional operation outside these limits is not guaranteed.

All specifications are measured by connecting directly to either of the antenna ports via a short PCB trace with the other antenna port terminated in 50 ohms.

4.1 Summary WLAN Specifications

Table 7. Summary WLAN Specifications

Feature Supported	Description
WLAN Standard	IEEE 802.11b/g/n 1x1 SISO
Frequency Band	2.412 GHz - 2.484 GHz
WLAN Channels	Channels 1 – 14
Data Rates	802.11b (1, 2, 5.5, 11 Mbps)
802.11g (6, 9, 12, 24, 36, 48, 54 Mbps)	
	802.11n (HT20 MCS0-MCS7)

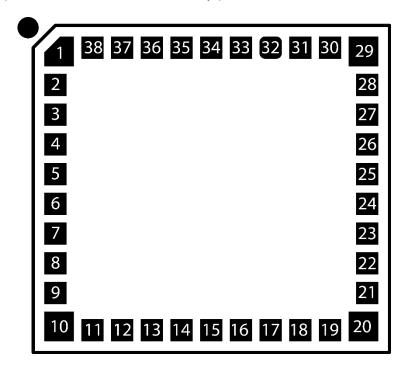
4.2 WLAN Specifications

Table 8. WLAN Receiver Performance Specifications

Parameter	Condition/Notes	Min	Typical	Max	Unit
Frequency Range	-	2412	_	2484	MHz
Operating Temperature ¹	-	-40	_	+85	°C
Receive Sensitivity ²	1 Mbps DSSS	_	-98	_	
(8% PER for 1024 octet PSDU) at either antenna port	11 Mbps CCK	_	-91	_	dBm
Receive Sensitivity ²	6 Mbps OFDM	-	-93	-	
(10% PER for 1000 octet PSDU) at antenna port	54 Mbps OFDM	_	-75	_	dBm
Receive Sensitivity ²	6.5 Mbps MCS0, HT20	_	-85	-	
(10% PER for 4096 octet PSDU) at either antenna port.	65 Mbps MCS7, HT20	_	-72	_	dBm
Transmit power @ 72.2Mbps		14	15	16	dBm
Transmit power @ 1MBps		18	19	20	dBm

Notes:

- 1. Operation below -20°C and above +65°C with parameter derating per Note 2
- 2. Derate receive sensitivity by 1.5dB for operation between temperatures of -40°C to -20°C and 65°C to 85°C



5 Pinout and Signal Descriptions

5.1 Pinout

A top view of the AMW007 pinout is depicted in Figure 2. All dimensions are in thousands of an inch. A recommended footprint is provided in Section 6.2.

Figure 2. AMW007 Pinout (TOP View - Pins NOT visible from top!)

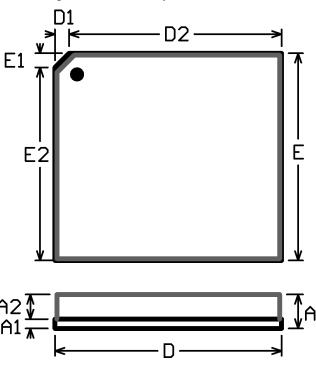
5.2 Pin Description

Table 9. AMW007 Pin Definitions

Pin	Name	Type ¹	Primary Function	Alternate & Other Function(s)
1	GND	S	Ground	-
2	-	NC	-	-
3	WAKE	0	WAKE	-
4	-	NC	-	-
5	GPIO_0	I/O	GPIO / Factory Reset	PWM_0
6	GPIO_1	I/O	GPIO	PWM_1
7	UART_RX	I/O	-	-
8	UART_TX	I/O	-	Boot Control ³ (onboard 10k pull down resistor)

9	GPIO_2	I/O	GPIO	Boot Control ³ DEBUG_UART_TX (onboard 2.2k pull up resistor)
10	GND	S	Ground	-
11	GPIO_3	Ю	GPIO	Boot Control ³ (onboard 2.2k pull up resistor)
12	GPIO_4	I/O	GPIO	PWM2
13-19	-	NC	-	-
20	GND	S	Ground	-
21	GPIO_5	I/O	GPIO	-
22-25	-	NC	-	-
26	RESET_N	I	RESET	-
27	GPIO_6	I/O	GPIO	UART_CTS
28	GPIO_7	I/O	GPIO	UART_RTS
29	GND	S	Ground	-
30	-	NC	-	-
31	GND	S	-	-
32	ANTENNA	Α	ANTENNA ²	-
33	GND	S	Ground	-
34	CHIP_EN	I	Chip Enable	VDD = Enable module GND = Deep Sleep Mode
35	ADC	Α	ADC	-
36	-	NC	-	-
37	GND	S	Ground	-
38	VDD	S	Power Supply	+3.3V nominal

Notes:

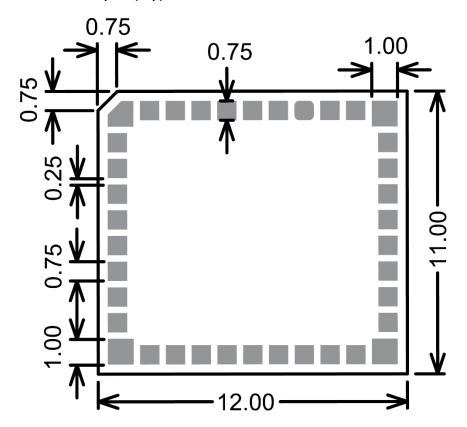

- 1. I = Input, O = Output, S = Supply, A = Analog, NC = No Connection (Do not connect to ground)
- 2. The Wi-Fi Antenna pin is AC-coupled and has a nominal 50 ohms output impedance.
- 3. The Boot Control pins must be at the following levels immediately after a reset in order for the module to boot correctly: UART_TX = GND, GPIO_2 = VDD, GPIO_3 = VDD

6 Design Guidelines

6.1 Dimensions

Figure 3 - AMW007 Spectre Dimensions

Table 6 - AMW007 Spectre Dimensions


Symbol	Imperial (thou)	Tolerance (thou)	Metric (mm)	Tolerance (mm)
Α	71	±6	1.80	±0.15
A1	20	±3	0.51	±0.08
A2	51	±6	1.30	±0.15
D	472	±5	12.00	±0.13
D1	30	±5	0.76	±0.13
D2	449	±6	11.40	±0.15
E	433	±5	11.00	±0.13
E1	30	±5	0.76	±0.13
E2	409	±6	10.40	±0.15

6.2 Recommended PCB Footprint

All dimensions in Figure 4 are in millimeters unless otherwise marked.

Figure 4. AMW007 Recommended Footprint (Top)

6.3 Routing Recommendations

When designing a carrier board, the addition of ground fill directly underneath the AMW007 module, rather than signal or power traces, is recommended. All ground pads adjacent to antenna pins must be connected to a solid ground plane. Failure to comply with these recommendations may result in degraded performance of WLAN functionality.

6.4 Soldering Information

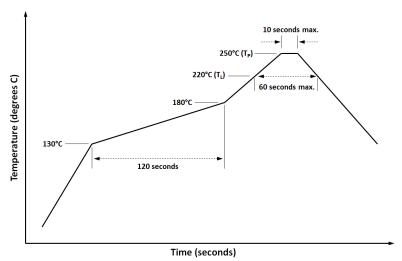


Figure 5 - Recommended solder reflow profile

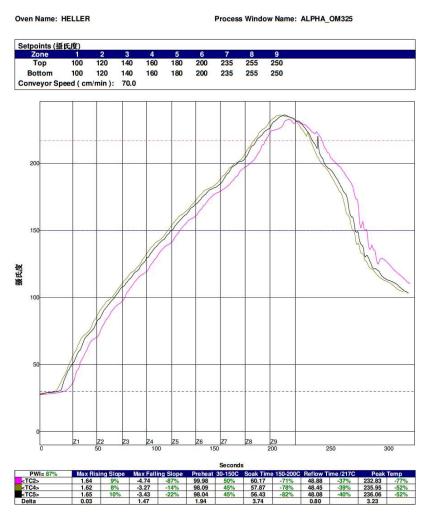


Figure 6 - Example solder reflow profile (AMW007-E03 evaluation board)

6.5 Module Photograph

Figure 7. AMW007 Photograph (Top)

6.6 External Antennas

The AMW007 module supports a single external antenna.

Table 10 - Tested External Antenna Types

Model	Type ¹	Gain (dBi)
Printed Antenna	PCB Trace	3.3
Compact Printed Antenna	PCB trace	3.18
ACA-WIRE-2458	Wired	2.1
Johanson Tech. 2450AT42A100E	Chip	0.0
ACA-1SRPP-2400	Dipole	0.6
ACA-4HSRPP-2458	Dipole	1.0

(1) An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

6.6.1 **PCB Trace Antenna**

This is an efficient, wide bandwidth PCB-style antenna with dimensions 25.7 x 7.5 mm.

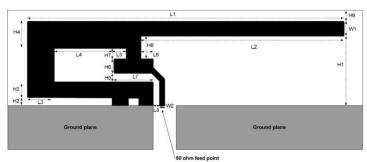


Table 11 - PCB Trace Antenna Dimensions

Dimension	Length (mm)	Dimension	Length (mm)
H1	5.70	W2	0.46
H2	0.74	L1	16.40
Н3	1.29	L2	16.40
H4	2.21	L3	2.18
H5	0.66	L4	4.80
Н6	1.21	L5	1.00
H7	0.80	L6	1.00
Н8	1.80	L7	3.20
Н9	0.61	L8	0.45
W1	1.21		

6.6.2 **Compact PCB Trace Antenna**

This 2.4 GHz PCB antenna can fit in an area smaller than 21mm x 10mm, and as small as 15mm x 6mm. To achieve optimum performance, make an exact copy of this reference design.

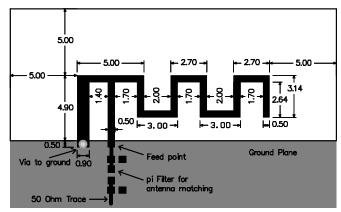


Figure 8 - Trace Antenna (dimensions in mm)

6.6.3 Wire Antenna

A suitable wire antenna is an 18-gauge wire with a length of 25.4mm ± 2mm. The wire antennas should be perpendicular to the carrier board.

NOTE! Do **NOT** bend antennas backwards over the module; doing so will cause poor performance and may cause undesirable out-of-band radio transmissions.

Chip Antenna

The AMW007 is certified for use with a chip antenna from Johanson, part number 2450AT42A100E. Be sure to follow the antenna layout design guidelines in the antenna datasheet.

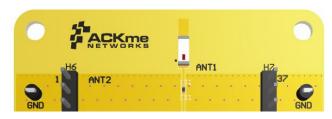


Figure 9 - Chip antenna layout example

6.6.4 **Monopole Antenna**

Suitable monopole antennas include the ACA_1SSRPP_2400 and ACA_4HSRPP_2458, both of which are available online at https://www.zen-tri.com/accessories.

Figure 10 - ACA-1SSRPP-2400

Figure 11 - ACA-4HSRPP-2458

6.7 Power Supply

The AMW007's typical transmit current requirement is 200mA. To handle sudden demand for this typical current, we recommend a power supply capable of delivering a continuous 300mA.

We also recommend bypass capacitors to meet instantaneous power requirements. For design guidelines on bypass capacitors, see the AMWx06 Hardware Design Guide, which also applies to the AMW0x7 regarding characteristics and placement of capacitors. Note that references to specific pin numbers should be adjusted for the AMW007 and AMW037.

6.8 Application Examples

6.8.1 **Operation using ZentriOS**

Each AMW007 module is pre-installed with and licensed to use ZentriOS-WL, Zentri's feature-rich and reliable Wi-Fi networking application. The module can be used with an external host microcontroller via the serial interface command API.

For more details see https://docs.zentri.com/zentrios.

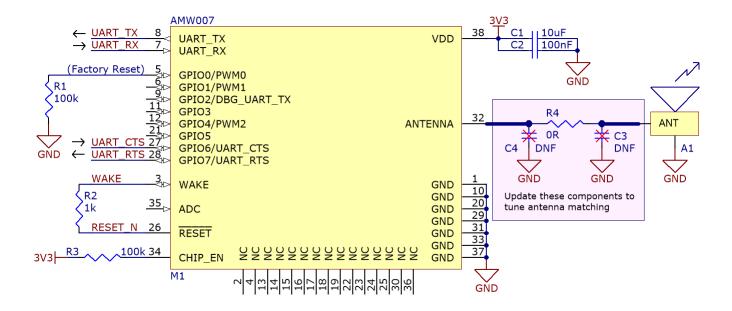
To use ZentriOS with a host processor, the module only requires an external connection to power and a UART serial interface. A host processor connects to the UART (pins 7/8) as shown in Figure 12. Zentri recommends UART hardware flow control (RTS/CTS) is used to improve the reliability of data communications.

GPIO0 is the default factory reset pin. In order for the module to boot normally (and avoid factory reset), the GPIO0 pin must be pulled or driven to ground during a reset. A 100k pull down resistor on this pin is recommended.

The CHIP_EN pin must be pulled to 3V3 to enable ZentriOS to boot. A 100k pull up resistor is recommended if this pin is not driven by an external host MCU.

The WAKE pin is an output from the module, and may be used to wake the module from deep sleep. Connect WAKE to RESET_N using a 1k resistor to enable sleep/wake functionality. This connection is not required if sleep/wake functionality is not used, or a host MCU has explicit control of the RESET_N pin.

6.8.2 Hardware Design Guidelines


For hardware design guidelines, see:

Zentri online documentation, AMWx06 Hardware Design

The general guidelines for the AMWx06 devices apply to all Zentri devices.

Pin numbers should be adjusted for actual device used.

Figure 12. Using the AMW007 Module running ZentriOS and a UART serial interface

7 Regulatory Certification

The AMW007 module has been certified for operation in various regulatory domains. This section outlines certification information specific to the following countries and regions:

- United States
- Canada
- Europe
- Australia
- New Zealand
- Japan

The certifications listed in this section are valid at the time of publication. For up-to-date information refer to Zentri documentation online at:

https://docs.zentri.com

All AMW007 test reports are available on the Zentri website at:

https://docs.zentri.com/zentri/docresources#amw007

Should you require regulatory certification for the AMW007 module in a country or region not listed, please contact your local Zentri sales office or create a support request via our website at https://www.silabs.com/about-us/contact-us.

7.1 United States

The Zentri AMW007 module has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Sub-part C "Intentional Radiators" modular approval in accordance with Part 15.212 Modular Transmitter approval. Modular approval allows the end user to integrate the AMW007 module into a finished product without obtaining subsequent and separate FCC approvals for intentional radiation, provided no changes or modifications are made to the module circuitry. Changes or modifications could void the user's authority to operate the equipment. The end user must comply with all of the instructions provided by the Grantee which indicate installation and/or operating conditions necessary for compliance.

The finished product is required to comply with all applicable FCC equipment authorization, regulations, requirements, and equipment functions not associated with the transmitter module portion. For example, compliance

must be demonstrated to regulations for other transmitter components within the host product; to requirements for unintentional radiators (Part 15 Sub-part B "Unintentional Radiators"), such as digital devices, computer peripherals, radio receivers, etc.; and to additional authorization requirements for non-transmitter functions on the transmitter module (i.e. Verification, or Declaration of Conformity) (e.g., transmitter modules may also contain digital logic functions) as appropriate.

7.1.1 Labeling and User Information Requirements

The AMW007 module has been labelled with a unique FCC ID number, and if the FCC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording as follows:

Contains FCC ID: 2ABPY-5B9198

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

If the exterior label area is smaller than the palm of the hand, the end product user manual must contain the above statement. The user manual should contain the following additional statement:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

The Host Model Number (HMN) must be indicated at any location on the exterior of the end product or product packaging or product literature which shall be available with the end product or online.

Additional information on labeling and user information requirements for Part 15 devices can be found in KDB Publication 784748 available at the FCC Office of Engineering and Technology (OET) Laboratory Division Knowledge Database (KDB.

For products available in the USA/Canada market, only channels 1 to 11 can be operated. Selection of other channels is not possible.

This module is intended for OEM integrators. The OEM integrator is responsible for compliance in all the rules that apply to the product into which this certified RF module is integrated.

Additional testing and certification may be necessary when multiple modules are used.

7.1.2 RF Exposure

All transmitters regulated by FCC must comply with RF exposure requirements. OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, provides assistance in determining whether proposed or existing transmitting facilities, operations or devices comply with limits for human exposure to Radio Frequency (RF) fields adopted by the Federal Communications Commission (FCC). The bulletin offers guidelines and suggestions for evaluating compliance.

If appropriate, compliance with exposure guidelines for mobile and unlicensed devices can be accomplished by the use of warning labels and by providing users with information concerning minimum separation distances from transmitting structures and proper installation of antennas.

The following statement must be included as a CAUTION statement in manuals and OEM products to alert users of FCC RF exposure compliance:

To satisfy FCC RF Exposure requirements for mobile and base station transmission devices, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at closer than this distance is not recommended. The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

If the AMW007 module is used in a portable application (i.e., the antenna is less than 20 cm from persons during operation), the integrator is responsible for performing Specific Absorption Rate (SAR) testing in accordance with FCC rules 2.1091.

7.1.4 Approved External Antenna Types

Modular approval testing of the AMW007 was performed with the antenna types listed in Table 10 - Tested External Antenna Types.

To maintain modular approval in the United States, only the tested antenna types shall be used. It is permissible to use different antenna manufacturers provided the antenna types match: in-band and out-of-band radiation patterns and antenna gain must be similar to those tested.

7.1.5 Further Information

Additional information regarding FCC certification and use of the AMW007 module in the United States is available from the following sources.

 Federal Communications Commission (FCC) http://www.fcc.gov

7.3 Canada

The AMW007 module has been certified for use in Canada under Industry Canada (IC) Radio Standards Specification (RSS) RSS-210 and RSSGen. Modular approval permits the installation of a module in a host device without the need to recertify the device.

7.3.1 Labeling and User Information Requirements

Labeling Requirements for the Host Device (from Section 3.2.1, RSS-Gen, Issue 3, December 2010): The host device shall be properly labeled to identify the module within the host device.

The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labeled to display the Industry Canada certification number of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:

Contains transmitter module IC: 11685A-5B9198

The user documentation should contain the following information:

For products available in the USA/Canada market, only channel $1^{\sim}11$ can be operated. Selection of other channels is not possible.

Pour les produits disponibles aux États-Unis / Canada du marché, seul le canal 1 à 11 peuvent être exploités. Sélection d'autres canaux n'est pas possible.

The Host Model Number (HMN) must be indicated at any location on the exterior of the end product or product packaging or product literature which shall be available with the end product or online.

User Manual Notice for License-Exempt Radio Apparatus (from Section 7.1.3 RSS-Gen, Issue 3, December 2010): User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both:

This device complies with Industry Canada licenseexempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux onditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, meme si le brouillage est susceptible d'en compromettre le fonctionnement.

Transmitter Antenna Notification (from Section 7.1.2 RSS-Gen, Issue 3, December 2010): User manuals for transmitters shall display the following notice in a conspicuous location:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (EIRP) is not more than that necessary for successful communication.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouil-lage radioélectrique à l'intention des autres utilisa-teurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

The above notice may be affixed to the device instead of displayed in the user manual.