mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Panasonic

Panasonic Semiconductor Singapore A Division of Panasonic Semiconductor Asia Pte Ltd

Company Registration No. 197803125E

22, Ang Mo Kio Industrial Park 2, Singapore 569506. Tel: (65)64818811 Fax: (65)64816486

DOCUMENT COVER PAGE

Note: This cover page establishes the Doc No., Title and current status of the attached document

Dechie		Issue Level	Nev	Eff Date
Doc No.	SDSC-PSE-AN17822A	1	2	28-MAR-05
Doc Title	Product Specifications for AN17822A	Total no. of pag (excluding this		17

Revision History

Issue	Rev	Eff Date	S/N	Page	Change Details	Remarks
1	1	16-DEC-04	1	-	Added this cover page.	
			2	7	Removed this page.	
			3	7A	Added this page for leadfree specification.	
			4	7A	Amended Outer Lead Surface Process &	
					Chip Mounting Method.	
	2	28-MAR-05	1	6	Removed physical product marking indications.	

-1.A		
Prepared Automatic	Product Specification	ns Ref Apses D A
Checked Halful		EX FORMALS SUE
Approved Highli	AN17822A	Page No. 1

1.1

Structure	Silicon Monolithic Bipolar IC
Appearance	SIL-12 Pin Plastic Package (Power Type with Fin)
Application	Low Frequency Amplifier
Function	BTL 5.0W x 2ch Power Amplifier with Standby Function and Volume Function

Α	Absolute Maximum Ratings				
No.	Item	Symbol	Ratings	Unit	Note
1	Storage Temperature	Tstg	-55 ~ +150	°C	1
2	Operating Ambient Temperature	Topr	-25 ~ +70	°C	1
3	Operating Ambient Pressure	Popr	$1.013 \times 10^5 \pm 0.61 \times 10^5$	Pa	
4	Operating Constant Acceleration	Gopr	9810	m/s ²	
5	Operating Shock	Sopr	4900	m/s²	
6	Supply Voltage	Vcc	14.4	V	2
7	Supply Current	Icc	2.0	А	
8	Power Dissipation	Pd	1.92	W	Ta=70°C

Operati	ng Supply Volta	ige Range	Vcc		3.5V ~ 13.5V			
Note 1: The temperature of all items shall be Ta = 25°C except storage temperature and operating ambient temperature. Note 2: At no signal input QA								
Eff. Date	Eff. Date	Eff. Date	Eff. Date					
24-DEC-2003								

FMSC-PSDA-002-01 REV 1

Prepared	
Checked	

Approved

Product Specifications

AN17822A

Reproved_{B-1}

Nо.

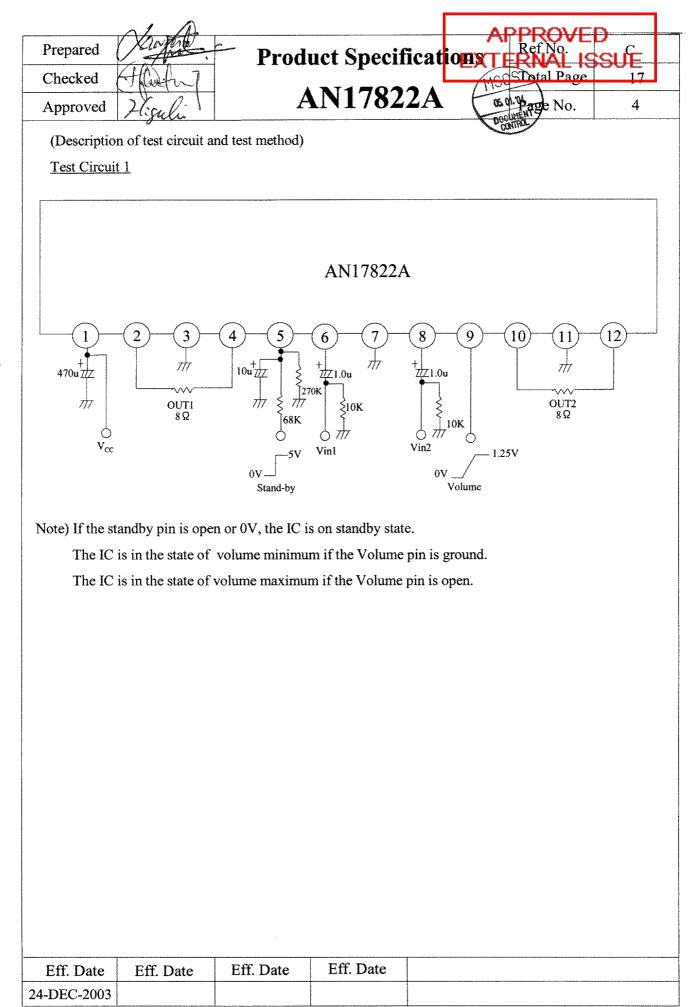
2

В	Electrical Characteristics			(Unless otherwise specified, the ambient temperature is 25° C $\pm 2^{\circ}$ C, Vcc = 8.0V, frequency = 1kHz and RL = 8 Ω)					
NT. Te		G11	Test	Conditions		Limits	}	Unit	Note
No	Item	Symbol	Cct.	Conditions	Min Typ I		Max	Omt	inote
									ļ
1	Quiescent Circuit Current	I _{CQ}	1	Vin = 0V, Vol = 0V	-	45	100	mA	
2	Standby Current	I _{stb}	1	Vin = 0V, Vol = 0V	-	1	10	μΑ	
3	Output Noise Voltage	V _{NO}	1	$Rg = 10k\Omega$, $Vol = 0V$	-	0.25	0.4	mVrms	1
4	Voltage Gain	G _v	1	Po = 0.5W, Vol = 1.25V	39	41	43	dB	
5	Total Harmonic Distortion	THD	1	Po = 0.5W, Vol = 1.25V	-	0.20	0.5	%	
6	Maximum Power Output 1	Po1	1	THD = 10%, Vol = 1.25V	2.4	3.0	-	W	
7	Maximum Power Output 2	Po2	1	Vcc = 11V THD = 10%, Vol = 1.25V	4.0	5.0		W	
8	Ripple Rejection Ratio	RR	1	$Rg = 10k\Omega$, $Vol = 0V$ Vr = 0.5Vrms, fr = 120Hz	30	50	-	dB	1
9	Output Offset Voltage	V_{off}	1	$Rg = 10k\Omega$, $Vol = 0V$	-200	0	200	mV	
10	Volume Attenuation Ratio	Att	1	Po = 0.5W, Vol = 0V	70	80		dB	1
11	Channel Balance 1	CB1	1	Po = 0.5W, Vol = 1.25V	-1	0	1	dB	
12	Channel Balance 2	CB2	1	Po = 0.5W, Vol = 0.6V	-2	0	2	dB	
13	Middle Voltage Gain	G _{Vm}	1	Po = 0.5W, Vol = 0.6V	27.5	30.5	33.5	dB	
14	Channel Crosstalk	СТ	1	Po = 0.5W, Vol = 1.25V	40	55	-	dB	

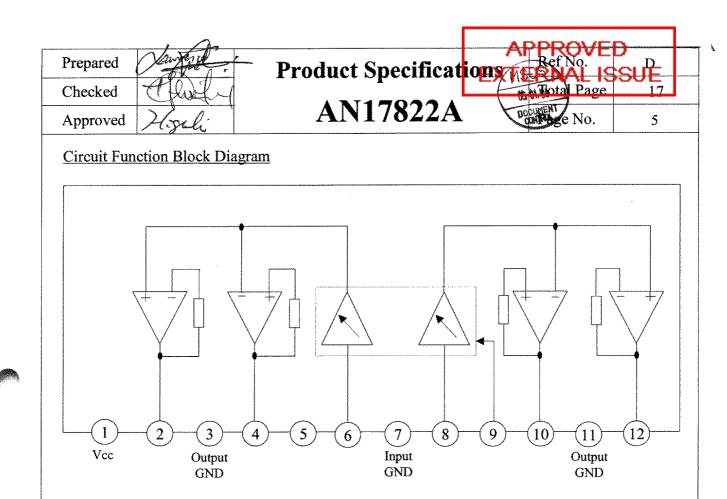
Note 1) For this measurement, use the BPF = $15Hz \sim 30kHz$ (12dB/OCT)

Eff. Date	Eff. Date	Eff. Date	Eff. Date	
24-DEC-2003				

FMSC-PSDA-002-01 REV 1


Ch	epared <u>Horac</u> ecked Hors pproved Highli			duct Specifications (Reference Data for Design) AN17822A		<u>}</u>) SU ^B 1' 3	7
B Electrical Characteristics (Unless otherwise specified, the ambient temperature is $25^{\circ}C \pm 2^{\circ}C$, Vcc = 8.0V, frequency = 1kHz and RL = 8 Ω)									
No	Itom	Granhal	Test	Conditions	Limits		3	Unit	Niata
INU	Item	Symbol	Cct.	Conditions	Min	Тур	Max	om	µ vote
1	Standby pin current	Istb2	1	$Vin = 0V, V_{STB} = 3.0V$	-	-	25	μA	
2	Volume pin current	Ivol	1	Vin = 0V, Vol = 0V	-12	-	-	μA	
3	Input Impedance	Zi	1	$Vin = \pm 0.3 V_{DC}$	24	30	36	kΩ	

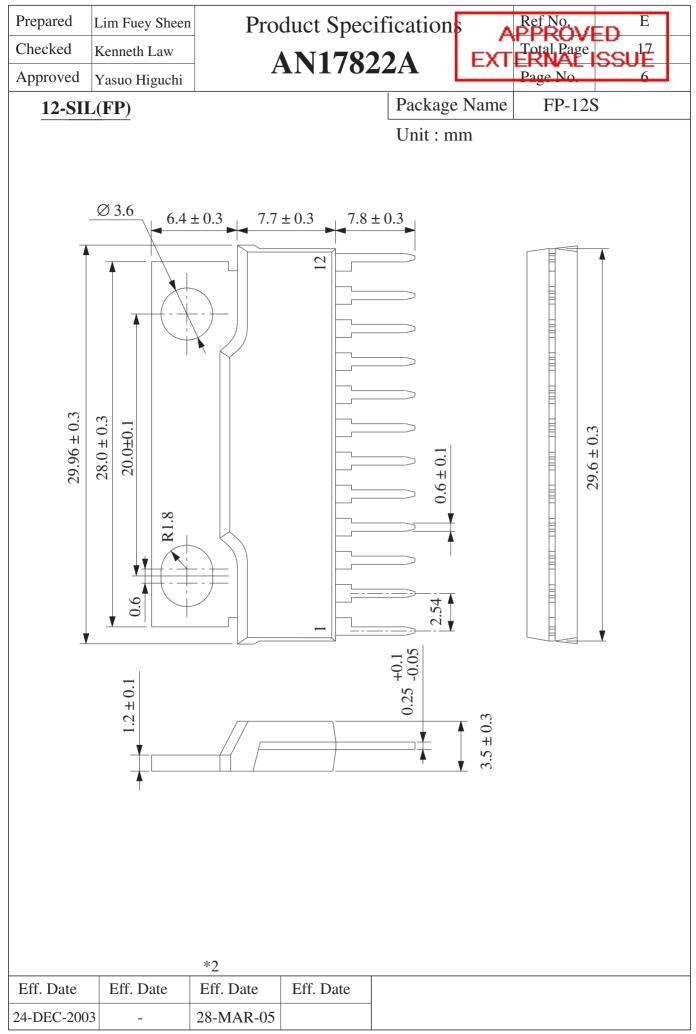
5


Note) The above characteristics are reference values determined for IC design, but not guaranteed values for shipping inspection. If problems were to occur, counter measures will be sincerely discussed.

Eff. Date	Eff. Date	Eff. Date	Eff. Date	
24-DEC-2003				

FMSC-PSDA-002-01 REV 1

FMSC-PSDA-002-01 REV 1



Pin Descriptions

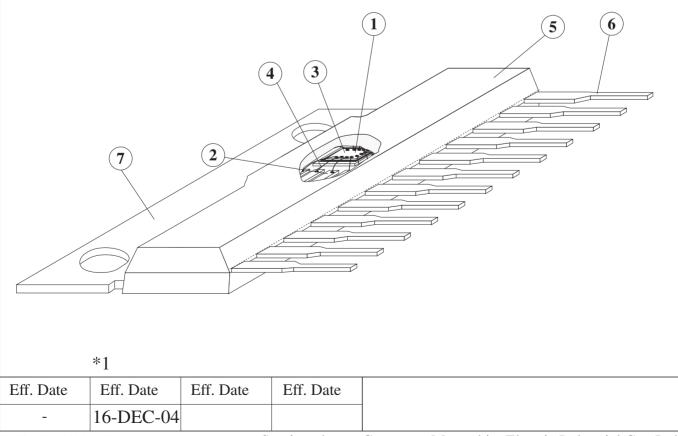
Pin No.	Description	Pin No.	Description
1	Vcc	7	GND (Input)
2	Ch.1 Output (+)	8	Ch.2 Input
3	GND (Ch. 1 Output)	9	Volume
4	Ch.1 Output (-)	10	Ch.2 Output (-)
5	5 Standby		GND (Ch.2 Output)
6	Ch.1 Input	12	Ch.2 Output (+)

Eff. Date	Eff. Date	Eff. Date	Eff. Date	
24-DEC-2003				ŀ

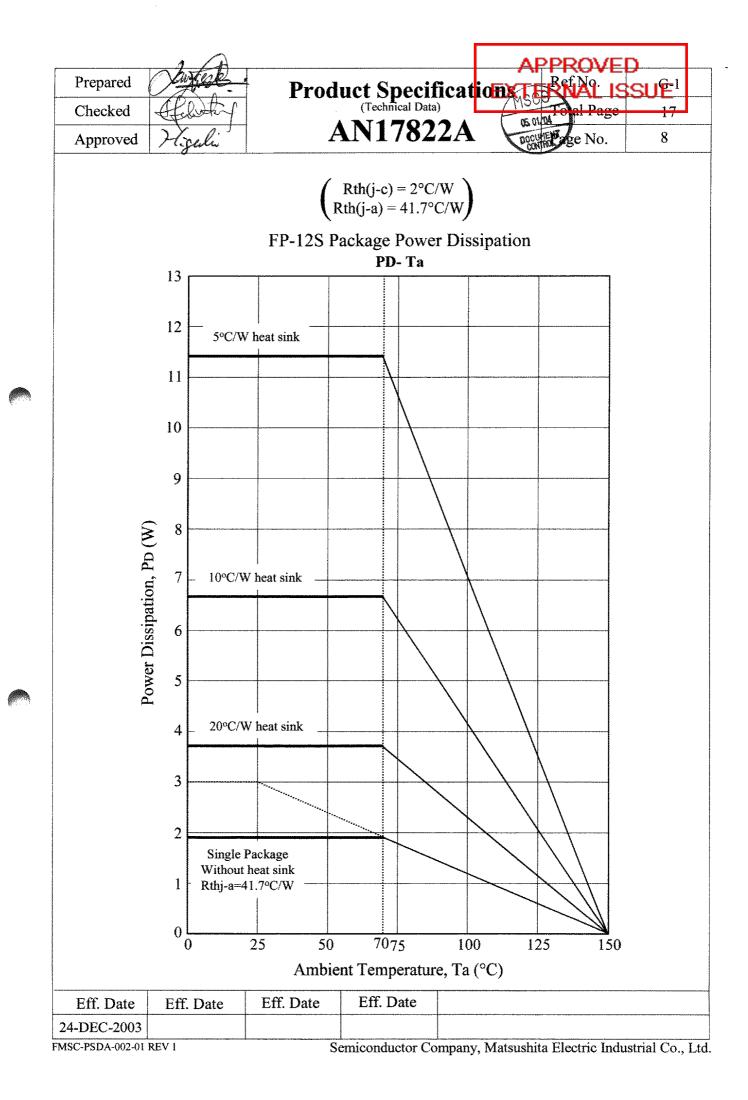
FMSC-PSDA-002-01 REV 1

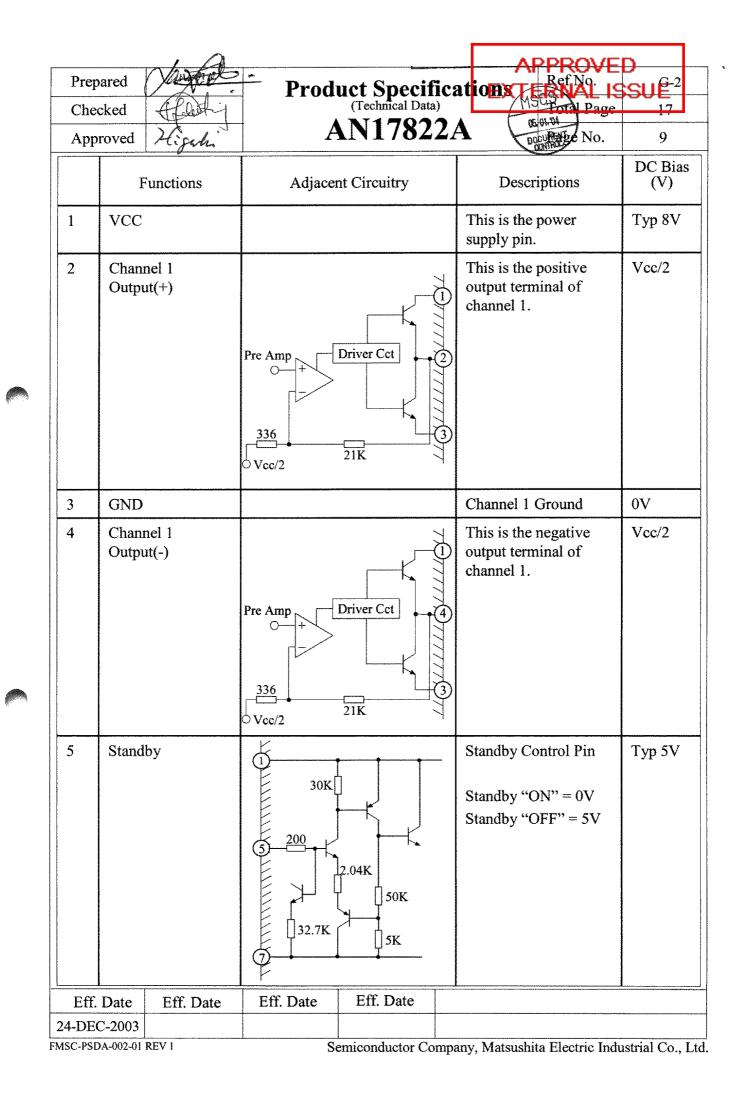
Prepared	Lim Fuey Sheen
Checked	Kenneth Law
Approved	Yasuo Higuchi

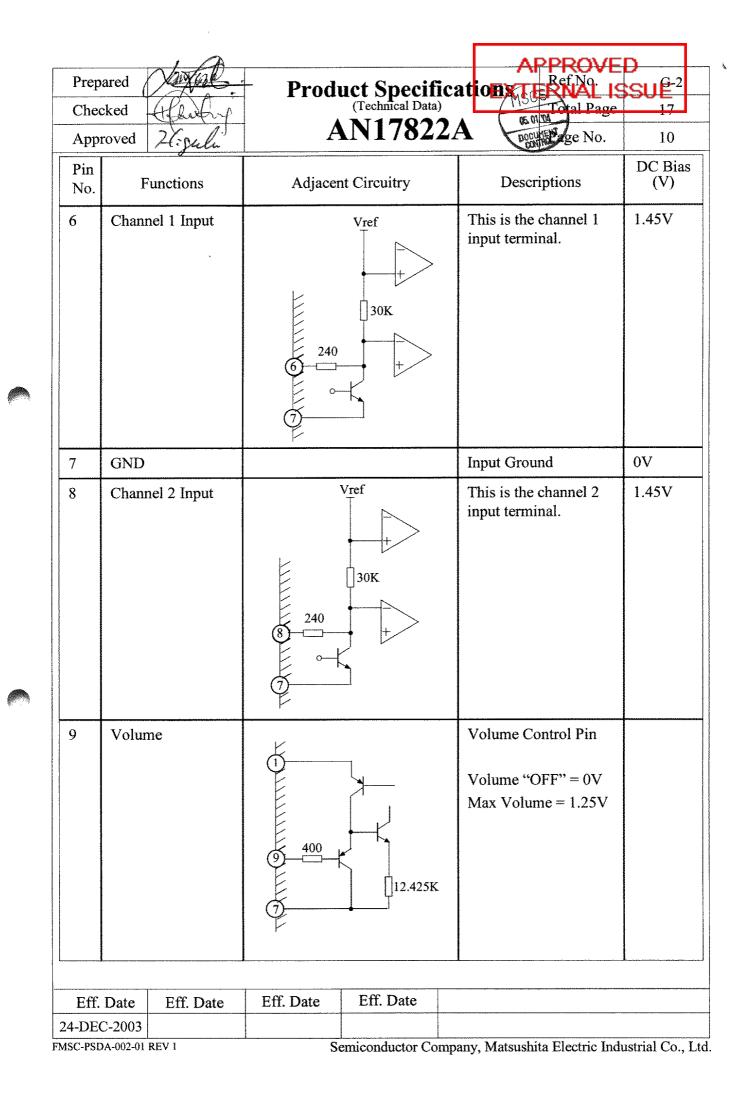
(Structure Description)

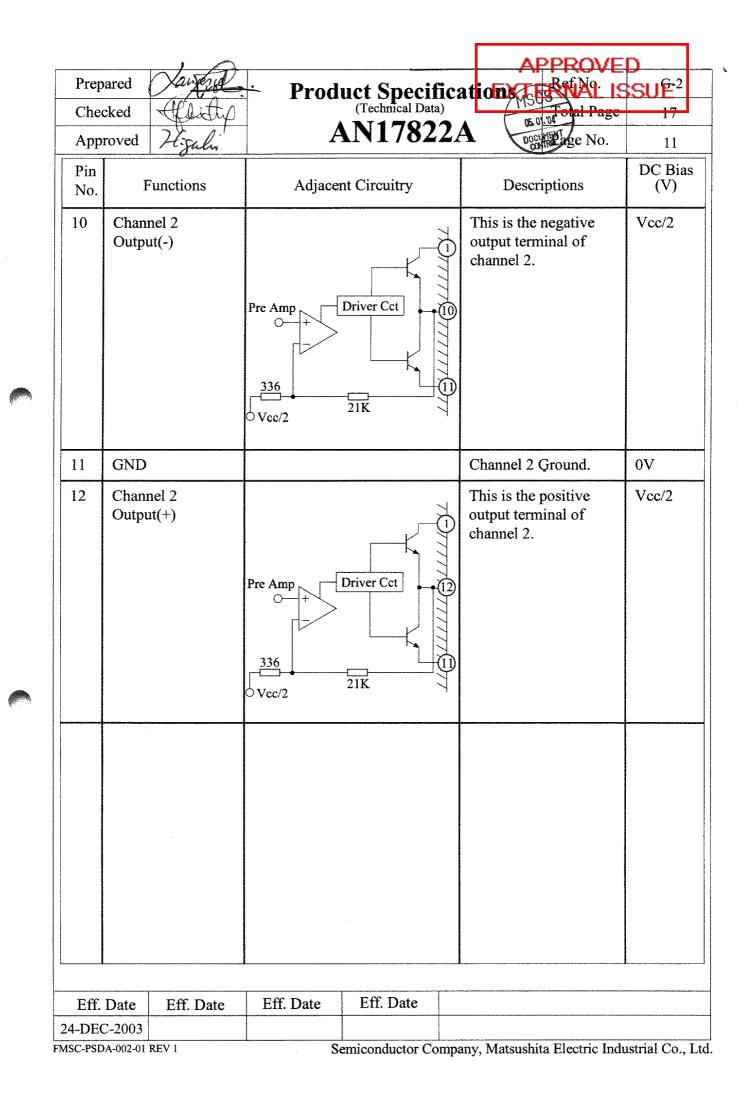

Chip surface passivation	SiN,	PSG,	Others ()	1
Lead frame material	Fe group,	Cu group,	Others ()	2,6
Inner lead surface process	Ag plating,	Au plating,	Others ()	2
Outer lead surface process	Solder plating	(98Sn-2Bi), Solder dip,	Others ()	6
Chip mounting method	Ag paste,	Au-Si alloy, Solder (95	5.5Pb-2.5Ag-2Sn)	**	3
Wire bonding method	Thermalsonic	bonding,	Others ()	4
Wire material	Au,		Others ()	4
Mold material	Epoxy,		Others ()	5
Molding method	Transfer mold	, Multiplunger mold,	Others ()	5
Fin material	Cu group,		Others ()	7

Product Specifications (Leadfree) AN17822A


Ret No.


Package FP-12S


**Under RoHS exemption clause, Lead (Pb) in high melting temperature type solder (i.e. tin-lead solder alloys containing more than 85% of lead), is exempted until 2010.



FMSC-PSDA-002-01 REV 1

Deserved 1	torder d				APPROVE	D
Prepared Checked	HO.A.	F Prod	uct Special (Technical Dat	fication	BXTERNAL IS	SUE
Approved 2	fragery		N1782		boch Hage No.	17
Application Circ	<u>cuit</u>				UCONTRACTOR	
			AN17822	4		
	2)(3)-	-(4)(5)	(6)-(7)-	-(8)(9)-(10)-(11)-	-(12)
470u ZZ C1 C2 100	7/77		+ C4 777	+ C5		Ť
	SP 8 Ω	7/7 } //7 68K	70K	≥ R4 10K	SP 8 Ω	t
$\overset{\bigcirc}{\mathrm{v}_{\mathrm{cc}}}$		Ó	() 7/7 Vin1	⊖ 777 Vin2		
STB	IC	0V — Stand-by		0V/ Voh	une	
0V 5V	OFF ON					
₽ Ⅰ						
Eff. Date	Eff. Date	Eff. Date	Eff. Date		118 s.s. #1	
-DEC-2003						

Application Information

Supply Decoupling

To ensure a stable supply and achieve better ripple rejection, decoupling capacitors need to be connected to VCC. (Pin1)

Decoupling capacitors should have small Equivalent Series Resistance (ESR). This is to prevent resistive losses and introduction of undesirable phase shift to internal circuits.

A ceramic capacitor of 100nF in parallel with a non-ceramic (Tantalum or Aluminum Electrolytic) capacitor of 470uF are suggested. This combination has a small ESR over a wide frequency range.

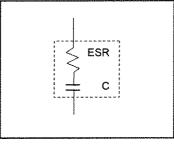


FIG 1. A Practical Capacitor

Although small in size and ESR, large valued ceramic capacitor is not advisable to use. Current surges during power ON/OFF might store energy in the inductances of the power leads; and a large voltage spike could be created when the stored energy is transferred from the inductances to the ceramic capacitor. The amplitude of the spike could exceed twice the supply voltage.

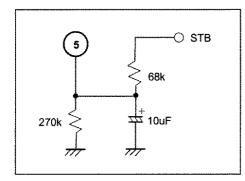


FIG 2. Standby Circuits

If the Standby voltage is provided by a microcontroller, the suppression of "Pop" could even be better.

The microcontroller can set a delay of 100-200ms between the supply and Standby ON/OFF.

The 68k and 270k resistor also form a voltage divider, which determines the Standby threshold.

Standby Operation

Standby pin should be connected with carefully selected components in order to avoid "Pop Noise" during Standby ON/OFF transient.

The 68k resistor and 10uF capacitor pair can delay the rising of voltage at Pin5 to reach the Standby threshold. When Standby is switching on together with supply, this delay would be very useful to ensure no "Pop Noise".

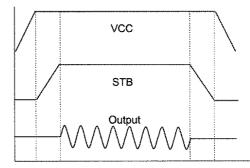
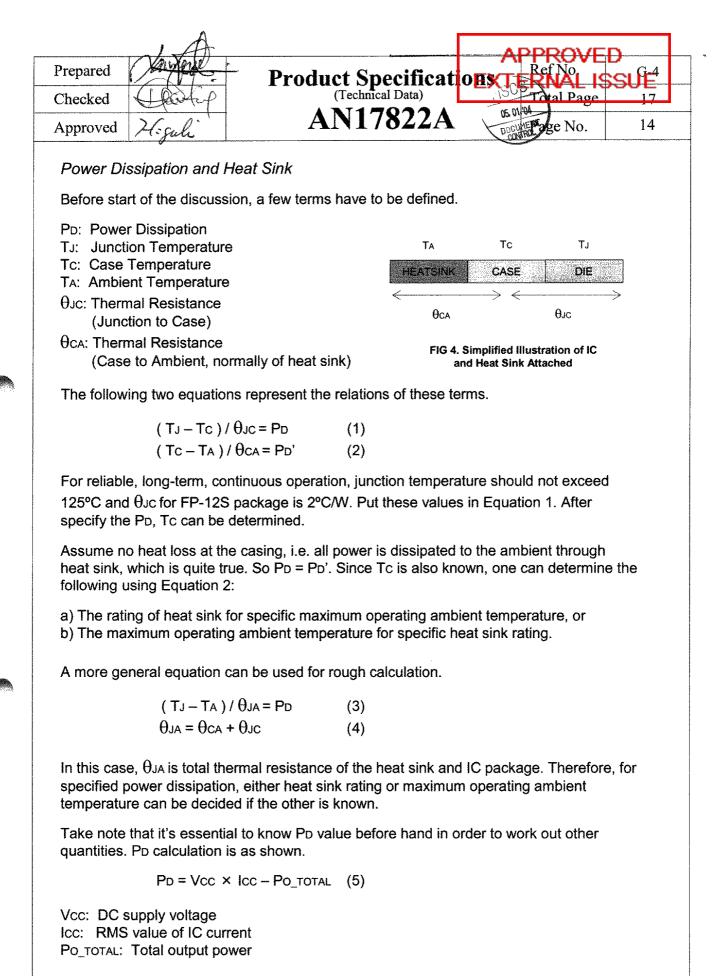



FIG 3. Standby ON/OFF Logic


Eff	. Date	Eff. Date	Eff. Date	Eff. Date	
24-DF					

FMSC-PSDA-002-01 REV 1

Eff. Date	Eff. Date	Eff. Date	Eff. Date	
24-DEC-2003				

FMSC-PSDA-002-01 REV 1

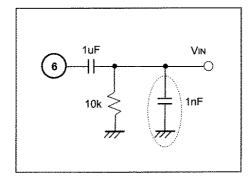


FIG 5. Input DC Decoupling

Input DC Decoupling

Before the input signal reaches differential amplifier stage, its DC component should be removed.

The capacitor of 1uF pass only AC signal and the 10k resistor forms a DC path to ground.

The 1nF capacitor in parallel to the 10k resistor is optional and it serves to filter out high frequency noise at the input.

Output Zobel Network

It should be noted that this device is designed such that the Zobel network (RC pair) at the output pins is not necessary for stable operation.

In practical application, the Zobel network may be applied optionally for two reasons:

a) Ensuring stability for different PCB layout and speaker types.

b) Ability to withstand to high ESD levels.

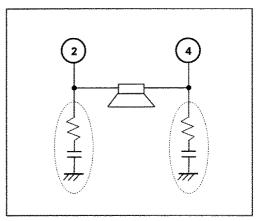
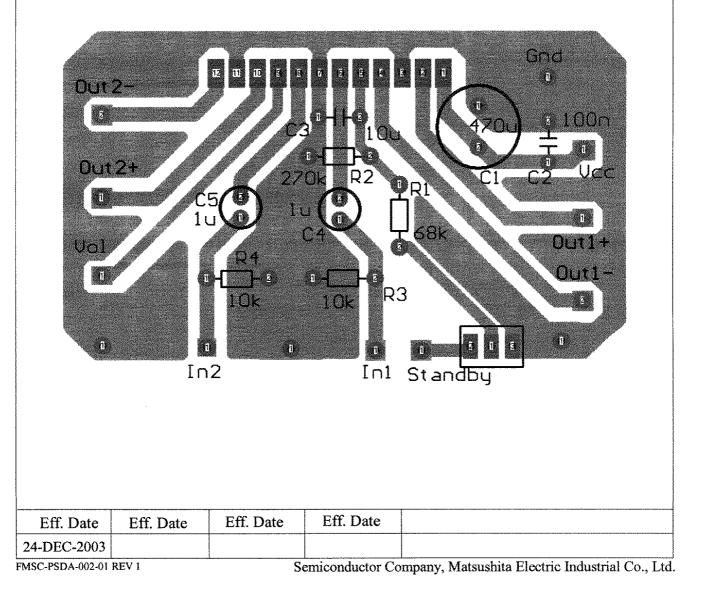


FIG 6. Output Zobel Network

Eff. Date	Eff. Date	Eff. Date	Eff. Date	
24-DEC-2003				

FMSC-PSDA-002-01 REV 1

1 A			
Prepared With	 Product Specificat 	OBSTERNAL ISSUE	
Checked Albert	(Technical Data)	Total Page 17	
Approved Highli	AN17822A	DOCUMPAge No. 16	


PCB Layout

Good PCB layout can improve chip's performances.

To reduce stray capacitances at the inputs and outputs, external components are to be placed as close to the pins as possible.

PCB traces conducting huge current, such as those connected to supply or outputs, should be kept short and wide. This will keep inductances low and resistive loss to a minimum.

The Layout of test board is as shown below.

a_{1}			n
Prepared av me	Product Specificat	ION TERNAL	su≢
Checked Carly		Cotal Page	17
Approved Highli	AN17822A	DOCUMENT age No.	17

(Precautions for use)

- 1. Make sure that the IC is free of any pin short-circuiting, ground short-circuiting, pin shift and reverse insertion.
- 2. Ground the radiation fin so that there will be no difference in electric potential between the radiation fin and ground.
- 3. The thermal protection circuit operates at a Tj of approximately 150°C. The thermal protection circuit is reset automatically when the temperature drops.
- 4. Make sure that the heat radiation design is effective enough if the Vcc is comparatively high or the IC operates high output power.
- 5. Connect only ground pin for signal sources to the signal GND pin of the amplifier on the previous stage.

l				
Eff. Date	Eff. Date	Eff. Date	Eff. Date	
24-DEC-2003				

FMSC-PSDA-002-01 REV I