

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Panasonic

Panasonic Semiconductor Singapore

A Division of Panasonic Semiconductor Asia Pte Ltd

Company Registration No. 197803125E 22, Ang Mo Kio Industrial Park 2, Singapore 569506. Tel: [65)64818811 Fax: [65)64816486

DOCUMENT COVER PAGE

APPROVED

Note: This cover page establishes the Doc No., Title and current status of the lattachapt be well a

Doc No.	SDSC-PSE-AN17827A	issue Level	Rev	Ell Date
DOC NO.	ODGC-I GE-ANTIOZIA	1	0	9-Dec-05
Doc Title	Product Specification for AN17827A	Total no. of p	ages	16
Doc Tille	Froduct Specification for ANT/62/A	excluding this	page)	10

Revision History

Issue	Rev	Eff Date	S/N	Page	Change Details	Remarks
1	0	09-Dec-05			First issue	

Code No.: | C3F4297

Product Standards

Part No.	AN17827A	
Package Code No.	DIP016-P-0300P	

Analogue LSI Business Unit Semiconductor Company Matsushita Electric Industrial Co., Ltd.

Established by	Applied by	Checked by	Prepared by
S,Okada	M.Kliramotsu	26galin	1/82
S.Okada	M.Hiramatsu	Yasuo Higuchi	Iskandar

2005-12-09	
Established	Revised

Contents

■ Overview	3
■ Features	3
■ Applications	3
■ Package	3
■ Type	3
■ Application Circuit Example	4
■ Block Diagram	5
■ Pin Descriptions	6
■ Absolute Maximum Ratings	7
■ Operating Supply Voltage Range	7
■ Electrical Characteristics	8
■ Test Circuit Diagram	9
■ Technical Data10-	15
■ Usage Notes	16

Product Standards APPROXED AN 7827A EXTERNAL ISSUE Total Pages 16 3

AN17827A

A single channel BTL audio power amplifier IC

Overview

AN17827A is a monolithic integrated circuit designed for 2.5 W X 1 (8 Ω) and. It is a single channel BTL IC suitable for operation in audio application.

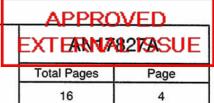
Features

- Few external components no Boucherot cells (output C, R) and no negative feedback capacitors.
- . Built-in Thermal Protection circuit.
- · High ripple rejection.

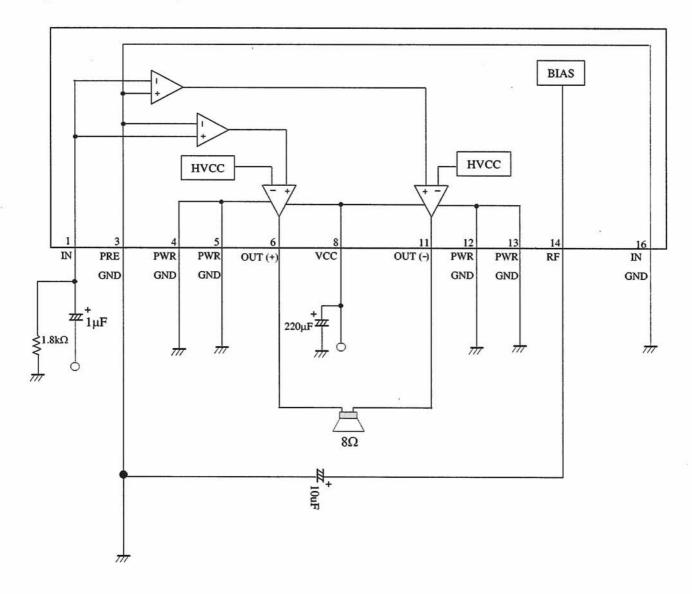
Applications

IC for audio applications

Package


• 16 pin plastic Dual Inline Package (DIP type)

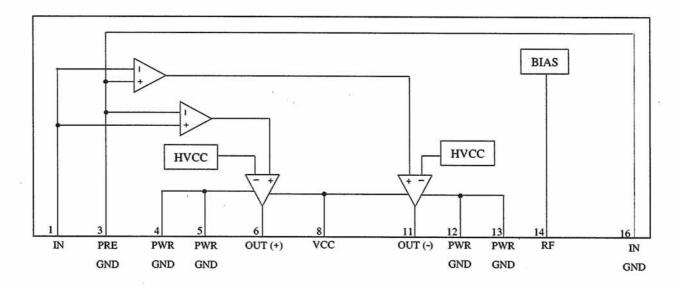
■ Type


Silicon Monolithic Bipolar IC

2005-12-09		The state of the s	
Established	Revised	ts.	

Product Standards

■ Application Circuit Example



APPROVED EXTERNIA 121/28SUE

Product Standards

Total Pages	Page
16	5

■ Block Diagram

Product Standards APPROVED EXTERNA 25 ASUE Total Pages Page 16 6

■ Pin Descriptions

Pin No.	Pin name	Туре	Description
1	IN	Input	Input signal
2	NC	Not connected	Not Connected
3	PRE-GND	Ground	Ground
4	PWR GND	Ground	Ground
5	PWR GND	Ground	Ground
6	OUT(+)	Output	Positive Output
7	NC	Not connected	Not Connected
8	vcc	Power supply	8.0V power supply
9	NC	Not connected	Not Connected
10	NC	Not connected	Not Connected
11	OUT(-)	Output	Negative output
12	PWR GND	Ground	Ground
13	PWR GND	Ground	Ground
14	RF	Reference voltage	Ripple Filter
15	NC	Not connected	Not Connected
16	IN GND	Ground	Ground

2005-12-09		
Established	Revised	

APPROVED EXTERNANGESUS

Product Standards

Total Pages	Page
16	7

■ Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Note
1	Supply voltage	, V _{cc}	14.9	v	*1
2	Supply current	I _{cc}	1	A	
3	Power dissipation	P _D	0.728	w	*2
4	Operating ambient temperature	T _{opr}	-20° +75	°C	*3
5	Storage temperature	T _{stg}	-55~ +150	°C	*3

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

Operating supply voltage range

Parameter	Symbol	Range	Unit	Note
Supply voltage range	V _{cc}	6 ~ 14.5	v	-

^{*2:} The power dissipation shown is the value at Ta = 75 °C for the independent (unmounted) IC package without a heat sink.

When using this IC, refer to the Pd-Ta diagram of the package standard page 18 and use under the condition not exceeding the allowable value.

^{*3:} Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

APPROVED EXTERNIMA 27 ASUE

Product Standards

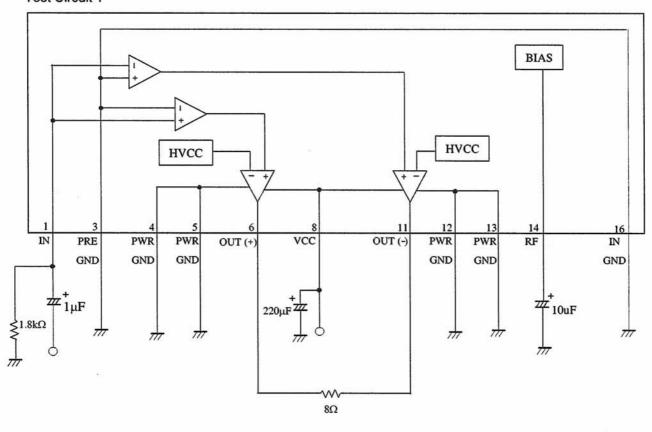
Total Pages	Page
16	8

 \blacksquare Electrical Characteristics at Vcc =8 V, RL = 8 Ω , freq = 1 kHz unless otherwise specified.

(Note: $T_a = 25 \text{ }^{\circ}\text{C} \pm 2 \text{ }^{\circ}\text{C}$ unless otherwise specified.)

В	Parameter	Sympol	Test	Conditions	Limits				
No.			circuits		Min	Тур	Max	Unit	Notes
1	Quiescent Circuit Current	I_{CQ}	1	No input signal, RL = ∞	7	15	30	mA	
2	Output Noise Voltage	Vno	1	No input signal	-	0.3	0.7	mV[rms]	1
3	Voltage Gain	G _V	1	Vin=20 mV	38	40	42	dB	
4	Total Harmonic Distortion	THD	1	Vin=20 mV	-	0.2	0.5	%	
5	Maximum Output Power	Po	1	THD =10 %	2	2.5	-	w	
6	Output Offset Voltage	Voff	1		-350	0	350	mV	
7	Ripple Rejection	RR	1	Freq-ripple = 120 Hz, V-ripple = 1 V[rms]	35	50	-	dB	1

Note) *1: For this measurement, use the 20Hz ~ 20kHz (12dB/OCT) filter.


APPROVED EXTERNADIASUE

Product Standards

Total Pages	Page
16	9

■ Test Circuit Diagram

Test Circuit 1

APPROVED EXTERNAL LASUE

Product Standards

Page
10

■ Technical Data

• I/O block circuit diagrams and pin function descriptions

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and Voltage	Internal circuit	Description
1	ov	1 200 343 30k	INPUT
2	-	NC	Not Connected
3	0V	PRE GND	Pre Ground
4	ov	PWR GND	Power Ground
5	0V	PWR GND	Power Ground
6	VCC/2	Pre Amp Driver Circuit 6 359 Vcc/2	Positive Output
7	-	NC	Not Connected
8	(Typical)8V	vcc	Supply Voltage

APPROVED EXTERNADOR SUE

Product Standards

Total Pages	Page	
16	11	

■ Technical Data

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and Voltage	Internal circuit	Description
9	-	NC	Not Connected
10	-	NC	Not Connected
11	VCC/2	Pre Amp Driver Circuit 11 20K 12,13 Vcc/2	Negative Output
12	ov	PWR GND	Power Ground
13	ov	PWR GND	Power Ground
14	0.45*VCC	8 200 40.125k	Ripple Filter

Product Standards APPROVED EXTERNAME Total Pages Page 16 12

■ Technical Data

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and Voltage	Internal circuit	Description
15	-	NC	Not Connected
16	ov	IN GND	Input Ground

2005-12-09	
Established	Revised

APPROVED EXTERNITION SUE

Product Standards

Total Pages	Page
16	13

■ Technical Data

· Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Power Dissipation

Description on the measuring method and the thermal resistance Rth(j-a) of AN17827A is indicated in the following explanation.

T_A: Ambient Temperature

T_C: Case Temperature

T_J: Junction (Chip Surface) Temperature

 θ (j-a) : Thermal Resistance from

Junction to Ambient

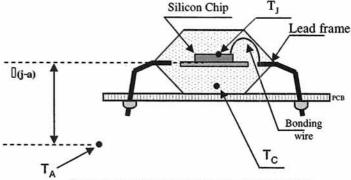


Figure 1. Heat-flow of a package mounted on PCB.

Measurement Method

1. The heat generated by the power transistor in the IC is dissipated to the air through the case. To investigate the thermal resistance from junction to case, a diode shown in Figure 2 is used as the temperature sensitivity parameter together with a heating element (to emulate the heat from power transistor).

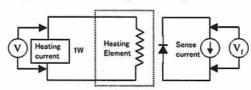


Figure 2. Diode as Temperature Sensitivity Parameter.

- The linear relationship between the forward-biased voltage drop (Vbe) and junction temperature when a constant forward-biased current is applied can be used to compute the junction temperature with respect to the power dissipation in the junction region.
- 3. For example, with heating power 1W(1V,1A) initiated at the heating element and the temperature sampling interval from 0 to 500us to ensure thermal equilibrium is reached, the temperature dependent voltage, V_f is measured and converted to junction temperature as shown in Figure 3.

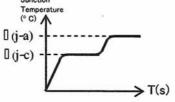


Figure 3. θ (j-a) Characteristic Plot

5. The junction temperature can be used to compute the thermal resistance from junction to case, θ (j-a) using *Equation(1)* where T_c is the case temperature.

$$\theta(j-a) = \frac{Tj - Ta}{1W}$$
 Equation (1)

Thermal resistance

The thermal resistance from junction to case, θ (j-a) for AN17827A measured using the method mention above is 40°C/W

· ·	5	APPRO	VED
		EXTERNA	<u>l₂ ∕Ω</u> SUE
-	Product Standards	Total Pages	Page
		16	14

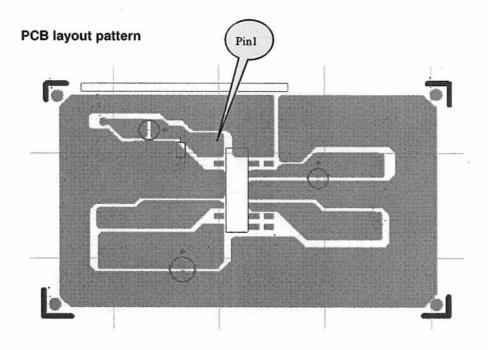
■ Technical Data

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Junction temperature estimation

$$Tj = Ta + [(j-a) \times Pd]$$

Pd: Power dissipation according to application given by (VCC x ICC) - Output power


APPROVED EXTERNAND KASUE

Product Standards

Total Pages	Page	
16	15	

■ Technical Data

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

<u>PCB area</u> : $98.3 \text{mm} \times 58.78 \text{ mm} = 5778.07 \text{ mm}^2$

PCB thickness: 1.5 mm

Material: FR (Flame Retardant)4

Product Standards

Total Pages	Page
16	16

Usage Notes

- Carry out the thermal design with sufficient margin such that the power dissipation will not be exceeded
 under the necessary conditions of power supply voltage, load impedance and ambient temperature.
- The protection circuit is for maintaining safety against an abnormal operation. Therefore, design the
 protection circuit such that it should not operate during normal operation. Especially for the over-temperature
 protection circuit, if the area of safe operation or the absolute maximum rating is momentarily exceeded by
 output pin to VCC short, or output pin to GND short (Ground fault), the LSI might be damaged before the
 over-temperature protection circuit starts working.
- Pay attention to the PCB (Printed-Circuit-Board) pattern layout in order to prevent damage due to short circuit between pins. In addition, for the pin configuration, refer to the pin functional description diagram (Sheet No.6).
- Do not mount the LSI in the reverse direction onto the PCB (Printed-Circuit-Board). It might be damaged when power is applied.
- Carry out visual inspection on the PCB (Printed-Circuit-Board) before applying the power, otherwise damage
 might happen due to problems such as solder-bridge between the pins of the semiconductor device. Also,
 perform a full technical verification on the assembly quality, because the same damage may happen due to
 conductive substances, such as solder ball, that adhere to the LSI during transportation.
- Take notice in the use of this product that it might be damaged or occasionally emit smoke when an
 abnormal state occurs such as output pin-VCC short, output pin-GND short, output-to-output-pin short (load
 short) ,or pin to pin leakage current . (And, safety measures such as an installation of fuses are
 recommended because the extent of the above-mentioned damage and smoke emission will depend on the
 current capability of the power supply.)
- When carrying out derivative product expansion or when the product is going to be used in a new set, verify
 the safety including the long-term reliability for each set.
- Check the risk that is caused by the failure of external components.
- The Input pin of this product is necessary to be tied to ground through a resistor as it has significant effect on the output offset and the supply surge susceptibility.